
Inference of fault signatures of discrete-event systems from event logs

Cody Christopher1 and Yannick Pencolé2 and Alban Grastien1

1CSIRO, Data61 and Australian National University, Canberra, Australia

e-mail: cody.christopher@data61.csiro.au, alban.grastien@data61.csiro.au
2LAAS, CNRS, Univ. Toulouse, Toulouse, France

e-mail: yannick.pencole@laas.fr

Abstract

In this paper, we propose a method to diagnose
faults in a discrete event system that only relies
on past observed logs and not on any behavioural
model of the system. Given a set of tagged logs
produced by the system, the first objective is to
extract from them a set of fault signatures. These
fault signatures are represented with a set of criti-
cal observations that are the support of the diagno-
sis method. We first propose a method to compute
the fault signatures from an initial log journal and
follow with detail on how the signatures can then
be updated when new logs are available.

1 Introduction

This paper addresses the problem of fault diagnosis in dy-
namical discrete event systems (DES) such as communica-
tion protocols [1], automated production systems [2], and
business work-flows [3], etc. The system generates a se-
quence of events, some of which are observable whilst oth-
ers are not. Depending on the type of events that is pro-
duced (normal/abnormal events) or depending on the way
the events are produced (event patterns [4; 5]), the system
may change from a normal mode to an abnormal mode.
Given a flow of observations, the problem consists of on-
line analysis of the observation flow and retrieving the cur-
rent mode of the system. We typically call the generic func-
tion that performs the observation and mode analysis of the
system a diagnoser. The general question is typically about
how we go designing such a diagnoser for any given sys-
tem. In addressing this problem, there are two main diffi-
culties: the acquisition of knowledge about the behaviour of
the system and the computational complexity of the diagno-
sis problem based on the acquired knowledge.

The first method of acquiring knowledge consists in de-
veloping a behavioural model of the system with help of
experts. The result is a predictive model that describes how
the system behaves (faultless model or not). The main ad-
vantage of such a method is that the model describes the
physical nature of the underlying system so the knowledge
about the system is rich and precise (white-box model) [6;
7]. The drawback of this approach is the complexity and
cost in the design of such a model. As soon as the sys-
tem consists of complex parts of varying origin, acquir-
ing knowledge from experts might become prohibitive (high
costs, confidentiality reasons, etc).

The contrasting method of knowledge acquisition is to
use a data-driven approach. In this context, the system is
known only based on the sequences of observable events
that it or similar systems have produced in the past (a black-
box model consisting of a set of event logs) [8]. In the era
of BigData, systems now can indeed generate tremendous
amounts of data (multiple set of sensors, cyber-physical sys-
tems, internet of things). For BigData to succeed we re-
quire that the logs obtained are meaningful enough to ex-
tract some crucial pieces of information. In the context of
health monitoring, the relevant information we seek regards
the relationship between the actual current flow of observa-
tions and some faulty operation modes. The challenge of
a data-driven method is in how we extract this information
from event logs and deduce fault mode signatures [9].

The second difficulty surrounds the complexity of the di-
agnosis problem. In both approaches (model-based or data-
based), a diagnoser has to complete two tasks—to analyse
the current flow of observed events that the system gener-
ates and to retrieve the set of possible fault modes that may
have occurred. In a typical white-box model the diagnoser
is an algorithm that relies on a finite state machine (or set
of FSMs) that uses observable events to update the current
diagnosis. This approach is advantageous in that it retains
the precision of the model, however the time and space com-
plexity of such a diagnoser can be an obstacle.

One approach to reducing the complexity of the algorithm
is to consider that many observations generated by the sys-
tem are not relevant from a diagnosis point of view. Under
this assumption, only a subset of observable events within
the observation flow are relevant and sufficient to perform
diagnosis. Such an approach relies on a recogniser [10] that
reads the observations flow but only retains events that are
part of a given observable pattern, often called a chronicle1.
Once a pattern has been recognised, the diagnoser updates
its belief about the current mode of the system with the in-
formation associated with the recognised pattern.

In this paper, we propose using a data-driven approach
to compute observable event patterns as a solution to the
diagnosis problem of DES. Our objectives are:

1. to design a diagnoser of the system without the need
for a model that would require expertise, simply based
on data logs produced by the system;

2. to abstract away irrelevant information to provide a

1The term chronicle usually refers to event patterns where two
events are constrained with time intervals [α, β]. In this work, we
do not deal with time intervals, only with event sequence.

diagnoser that performs more efficiently by simply
recognising fault signatures represented by critical ob-
servations [11] and emit the associated diagnosis;

3. to continuously update the set of critical observations
when more logs are available such that we capture
more fault signatures and therefore improve the diag-
noser.

The paper is organised as follows. Section 2 introduces
the problem formally along with necessary notation. Sec-
tion 3 recalls the theory of critical observations and de-
scribes a method to compute them from a fixed set of event
logs. Section 4 then provides an incremental version of this
method that updates the set of critical observations when
new logs are available. Section 5 finally presents an illustra-
tive example about the proposed method.

2 Problem statement

This section formally introduces the problem that is ad-
dressed in this paper.

2.1 Notation

The present work takes place in the context and standard
framework of discrete event systems (DES) [12; 6]. A DES
is a system that generates runs. A system run is a finite se-
quence of events (e), w = e1e2 . . . ek and Σ denotes the set
of events that the system could possibly generate in its runs.
The symbol ε denotes the empty sequence. By definition if
e1e2 . . . ek, k > 1 is a run of the system, then e1e2 . . . ek−1

is also a run of the system. The run ε is a run of any system.
It follows that the set of runs of a DES is a prefix-closed
language, S ⊆ Σ⋆, where Σ⋆ is the Kleene closure of Σ.

