
378

An AO*-like algorithm implementation for active diagnosis

E. Chanthery, Y. Pencolé, N. Bussac

CNRS ; LAAS ; 7 avenue du colonel Roche, Toulouse, France
Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ;Toulouse, France

e-mail: [elodie.chanthery; yannick.pencole; nicolas.bussac]@laas.fr

Abstract

This paper details an algorithm that solves the ac-
tive diagnosis problem. This algorithm relies on an AO*-
search and computes a conditional plan to apply in order
to refine the diagnosis. The input of the AO* is a set of am-
biguous diagnosis candidates (represented as belief states)
processed by the diagnoser at the time when the active di-
agnosis session starts. The search-space of AO* is defined
by the behavioral model of the system that is common to
the diagnoser and the diagnosis planner. Several prob-
lems have to be addressed. The first one is to adapt AO*
algorithm to an optimization problem with various costs
and rewards. The challenge is to find a relevant criterion
that may be used by all kinds of autonomous systems (like
satellites or rovers). The second challenge is to define an
efficient heuristic in order to prune the search-space and
to guide the search. This heuristic has to take into account
the goal of active diagnosis and the mission goal of the
autonomous system (mission model). Finally, the compu-
tational time required by this planner must be compatible
with the time constraints inherent to autonomy in spatial
systems.

1 Introduction

Autonomy is the ability to independently perform de-
cisions and act in a changing environment. One of the
most important characteristic of an autonomous system is
its ability to take care of itself when performing its mis-
sion. In this work, we are particularly interested in in-
creasing the autonomy of satellites (AGATA project, see
Figure 1).1

Autonomous satellites are able to give relevant infor-
mation to the ground, detect if one of their components
is out of order and eventually decide to reboot it or to re-
configure itself and use another component. This ability
requires on-line diagnosis (fault detection and isolation)
and on-line replanning. On-line diagnosis is the problem
of determining the faults that have occurred on the system,

1The AGATA project (Autonomy Generic Architecture - Tests and
Application) is a French collaborative project funded by the French space
agency (CNES) involving researchers and engineers from CNES, ON-
ERA, and LAAS-CNRS.

Figure 1. Observation Satellite (AGATA project)

relying on the available observations. However, available
observations may not be sufficient to determine the faults
with certainty (ambiguous diagnoses). We thus propose
to improve the performance of the diagnostic process by
the use of the action capabilities of the system in order
to refine the diagnosis in case of ambiguity: this is the
active diagnosis problem. Active diagnosis problems are
planning problems that aim at proposing an admissible se-
quence of actions (or plan) whose goal is to refine the di-
agnosis without radically changing or degrading the initial
mission plan.

In previous works [4], we have proposed a formal
definition of the active diagnosis problem on discrete-
event systems (DES) and an on-board architecture that in-
tegrates a diagnosis planner that is in charge of solving
the active diagnosis problem (Figure 2). A first algorithm
was sketched and we have raised the difficulties regard-
ing the integration of active diagnosis into an on-board
architecture including the mission planning process. The
objective of this paper is to detail an algorithm that solves
the active diagnosis problem. This algorithm relies on an
AO*-search [3] and computes a conditional plan to apply
in order to refine the diagnosis. As illustrated in Figure 2,
the inputs of the AO* is not only a set of ambiguous di-
agnosis candidates (represented as belief states) processed
by the diagnoser at the time when the active diagnosis ses-
sion starts, but also objectives and constraints provided
by the mission model and some constraints from the be-

i-SAIRAS 2010
August 29-September 1, 2010, Sapporo, Japan

379

havioural model of the system. The search-space of AO*
is then constrained by the behavioral model of the system
that is common to the diagnoser and the diagnosis planner.
Several problems have to be addressed. The first one is to
adapt AO* algorithm to an optimization problem with var-
ious costs and rewards. The challenge is to find a relevant
criterion that may be used by all kinds of autonomous sys-
tems (like satellites or rovers). The second challenge is to
define an efficient heuristic in order to prune the search-
space and to guide the search. This heuristic has to take
into account the goal of active diagnosis and the mission
goal of the autonomous system (mission model). Finally,
the computational time required by this planner must be
compatible with the time constraints inherent to autonomy
in spatial systems.