In this framework, we make the assumption that the set of
events of the underlying system is partitioned into observ-
able events Σo—events that are recorded—and unobserv-
able events Σu—those that are not. The observation flow o
generated by run w = e1e2 . . . ek will be hereafter called
the trace of w: it is the projection (P) of w on the set of ob-
servable events (i.e., all unobservable events of the run are
deleted):

o = PΣo
(w) =

{

ε if k = 0
e1PΣo

(e2 . . . ek) if k > 0 and e1 ∈ Σo

PΣo
(e2 . . . ek) otherwise.

The Σ-language of a trace o, denoted Lo, is the set of
finite sequences of events from Σ that could produce the ob-
served sequence:Lo = P−1

Σo
(o) = {w ∈ Σ⋆ | PΣo

(w) = o}.

2.2 Event logs

In this paper, we consider that the language S of the system
is unknown. The only available information we start from is
a set of logs. A log results from a past run of the system (or a
past run of a system that is identical). It is simply the record
of the trace of the run with information about the fault class.

Definition 1 (Log). A log l is a tuple (o, f) such that:

• there exists a run w ∈ S such that o = PΣo
(w);

• f is a tag of the fault mode and the run w leads the
system to be in this fault mode f .

The notion of fault mode here is generic. First, we denote
N as the nominal mode as a specific fault mode. Usually, if
a run is in a fault mode f 6= N , it means that a fault event
f ∈ Σ has occurred in the run. However, a fault in DES

can also be the occurrence of a more complex behaviour
(denoted pattern in [4; 5]) and f then means that such a
pattern has occurred in the run. In the following and without
loss of generality, we suppose that if the system is in a fault
mode f it means that a fault event f ∈ Σu is part of that run
of the system. With slight abuse of notation we write f ∈ w
to indicate “f appears in w” (i.e. w ∈ Σ⋆fΣ⋆).

Whereas it is pretty easy to record the trace o, the associa-
tion between the trace and its fault class f is not straightfor-
ward. There are basically two ways to get this fault class: by
expertise, and by data classification. In the case of expertise,
the considered trace has already been analysed by a repair
agent that tagged the trace with what was actually found
within the system (the set of components replaced for in-
stance). The second is to use automated classification tech-
niques to automatically tag the set of traces depending on
some distance criteria. This is out of the scope of this paper.

2.3 Diagnosis problem and implementation

We recall the classical diagnosis problem in a DES and de-
scribe the proposed diagnoser that solves an approximation
of this problem.

As previously introduced, the set of unobservable events
of the system includes a subset of fault events, Σf ⊆ Σu. A
set δ ⊆ Σf of faults is consistent with the system S and the
trace o if there exists a run w ∈ S that would produce this
trace (PΣo

(w) = o) and that exhibits exactly these faults
(w∩Σf = δ). The diagnosis of trace o, denoted ∆(o), is the
collection of all consistent sets of faults:

∆(o) =

{

δ ⊆ Σf

∣

∣

∣

∣

∃w ∈ S.
PΣo

(w) = o ∧ δ = w ∩ Σf

}

(1)

We find it more convenient to define the diagnosis in
terms of emptiness of languages. Let Lδ be the language
that represents all sequences that contain exactly δ:

Lδ = {w ∈ Σ⋆ | w ∩ Σf = δ} =
⋂

f∈δ

Σ⋆fΣ⋆∩
⋂

f∈Σf\δ

(Σ\{f})⋆

That is, Lδ represents the set of all runs containing all
of the faults of δ, intersected with all possible runs where
the faults not in δ never occur—the result is a set of all
runs where the only faults that occur are those in δ. With
Lδ defined, we can equivalently express the diagnosis as an
emptiness of languages problem:

δ ∈ ∆(o) ⇐⇒ S ∩Lo ∩ Lδ 6= ∅. (2)

The classical definition of the diagnosis ∆(o) relies on S.
In a classical model-based approach, this language S is as-
sumed to be known. However, in the presented framework,
we do not know S but only a set of logs L = {l1, . . . , ln}.

Assumption 1. Any log l = (o, f) of L is correct:

(f 6= N ⇒ (∃w ∈ S, (PΣo
(w) = o) ∧ (w ∩Σf = {f})))∧

(f = N ⇒ (∃w ∈ S, (PΣo
(w) = o) ∧ (w ∩ Σf = ∅))).

The design of the proposed diagnoser only relies on the
logs L and is based on critical observations (introduced in
§ 3.2). A critical observation θ corresponds to an observ-
able language resulting from the abstraction of irrelevant
observable events. The objective is to derive from L a set of
critical observations {θ1, . . . , θm} that represent fault sig-
natures. This means that each θi is associated with a fault
δi ⊆ Σf (note that a δi can be associated with multiple θi).
The proposed diagnoser, denoted ∆L, then works as fol-
lows.

Definition 2 (∆L diagnoser). Let o be a trace of the system.

δ ∈ ∆L(o) ⇐⇒ (({∃θi ∋ o} ⇒ δ = δi}).

∧ ({∀θi, o 6∈ θi} ⇒ δ = ∅))

Intuitively speaking, the diagnoser ∆L records a new
trace o of the system and checks whether it can find any crit-
ical observations θ in its database that o matches (in other
words, the diagnoser checks whether θ is recognised in o).
If o matches θ then the diagnoser returns the fault class δ
associated to θ. In the case where o is not recognised by any
of the critical observations then ∆L returns the unknown di-
agnosis ∅.

3 Off-line inference of critical observations

The aim of this section is to describe the method that com-
putes a set of critical observations from a given set of logs
L. This method first relies on the computation of a specific
representation of the log set L as a log tree.

3.1 Log tree

A log tree is a representation of a given set of logs L as a
finite state machine.

Definition 3 (Log Tree). The log tree (L-tree) LgT (L) is a
tree:

LgT (L) = (Q,Σ, δ, q0)

such that

• Q is a finite set of nodes;

• Σ is a finite alphabet composed of the set of observable
events Σo and the set of fault events Σf ;

• δ : Q×Σ → Q is a transition function (defined below);

• q0 is the root node.

Let δ∗ denote the transitive closure of δ, that is δ∗(q, ε) =
q and δ∗(q, e.w) = δ∗(δ(q, e), w) for e ∈ Σ and w ∈ Σ∗.
The transition function δ is defined by the following four
conditions.

1. q0 has no predecessor: ∀q ∈ Q, ∄e : δ(q, e) = q0.

2. For any node q ∈ Q\{q0}, |{q′, ∃e, δ(q′, e) = q}| = 1
and ∃w ∈ Σ∗, δ∗(q0, w) = q (q always has one prede-
cessor q′ and is reachable from q0: LgT (L) is a tree.)

3. For any log l = (o = (e1 . . . en), N), there is a transi-
tion sequence such that ∃qn ∈ Q, qn = δ∗(q0, o).

4. For any log l = (o = (e1 . . . en), f), let o1.e be the
minimal prefix of o (o = o1eo2) such that o1.e is not
the prefix of any other log l′ = (o′′, f ′), f ′ 6= f or
l′ = (o′′, N), then there is a sequence qo1 = δ∗(q0, o1)
followed by qo = δ∗(qo1 , feo2).

Consider for example, the following log set L: (cccd,N),
(aba, f1), (aba,N), (ccae, f2), (dbbdb,N), (abebda, f1),
(ababcc, f2), its log tree is represented in Figure 1.

Any normal log is associated with a unique path from the
root node of the tree. Any fault log, like (abebda, f1) is also
represented with a unique path. In the example, the prefix ab
is the longest prefix of abebda that is common with a log of
another class (normal log aba), which is why the log abebda
is represented by the path abf1ebda. Note also that in this
example the log (aba, f1) is represented by the same path of
the log (aba,N) as the longest prefix of aba common to the
modes f1 and N is the sequence itself.

c c c d

a

b a

f2 a e

f2 b c c

f1

e b d a

d

b b d b

Figure 1: Log tree of L = {(cccd,N), (aba, f1), (aba,N),
(ccae, f2), (dbbdb,N), (abebda, f1), (ababcc, f2)}.

Proposition 3.1. For any set of logsL, the log-tree LgT (L)
is unique.

Proof. By construction.

Based on the log-tree LgT (L), for any fault f
present in the log L we can define the language LL,f
as the set of words e1, . . . , en represented by a path
e1, . . . , ei−1, f, ei, . . . , en from q0. Any word of LL,f is
thus a sequence of observations that always results in the
diagnosis of fault f according to the log L. Back to Fig-
ure 1, LL,f1 = {abe, abeb, abebd, abebda}. Note that aba
is not part of LL,f1 even if the logs of L contain (aba, f1)
as (aba,N) is also part of L. The sequence aba leads to an
ambiguity according to L.

3.2 Theory of sub-observations

Our objective now is to generate fault signatures from the
log-tree LgT (L), that gathers a subset of traces of the sys-
tem. We propose updating the theory of critical observations
introduced in [11] to infer fault signatures as critical obser-
vations. Before the notion of critical observations can be
introduced, we first define the idea of a sub-observation.

A sub-observation, in a practical sense, is intended as a
relaxation of the information given in some trace o of the
system. Sub-observations allow for the abstraction (’hid-
ing’) of events such that only the most relevant information
is present. In the following we distinguish between ‘hard’
and ‘soft’ events — A hard event is a singleton observ-
able event, x ∈ Σo, and represents the firm occurrence of
an event, and a soft event is a subset of observable events,
y ⊆ Σo, that any number (incl. zero) of which may have oc-
curred along with any number of unobservable events (Σu),
and these events may occur multiple times.

Definition 4 (Sub-observation). A sub-observation, θ, is an
abstraction over a trace that represents an intentional re-
laxation of the concrete knowledge in the trace, and is a
strict time-ordered alternating sequence of soft and hard
events, commencing and ending with a soft event: θ =
y0x1y1 . . . xnyn.

A sub-observation θ implicitly defines, and thus can be
expressed as, a language over the alphabet Σ = Σo ∪ Σu:

Lθ = (y0 ∪Σu)
∗x1(y1 ∪ Σu)

∗ . . . xn(yn ∪Σu)
∗.

A given trace o of the system can be abstracted in several
manners (choices between hard and soft events), so a trace

{ac} b {cd} a {c} d {c} a ∅

{abcd} a {bcd} a ∅

Figure 2: Two sub-observations with a map m satisfying �

o is associated with a space of sub-observations, denoted
O(o). Now, if we consider the set of possible traces of Σ∗

o , it
can be associated with the global space of sub-observations:

O =
⋃

o∈Σ∗
o

O(o).

Into the space O, we inject any trace o to a most refined
sub-observation, denoted sub(o) where the hard events are
the events of o and the soft events are empty.

Definition 5. The function sub(·) generates the most-
refined (or least abstract) sub-observation in O(o) from a
given trace o, by inserting empty soft events at either end of
the trace, and between hard events:

o = e1 . . . en

sub(o) = ∅e1∅ . . . en∅ ∈ O(o) ⊆ O

Space O gathers the set of all possible sub-observations
that are more or less abstracted. We equip O with a partial
order, denoted �, to allow us to distinguish whether a given
sub-observation is ‘more’ or ‘less‘ abstract than some other
sub-observation. � is defined as follows.