Figure 2. Integration of active diagnosis
capabilities in an on-board architecture.

This paper is organized as follows. Section 2 de-
scribes related works on active diagnosis. Section 3 recalls
how the diagnoser module works in the proposed architec-
ture. Section 4 presents the AO*-like algorithm. Section
5 details the heuristics used in the AO*-like algorithm.
Section 6 presents the spatial case study and our results.
Section 7 concludes the paper.

2 Related Works

The choice of the set of actions performed on-line for
refining the diagnosis may be compared with an on-line
test sequencing problem. However, for dynamical systems
that are currently performing a mission, the challenge of
an active diagnosis process is to propose an admissible se-
quence of actions (or plan) that refines the diagnosis with-
out radically changing the mission plan. The conflicts be-
tween the plan for diagnosis and the mission plan have to
be taken into account.
To our best knowledge, there are very few works about
active diagnosis in dynamical systems. The main contri-
bution on active diagnosis of discrete-event systems is the
work of [12]. Active diagnosis is formulated as a supervi-
sory control problem [11] where the legal language is an

”appropriate” regular sublanguage of the regular language
of the system. The proposed solution is to design a system
controller in such a way that it satisfies specified control
objectives and results in a diagnosable controlled system.
In other words, the action domain is restricted so that the
system always remains diagnosable. This approach seems
to be too restrictive for autonomous systems that realize
a mission. Indeed, they need to keep all their action ca-
pability, even if they intermittently loose their diagnosis
capability. In this article, we reuse the idea that consists
in combining monitoring, diagnosis capability and con-
troller, without restricting the controller’s action capabili-
ties.
In the field of hybrid systems, [2] propose to achieve ac-
tive diagnosis in a hybrid framework. Starting in a non di-
agnosable region, the authors use the diagnosability anal-
ysis method to determine the sequence of controllable ac-
tions to be applied to the system in order to bring it into
a diagnosable one. The problem of the search of an ac-
tive diagnosis plan is formulated as follows: given an un-
certain state of the active diagnoser, the active diagnosis
problem is to find a controllable path leading to a certain
state. The authors propose to solve this problem as a con-
ditional planning problem using an AND-OR graph. The
authors can take advantage of the fact that the discrete-
event system resulting of the abstraction of an hybrid sys-
tem has a limited a number of states. So the global ex-
ploration of the AND-OR tree is still possible. For sys-
tems completely described by a discrete-event system, the
number of states is huge and the entire exploration of the
AND-OR tree is intractable on-line.
The integration of active diagnosis into production plans
is described in [7] and experimented on a model of an in-
dustrial digital printing press. The method is based on
an active diagnoser that updates the current system state
and stimulates the planner to generate informative plans
that may determine faulty actions and achieve production
goals as well. The advantage of interleaving diagnosis and
planning is that diagnosis is quickly confirmed or invali-
dated. The objective is to determine faulty actions without
explaining the cause of the failure. The repair procedure
then consists in exchanging the printer modules accord-
ing to their failure probability until the system is working
properly. Our study focuses on autonomous systems that
face hardware/software faults without any possibility of
external repairing. The mission planner requires explicit
diagnosis that determines the current degraded mode in
order to optimally update the plan. Our approach consists
in separating diagnosis and mission planning modules, be-
cause this is today the most common way to construct an
on-board architecture for autonomous systems [1].
The problem of diagnosis refinement by action planning
has also been raised by [8]. The author proposes a for-
mal situation calculus framework for diagnostic problem

380

solving which incorporates a theory of action and change.

3 Background about Active Diagnosis on
DES

Before going into the details of the AO*-like algo-
rithm that solves the active diagnosis problem, it is neces-
sary to recall how the diagnoser module works in the pro-
posed on-board architecture (see Figure 2). As opposed to
classical diagnosers like the one defined in [13] or more
recently the ones defined in [10], the proposed diagnoser
takes into account the fact that at a given time, it may be
possible to act on the system and get a better diagnosis if
such an action is performed. As shown in Figure 2, the
purpose of the diagnoser is firstly to provide a diagnosis
for any observable situation (like any other diagnoser) and
secondly to provide information about how useful the trig-
ger of an active diagnostic session could be.