Definition 6. The relation � over O is defined such that
θ′ � θ if and only if there exists a mapping function m:

Given |θ′| = n, |θ| = n′

m : {0, . . . , n+ 1} → {0, . . . , n′ + 1} such that

m(i) < m(i+ 1), m(0) = 0, m(n+ 1) = n′ + 1

x′i = xm(i)

y′i ⊇
⋃

m(i)≤j≤m(i+1)−1

yj ∪
⋃

m(i)<j<m(i+1)

xj

The relation � is provably a partial order over O.

In words: θ′ � θ if there exists some m that maps the
hard events in θ′ to an equivalent sequence in θ, retain-
ing the ordering of both, and each y′i in θ′ captures the
union of all intervening events – yj (inclusive) and xj (ex-
clusive), for j ranging between m(i) and m(i + 1) − 1.
As an example, take θ = {ac} b {cd} a {c} d {c} a∅ and
θ′ = {abcd} a {bcd} a∅. The hard events in θ′ are matched
to x2 and x4 in θ, and each y′i ‘consumes’ the other informa-
tion. Specifically, m(1) = 2,m(2) = 4, satisfies the con-
straints for θ′ � θ. We illustrate this in Figure 2. One can
read θ′ as a regular expression: [abcdΣu]

∗(a)[bcdΣu]
∗(a).

The fundamental principle of a sub-observation θ is that
it implicitly represents the set of traces for which it is a more
abstract form of:

ψ(θ) = {o ∈ Σ∗
o | θ � sub(o)}

Therefore, θ′ � θ ⇒ ψ(θ′) ⊇ ψ(θ). To summarise, the
notion of sub-observations leads to the definition of a formal
abstraction space:

Definition 7. The set of sub-observations over the observ-
able alphabet Σo is a partial-order set 〈O,�, sub〉.

3.3 Critical observations and log-based diagnosis

In [11], critical observations are computed with respect to
the model of the system S. Given a trace o, a critical ob-
servation is a sub-observation θ that is precise enough to
infer the original diagnosis of o given S and that is also
maximally abstracted. That is, the sub-observation θ can-
not further be abstracted without compromising the known
diagnosis of the original observation o.

In this paper, we take S to be unknown, with LgT (L)
available as a partial model of the system. We now adapt
the definitions of sufficiency and criticality in [11].

Definition 8. The diagnoses of a sub-observation θ is the
union of the diagnoses of the fault traces of the logs L for
which θ is the more abstract form of:

∆L(θ) =
⋃

o∈(ψ(θ)∩
⋃

f∈L
LL,f)

∆L(o)

=
⋃

o∈(ψ(θ)∩
⋃

f∈L
LL,f)

{f}

Therefore, if θ � sub(o) then δ ∈ ∆L(θ) if δ ∈ ∆L(o).

Definition 9 (Sufficient). Given a log o ∈ LL,f , a sub-
observation θ � sub(o) is sufficient for o if ∆(θ) = {f}.

Sufficiency, then, is the formalisation of the property that
information lost to abstraction does not affect the known di-
agnosis by making other potential diagnoses feasible (that
is, others logs l′ ∈ L with f 6= f ′ are not captured by θ):

∆L(θ) \ {f} = ∅ (3)

Observe that by Definitions 7, and 8, the naïve sub-
observation, sub(o), satisfies the criteria to be sufficient for
o, and means that at least one solution can be found:

∆L(sub(o)) =
⋃

o∈(ψ(sub(o))∩
⋃

f∈L
LL,f)

∆L(o)

= ∆L(o) = {f}

We are then left to search for a ‘maximally abstract’, or
critical, sub-observation, and define that as follows:

Definition 10 (Critical). Given a log o ∈ LL,f , a sub-
observation θ � sub(o) is critical for o if it is sufficient
for o and there is no strict sub-observation of θ that is also
sufficient:

∀θ′ � θ if (∆L(θ
′) = {f}) then (θ′ = θ) . (4)

Noting that � is only a partial order, it is possible that
there could be several critical sub-observations. Back to
Definition 2, the full log-based diagnoser ∆L can then be
defined as follows. Let Θ = {θ1, . . . , θm} be the set of
critical observations that have been inferred, for any further
sequence o produced by the system, ∆L returns:

∆L(o) =
⋃

θ∈Θ,o∈ψ(θ)

∆L(θ).

The log-based diagnoser ∆L may not be accurate as it is
based on a partial knowledge of the underlying system. For
a given new trace o, it returns a set of diagnoses δ ∈ ∆L(o)
based on the fact there exist some logs o′ with θ � sub(o′)
and θ � sub(o) for which δ is certainly the diagnosis of o′

according the available set of logs L.

Procedure FINDCRITICALOBSERVATIONS

input: logtree LgT (L)
input: log o ∈ L(L, f)
output: critical observation
diag := f ; θ := sub(o)
candidates := children(θ)
while candidates 6= ∅ do

θ′ := pop(candidates)
if ∆L(θ

′) = diag then
θ := θ′

candidates := children(θ)
end if

end while
return θ

Figure 3: Finding a critical observation

Theorem 3.2. For any fault f , ∆L converges to the model-
based diagnoser ∆ with respect to the size of L:

(∃o ∈ Σ∗
o , {f} = ∆(o)) ⇒ (lim

|L|→∞
∆L(o) = {f})

Proof. (sketch) By convergence, we mean here that the
larger L is, the more likely ∆L(o) = ∆(o) = {f}. As
L gets bigger, it captures more and more behaviours from
the underlying system S. If S is such that ∃o ∈ Σ∗

o , {f} =
∆(o) (i.e. the fault f can be diagnosed with certainty by ob-
serving o), then it is guaranteed, if L is big enough, that ∆L

will know a critical observation θ such that θ � sub(o) a nd
∆L(θ) = {f} and no other available critical observations
θ′ 6= θ will be such that o ∈ ψ(θ′).

3.4 Inferring the Critical Observations Set

The remaining question is now how to infer a set of critical
observations from LgT (L). From [11] we also take two
other results:

1. The finiteness of the set of sub-observations O(o), and

2. The monotonicity of Definition 9 – given θ1, θ2 such
that θ1 � θ2 � sub(o), if θ1 is sufficient for o, then so
is θ2.

These together grant there are no unreachable sufficient sub-
observations, and that at least one critical sub-observation
exists at a finite depth, k, of abstraction away from sub(o).

To define a valid search space for algorithmic use, we
must first define explicitly the children (successors) of a sub-
observation:

Definition 11. A child of sub-observation θ is a strict sub-
observation θ′ of θ such that no sub-observation sits ’be-
tween’ θ′ and θ.

θ′ ∈ children(θ) ⇐⇒ (θ′ ≺ θ)∧ (∄θ′′ ∈ O. θ′ ≺ θ′′ ≺ θ) .

This provides a practical characterisation of criticality: a
sufficient sub-observation θ is critical if and only if none of
its children are sufficient. This then provides all the con-
ditions necessary to define a terminating search algorithm
(such as that given in [11], along with child generation,
which as been adapted for this setting) presented in Figure 3.

We can now create the diagnoser ∆L that makes use of
a set of critical observations, Θ, derived from LgT (L). We
construct Θ as follows. Taking L, construct the log tree
LgT (L) as defined in § 3.1. Then compute the critical ob-
servations {θo} for each trace with a fault mode that is not
nominal: o ∈

⋃

f 6=N LL,f , and set Θ =
⋃

o {θo}.

By further extending Algorithm 3 to maintain all cur-
rently sufficient children in the queue, and to save all valid
critical observations for a given trace rather than just the
first, we can guarantee a complete set as L approaches the
underlying model (L → L∞ ≈ S). This extension does
not ultimately affect the complexity of the algorithm, as it
is equivalent to the worst-case exhaustive search under the
greedy approach. In [11] it was demonstrated that the equiv-
alent of Algorithm 3 had complexity O(n2m2) in the num-
ber of calls to the model based diagnoser ∆. We provably
retain the same bound but in calls to ∆L(·) at worse for each
trace, and can be dramatically improved with heuristics that
allow us to recall and then avoid the types of abstraction that
caused pruning earlier in the search.

As is typical in diagnosis problems we often prefer min-
imal diagnoses (with respect to some notion of minimality:
cardinality, set inclusion, etc.). Whether this type of mini-
mality property can be extended to Θ is an open question,
as without computing the full set of critical observations for
any given observation, the completeness of Θ can not nec-
essarily be guaranteed.

In particular, consider the following scenario: l1 and l2
are both associated with the same fault mode f , but produce
different critical observations, θ1 and θ2 such that (θ1 6�
θ2)∧(θ2 6� θ1), with o1, o2 ∈ ψ(θ1) and o2 ∈ ψ(θ2). Under
a set-inclusion minimality, we would remove θ2 fromΘ as it
would be seen as superfluous. Suppose then that logs l3 and
l4 which both matched θ2 are queried on ∆L. As Θ = θ1 in
this case unfortunately we provide an inaccurate diagnosis.

4 Online inference of the critical

observations

We now discuss the problem of inferring an update of the set
of critical observations. Given a log tree LgT (L) and a new
available log l = (o, f), the objective is to update the set of
critical observations to keep the consistency between the di-
agnoser ∆L and its current new knowledge. In other words,
ifL′ denotesL∪{l}, the objective of the critical observation
update is to actually update ∆L to ∆L′ (see Definition 2).

To intuitively explain the objective of the incremental
method that is proposed here, consider that the diagnoser
∆L is available (relying for instance on the method that is
detailed in Section 3) and in charge of analysing the new
sequence of observations o (that is part of the new available
log l = (o, f)).

The diagnoser ∆L might simply return ∅, in this case
it means that the sequence o belongs to a type of observ-
able sequences that is unknown from the log L or ambigu-
ous. It might also return a diagnosis δ = f ′ due to the fact
that ∆L knows some critical observations that are associated
with fault f ′. What happens now if the tag of the new log is
not f ′? Based on the current knowledge, the set of critical
observations of ∆L must be revised. In this example, the
critical observation of ∆L leading to an inconsistency with
respect to the new log l is either too abstracted (not only
it captures behaviours of fault mode f , but also it captures
newly discovered behaviours of fault mode f ′) or simply
removed (diagnosability issues between fault mode f ′ and
fault mode f , the system generates the same observable be-
haviour for both modes).

To perform online inference of critical observations, we
first update the log-tree from LgT (L) to the new log tree
LgT (L ∪ {(o, f)}) (see for instance the update of the log-

tree from Figure 1 to Figure 5). After updating the log tree
we can proceed to updating Θ, the current set of critical
observations. First observe that the critical observations in
Θ can never be made more abstract in the presence of new
logs.

Theorem 4.1 (Most Abstract). Each θ ∈ Θ is maximally
abstract and cannot be made more abstract.
Formally, ∀θ ∈ Θ that matches some subset of the logs of a
class f , λ ⊆ LL,f , θ cannot be made more abstract. That is,
if ∃θ′ � θ such that ∀(o, f) ∈ λ, (θ′ � sub(o)) ∧ (∆(θ′) =
f), then θ′ = θ.