3.1 Model extension for active diagnosis
The diagnoser proposed in this architecture relies on

a discrete-event model of the system as proposed for in-
stance in [13]: such a model represents the dynamical be-
haviour of the system reacting to actions from the con-
troller and to the occurrence of fault events. The model is
then represented as an automaton:

G = (X,Σ, T, x0)

where X is the finite set of system states, Σ is the fi-
nite set of events, T is the transition function that repre-
sents the consequence of the occurrence of an event to the
system’s state and x0 is the initial state of the system.

Basically, the general task of the diagnoser is to mon-
itor the system (i.e. recording the available flow of ob-
served events) and to determine whether some faults f ∈
Σ f ⊆ Σ have occurred or not. An observed event is defined
as the output of an observation mask Obs : Σ → Σo ∪ {�}
that assigns to any event of Σ an event of Σo ∪ {�}. For
instance, a fully observable event e ∈ Σ is such that
Obs(e) = e whereas a non-observable event e (like a fault
for instance) is such that Obs(e) = �.

In order to deal with the active diagnosis problem, the
diagnoser must also consider that some events a ∈ Σa of Σ
are actually actions performed by the controller. From the
system model point of view, an action performed by the
controller is represented as a controllable event [11].

In the following, we suppose that the controller no-
tifies the diagnoser about the performed action which
means that any action is actually fully observed by the
diagnoser (see Figure 2):

∀a ∈ Σa, (a ∈ Σ) ∧ (Obs(a) = a).

Finally, in order to ensure that the controller is always
able to perform an action on the system, the study of the
active diagnosis problem is restricted to the subclass of
discrete-event systems in which the following hypothesis
holds.

Hypothesis 1 From any state x ∈ X, it is always possible
to perform an action a ∈ Σa after the occurrence of a finite
sequence of reactive events e ∈ Σ \ Σa.

In the case that this hypothesis does not hold, it means
that the system can reach a state from which the controller
cannot perform any more actions. In this case, the active
diagnosis problem has trivially no solution as well as the
mission control problem.

3.2 Characterisation of the diagnoser module
Here we recall how the diagnoser module is charac-

terised. For a fully detailed description of the diagnoser,
see [4]. The diagnoser module is a process Δ that con-
tinuously returns the set of possible health states (i.-e. a
belief state in X) of the system that is consistent with the
current sequence of observations σ ∈ Σ�o . Like a classi-
cal diagnoser, the heath states returned by the diagnoser
Δ also exhibit the status of the faults of Σ f . The classical
status of a fault are [10]:

1. F-sure: every event sequence seq of G from x0 such
that Obs(seq) = σ contains the event F;

2. F-safe: no event sequence seq ofG from x0 such that
Obs(seq) = σ contains the event F;

3. F-ambiguous: there exists at least two sequences
seq and seq� in G from x0 such that Obs(seq) =
Obs(seq�) = σ and only one of them contains the
fault F.

In the following, Δ(σ) denotes the belief state corre-
sponding to the diagnosis of the system with regards to the
observations σ. The active diagnosis problem occurs only
if the status of a fault F is ambiguous and thus requires
complementary observations to discriminate the fault. To
speed up the planning process (see next section), the di-
agnoser Δ that we propose actually returns two different
types of status in case of ambiguity:

1. F-discriminable: the occurrence of F is ambigu-
ous but there exists at least one observable sequence
σ.σ� ∈ Σ�o of G such that the status of F in Δ(σ.σ�)
is either F-sure or F-safe;

2. F-undiscriminable: the occurrence of F is ambigu-
ous and for any observable sequence σ.σ� ∈ Σ�o ofG,
the status of F in Δ(σ.σ�) is always F-ambiguous.

381

The last two tags are defined in order to help the plan-
ner to trigger an active diagnosis session. In fact, if the
current heath state is such that F-undiscriminable holds,
then the planner already knows that it is useless to open
an active diagnostic session to determine that F has effec-
tively occurred. The planner may open the active diagno-
sis session only when F-discriminable holds.

To summarize, the diagnoser is a process that returns
diagnosis candidates(as a belief states) for a given flow of
observations and therefore it can be represented as finite
state machine Δ = (XΔ,Σo, TΔ, x0Δ,) like in [13] where
XΔ is the set of possible belief states. However, within
the architecture, the diagnoser module can implement the
FSM Δwith different techniques that depend on the nature
of the modelled systems. The diagnoser module can, for
instance use, distributed techniques [6], specialised tech-
niques [10] or symbolic techniques [14, 5].