Adding new logs can only cause sub-observations to be-
come refined again. By construction, θ is as abstract as pos-
sible. Should a new log, l = (o, t), become available that
matches a critical observation θ associated with fault mode
f , there are two cases to consider:

1. That o is tagged with the fault class of θ, t = f

2. That o is tagged with a different class, t 6= f .

Lemma 4.2 (Sketch). If l = (o, t) is tagged with the same
fault class of θ (t = f), then θ remains critical. Assume
there exists a sufficient θ′ ≺ θf matching l and all prior
logs l′ ∈ λ. However, θ is by construction critical (no suf-
ficient children) prior to the update and matches l, inducing
a contradiction. Therefore no such θ′ exists, as if it did then
θ = θ′ before the update, and θf maintains criticality.

Lemma 4.3 (Sketch). If l = (o, t) has a different class tag
to θ, t 6= f , then it is the case that θ is no longer sufficient
by definition 9. Assume there exists some sufficient θ′ � θ.
However, by monotonicity, θ is therefore sufficient, inducing
a contradiction. Therefore no such θ′ exists, and some less
abstract parent of θ is the nearest sufficient sub-observation.

Proof of Theorem 4.1. Lemmas 4.2 and 4.3 together show
that Θ is maximally abstract at all times, and can only be
made more concrete when correcting for a conflict.

Given Theorem 4.1, we know that repairing Θ involves
the finding of less abstract sub-observations. However,
backtracking in this search space is not trivial, as for any
given sub-observation θ there is no unique parent (the suc-
cessor function children(θ) is not invertible).

There are two possible solutions to this problem. The
naïve approach involves the recomputation of all conflict-
ing critical observations, restarting the computation of these
observations from the top (at sub(o) for all corresponding
traces). This approach is quite expensive however, and ig-
nores the works already done in finding the prior result. The
alternative is to remember the search path through O, trad-
ing off the time-cost for a space-cost (linear in the size of
Θ).

For each θ′ thrown into the contention by the new log l,
we backtrack all stored search paths by undoing abstractions
until the sub-observation is sufficient again, and resume the
abstraction process from this new point, storing any new
critical observations found and associated search paths for
future use.

We make use of an algorithm similar to that discussed
in § 3.4 for the search resumption, and call this combined
procedure upd(Θ, {l}) = Θ′. By using this approach we
can guarantee that iteratively updating with new logs over
time in this way allows us to converge to the same ΘL∞

, and
therefore the same diagnoser ∆L∞

, that would be produced
had all logs been available.

1

start

2 3

4 5

6

7 8

a

{b, e}

b

a

f1

{a, d}

f2

c

{c, d}

{b, c, d}

f2

a

{b, c, d, e}

Figure 4: Underlying system of the illustrative example.

Theorem 4.4 (Convergence of Θ). For any set of logsL, the
critical observation set ΘL converges to ΘL∞

independent
of the order of the updates taking L to L∞. That is, given L
and two updates L1, L2 with L1 6= L2 we have:

upd(upd(ΘL, L1), L2) = upd(upd(ΘL, L2), L1)

Proof (sketch). For all Θ and any possible updateL′, collect
all θ ∈ Θ that are no longer sufficient (i.e. conflict with L′),
and call this set Θc. By Theorem 4.1 and the monotonicity
of O, we say without loss of generality that either:

1. ∀θc ∈ Θc there exists some chain of ancestors
θ′1, . . . , θ

′
k (possibly zero length) with respect to each

trace connected to θc, that are not sufficient, ending in
some sufficient θa such that θc � θ′1 � . . . � θ′k � θa;
or

2. There is no sufficient ancestor.

For the first—in all conflict cases where a sufficient (not
necessarily critical) θa can be found after any update, that
ancestor is a at worst a sufficient sub-observation, and by
monotonicity, any θ ∈ ΘL∞

in the final state must either be
one of these ancestors, or descendant on a different branch,
which must have been located by the update process, by
construction.

For the second—in conflict cases where θc cannot be re-
paired with respect to any matching trace o and is removed,
the conflicting logs are by definition still present in L∞.
Whether these conflicting logs are nominal, or tagged with
a different mode, they necessarily still supersede in the limit
as the size of L approaches infinity, and the conflicting θc
nor any ancestor exist in ΘL∞

.
The remaining case for consideration is that where the

new log fails to match on any θ ∈ Θ. In this instance, as
there is no updating required, we simply compute the critical
observations for this new log and update as per the above.

5 Illustrative example

We present an illustrative example demonstrating how the
fault signatures are inferred from a set of logs. For the sake
of illustration, Figure 4 shows the underlying system that
generates the described logs. In particular, it must be no-
ticed that this system can generate the set of logs used to
construct the log tree in Figure 1. Taking the logs used to
build Figure 1, we consider the faulty logs in L to compute
an initial Θ as follows:

1. Consider (aba, f1). In this case, as aba is also a nomi-
nal trace, we cannot produce a critical observation that
produces f1, and as such pass over it.

2. Consider (ccae, f2). We search O w.r.t. o, and find two
critical sub-observations, which are added to Θ:

θ1 = {Σo} c {Σo} a {Σo} θ2 = {Σo} c {Σo} e {Σo}

3. Consider (abebda, f1). From this log we add many
critical sub-observations to Θ:

θ3 = {Σo} a {Σo} d {Σo} θ4 = {Σo} b {Σo} e {Σo}

θ5 = {Σo} d {Σo} a {Σo} θ6 = {Σo} e {Σo} b {Σo}

θ7 = {Σo} e {Σo} a {Σo} θ8 = {Σo} e {Σo} d {Σo}

Note that at this stage we are generating all sequential
pairs that appear uniquely in the trace in question.

4. Consider (ababcc, f2). From this log we get two fur-
ther critical observations:

θ9 = {Σo} a {Σo} c {Σo} θ10 = {Σo} b {Σo} c {Σo}

Also it is of interest to note that every soft event is the trivial
Σo. Both this and the pairing phenomenon are brought about
because we as of yet lack of lot of information about the
underlying system, and indeed many of these are actually
not sufficient in ‘reality’. As more logs are added we would
expect some of these to become sequential triples first, in
addition to seeing non-trivial soft events.

The diagnoser ∆L then starts with Θ = {θ1, . . . , θ10} as
the recogniser. Suppose now that ∆L is in use and the sys-
tem produces a trace like cccdabac: ∆L then recognises θ1,
θ5, θ9, θ10 so the diagnosis of cccdabac by ∆L is {f1, f2}.

Now we show the incremental update process. Suppose
a new log, (dbbdad, f2), is added to L. Should this log not
have been tagged as f2, ∆L would return f1 as a diagnosis
due to the match against both θ3 and θ5. However, as we do
have a fault mode, Θ can be revised and refined.

Firstly, we determine whether this trace is recognised, and
if so, if it is correctly identified—here we see matches on
patterns meant to recognise f1. Therefore θ3 and θ5 are no
longer sufficient and too abstract by Theorem 4.1. Upon
updating LgT (L), we now consider these in turn.

We reverse the relaxation of θ3 until we reach a suffi-
cient sub-observation. One step backwards we find one:
{Σo} a {Σo} b {Σo} d {Σo}, where {Σo} b {Σo} had been
collapsed in our original search. We resume abstracting
at this point, and find that none of the children of this
are sufficient, and so it becomes the new critical sub-
observation θ′3. We similarly consider θ5, and find that
two steps backwards are required for sufficiency, arriving at
{Σo} e {Σo} b {Σo} d {Σo} a {Σo}. Resuming abstraction
we find that this sub-observation is already superseded by
θ6, θ7, θ8, and that all remaining children are not sufficient.
This causes θ5 to be dropped from Θ entirely.

Further, we now search this new log for any new critical
observations, and find three new critical observations:

θ11 = {Σo} b {Σo} a {Σo} d {Σo}

θ12 = {Σo} b {Σo} b {Σo} a {Σo}

θ13 = {Σo} d {Σo} a {Σo} d {Σo}

This new set of critical observations then leads to the new
diagnoser ∆L′=L∪{(dbbdad,f2)}. Now, considering again the
same trace cccdabac as above: the diagnosis of ∆L′ be-
comes only f2.

Suppose now that (aebeba,N) is added toL′. This partic-
ular trace matches θ4, θ6, θ7, and θ12. It would be diagnosed

c
c

c d

a

b a

e

b e b a

f2
a e

f2 b c c

f1

e b d a

d

b b d b

f2 a d

Figure 5: Update Log tree of L, with (dbbdad, f2) and
(aebeba,N) added.

as {f1, f2} were this not an update, as it matched some θ for
both fault modes. Since we have conflicting tags for several
different critical observations, each must be updated.

We start with θ4. We backtrack until we find a suffi-
cient ancestor in {Σo} b {Σo} e {Σo} d {Σo}, and then ab-
stracts to θ8 with no other sub-observations being sufficient,
allowing us to drop θ4 entirely. Considering θ6 a similar
thing happens. It is reversed to {Σo} e {Σo} b {Σo} d {Σo}
which is similarly caught by θ8, and has no other suf-
ficient children. Consider now θ7, similarly to θ4 and
θ6, we end up at θ8 via the nearest sufficient ancestor
{Σo} e {Σo} d {Σo} a {Σo}, and consequently θ7 is also
dropped. Lastly, consider θ12. In this case we step back to
{Σo} b {Σo} b {Σo} a {Σo} d {Σo}, and discover that only
one sufficient child exists, and is equal to θ11.

The net result of the addition of this single log was the
removal of four incorrect, then redundant, critical observa-
tions. The resulting state of the log tree is shown in Figure 5.

6 Related work

Fault diagnosis in discrete event systems is a problem that
has been intensively investigated. This problem was intro-
duced in [13; 14] and a recent survey can be found in [7].
In these contributions, the knowledge of the system is com-
plete (white-box models), and the diagnosis methods con-
sist usually in compiling diagnosis information into finite-
state machines that are able to provide diagnosis updates
after the occurrence of a new observed event. The main
issue we face with this particular approach is the combi-
natorial explosion of the diagnoser. One approach to this
problem is to compute abstractions that make the resulting
diagnoser less complex while maintaining similar accuracy
to the non-abstracted version [15; 16]. The theory of critical
observations provides another way to perform these abstrac-
tions [11]. Then, by construction, a diagnoser that is based
on critical observations simply becomes a pattern recogniser
similar in nature to the one presented in [10].

Solving the fault diagnosis problem without any explicit
model of the system requires the use of learning techniques.
Our proposal can be considered a type of supervised learn-
ing technique closer in style to grammatical inference [17],
which mainly tries to identify the underlying system by
learning automata [18]. We do not attempt to learn the
model of the system [19], but rather a set of concise rep-
resentations of the fault signatures such as proposed in [8;
20] in a unsupervised learning context (classification).

7 Conclusion

In this work, we present an original approach for fault diag-
nosis in discrete event systems. In contrast to many of the
approaches that deal with this problem, our proposal does
not rely on the knowledge of a model but only on an avail-
able set of tagged logs. By using critical observations, we
propose generating fault signatures based on the given logs
that are as abstract as possible but are guaranteed to not con-
tradict the available information about the system.

Based on a given log, the diagnoser can diagnose any fu-
ture trace to be faulty if it is certain it is similar to one that
is known to produce the same fault according to the current
set of tagged logs. Using critical observations serves two
goals: to generalise by abstraction the available knowledge
about the system (knowledge inference), and to represent
fault signatures as a set of hard/soft events which require
only the implementation of a recogniser that performs diag-
nosis in a similar fashion to a chronicle recogniser (compu-
tational performance). As new logs may become available,
fault signatures are revised. This revision of the fault sig-
natures always consists of a refinement of the set of critical
observations, making the diagnoser progressively more pre-
cise when new logs are available.

The proposed approach is monolithic and purely data-
driven, however, it might be interesting to consider as an
extension that we know some of the structural model of the
system (a set of interacting, possibly specified, components)
making it possible to design a distributed set of log-based di-
agnosers. Another avenue would be to start from untagged
logs and to use the generation of critical observations as a
way to generate the fault class of the underlying system.
Lastly, other techniques from grammatical inference and au-
tomata learning could be used to improve the structure of the
log-tree, in particular for identifying loops that are present
in the underlying system.

References

[1] Yannick Pencolé and Marie-Odile Cordier. A for-
mal framework for the decentralised diagnosis of large
scale discrete event systems and its application to
telecommunication networks. Artificial Intelligence,
164(2):121–170, 5 2005.

[2] Yassine Qamsane, Abdelouahed Tajer, and Alexan-
dre Philippot. Distributed supervisory control syn-
thesis for discrete manufacturing systems. In 8th
IFAC Conference on Manufacturing Modelling, Man-
agement and Control, Troyes, France, June 2016.

[3] Luca Console et al. WS-DIAMOND: Web services:
Diagnosability, monitoring, and diagnosis. In At Your
Service: Service-Oriented Computing from an EU Per-
spective, pages 213–240. MIT PRESS, 2008.

[4] Thierry Jéron, Hervé Marchand, Sophie Pinchinat, and
Marie-Odile Cordier. Supervision patterns in discrete
event systems diagnosis. In 8th International Work-
shop on Discrete Event Systems, pages 262–268, Ann
Arbor, MI, United States, 6 2006.

[5] Houssam-Eddine Gougam, Yannick Pencolé, and Au-
dine Subias. Diagnosability analysis of patterns on
bounded labeled prioritized Petri nets. Discrete Event
Dynamic Systems, 27(1):143–180, 2017.

[6] M. Zanella and G. Lamperti. Diagnosis of active sys-
tems. Kluwer Academic Publishers, 2003.

[7] Janan Zaytoon and Stéphane Lafortune. Overview of
fault diagnosis methods for discrete event systems. An-
nual Reviews in Control, 37:308–320, 2013.

[8] Françoise Fessant and Fabrice Clérot. An efficient
som-based pre-processing to improve the discovery of
frequent patterns in alarm logs. In DMIN, pages 276–
282, 2006.

[9] M. O. Cordier, L. Travé-Massuyès, and X. Pucel.
Comparing diagnosability in continuous and discrete-
event systems. In Proceedings of the 17th Interna-
tional Workshop on Principles of Diagnosis (DX-06),
pages 55–60, 2006.

[10] Christophe Dousson. Extending and unifying chroni-
cle representation with event counters. In Proceedings
of the 15th Eureopean Conference on Artificial Intel-
ligence, ECAI’2002, Lyon, France, July 2002, pages
257–261, 2002.

[11] C. Christopher and Al. Grastien. Formulating event-
based critical observations in diagnostic problems.
In 54th IEEE Conference on Decision and Control
(CDC-15), pages 4462–4467, 2015.

[12] C. Cassandras and S. Lafortune. Introduction to dis-
crete event systems. Kluwer Academic Publishers,
1999.

[13] Feng Lin. Diagnosability of discrete event systems and
its applications. Journal of Discrete Event Dynamic
Systems: Theory and Applications, 4(2):197–212, 5
1994.

[14] Meera Sampath, Raja Sengupta, Stéphane Lafortune,
Kasim Sinnamohideen, and Demosthenis Teneketzis.
Diagnosability of discrete-event systems. Transactions
on Automatic Control, 40(9):1555–1575, 9 1995.

[15] B. Guerraz and C. Dousson. Chronicles construction
starting from the fault model of the system to diagnose.
In International Workshop on Principles of Diagnosis
(DX04), pages 51–56, Carcassonne, France, 2004.

[16] Anika Schumann and Yannick Pencolé. Efficient on-
line failure identification for discrete-event systems. In
6th IFAC Symposium on Fault Detection, Supervision
and Safety of Technical Processes, pages 1294–1299,
Beijing, China, 8 2006.

[17] Colin de la Higuera. A bibliographical study of gram-
matical inference. Pattern Recognition, 38(9):1332–
1348, 2005.

[18] M. A.L. Thathachar and P. S. Sastry. Varieties of learn-
ing automata: An overview. Trans. Sys. Man Cyber.
Part B, 32(6):711–722, December 2002.

[19] Alexander Maier, Oliver Niggeman, and Jens Eick-
meyer. On the learning of timing behavior for anomaly
detection in cyber-physical production systems. In
Proceedings of the 26th International Workshop on
Principles of Diagnosis (DX-15), pages 217–224,
Paris,France, 2015.

[20] A. Subias, L. Travé-Massuyès, and E. Le Corronc.
Learning chronicles signing multiple scenario in-
stances. In 25th international workshop of diagnosis
(DX14), Graz, Autriche, 2014.

	Introduction
	Problem statement
	Notation
	Event logs
	Diagnosis problem and implementation

	Off-line inference of critical observations
	Log tree
	Theory of sub-observations
	Critical observations and log-based diagnosis
	Inferring the Critical Observations Set

	Online inference of the critical observations
	Illustrative example
	Related work
	Conclusion