4 An AO*-like algorithm for Active
Diagnosis

The input of the AO*-like algorithm we proposed is
the ambiguous state on which the active diagnosis session
has been triggered. On the fly, the algorithm receives the
next possible states and the next possible events from the
diagnoser structure. It implicitly constructs an AND-OR
graph on which it applies an ordered depth-first search
strategy. The output of the algorithm is a conditional plan.
This section describes how is constructed the underlying
AND-OR graph during the search, then the core of the
AO*-like algorithm, the output of the algorithm and the
criteria taken into account.

4.1 The implicit AND-OR graph
When the controller performs an action, it is assumed

that the system reacts and that the diagnoser receives some
other observation events resulting from this action in finite
time.

Hypothesis 2 In the diagnoser, each action is followed by
an observable event that is not an action.

The structure constructed thanks to the diagnoser is an
AND-OR graph represented by a graph G = (V,E) where
V is the set of vertices and E is the set of edges. The
set V contains three types of nodes, ”OR”, ”AND” and
”LEAF” nodes that are described in Figure 4 by circles,
rectangles and triangles respectively. These nodes have
attributes including an event (an action for AND node, an
observable event or a sequence of observable events that
not included action for OR node) and a tag that is derived
from the diagnoser.

The construction of the AND-OR graph is done incre-
mentally as follows:

1. vi is initial vertice of the graph. It corresponds to
the state for which it is useful to trigger an active
diagnosis session and for which it exists one fault F
tagged F-discriminable. This vertice is an OR node.

2. Consider all the actions that can be applied consider-
ing the behavioural model of the system. Each appli-
cable action is an AND node. If there is no applicable
action this OR node is retagged F-undiscriminable.

3. Following the transition function of Δ, we found
all the minimal sequences of observable events that
represent a belief state for the system. These be-
lief states are tagged by the tag of the state of
Δ after each sequence. Every belief states tagged
F-undiscriminable, F-sure or F-safe are LEAF
nodes. Every belief states tagged F-discriminable
are OR nodes.

4. For each LEAF node, stop. For each OR node, con-
sider all the actions that can be applied consider-
ing the behavioural model of the system. Each ap-
plicable action is an AND node. Each OR node
for which there is no applicable action is retagged
F-undiscriminable.

5. Iterate step (3) and (4) for each AND node.

Figure 3 illustrates what could be a part of the diag-
noser. Figure 4 shows the AND-OR graph that will be
constructed.

D: F-discriminable

UD: F-undiscriminable

D

o1

a1 a2 a3

UD D

o2

UD

D

Sure

o3 o4

D

o4

o4D

o5

Safe

Sure: F-sure

Safe: F-safe

Figure 3. A part of the diagnoser

4.2 The AO*-like algorithm
One contribution of this paper is to adapt AO* algo-

rithm to an optimization problem with various costs and
rewards. The challenge is to find a relevant criterion that
may be used by all kinds of autonomous systems (like
satellites or rovers). The pseudo-code of the AO*-like al-
gorithm we developed is given in Figure 5.

382

o1 D

a1 a2 a3

o3 o4
D UD

o4 o5

Figure 4. The AND-OR graph that could
be deduced from the diagnoser

The RootNode (line 1) is an OR node. The list ORn-
odeToBedeveloped (line 2) keeps in memory all the OR
nodes that have to be developed for constructing the entire
conditional plan. FirstNode (line 3) removes the first node
of the list and returns it. ComputesHeuristic (line 9) com-
putes the heuristic of an AND node. The heuristic is ex-
plained in the next section. BestSuccessor (line 8) returns
the AND node that has the minimum heuristic. Create-
SuccessorNodes (line 11) creates the list of the successor
nodes. If a node already exists, it is not created. Cycle-
Search (line 13) is a function that detects a cycle i-e that
checks if some nodes of NextOrNodes have already been
developed in the past. If it is the case, the CycleSearch
function removes the incriminate nodes from NextOrN-
odes.

4.3 Output of the algorithm
The output of the AO*-like algorithm is a conditional

plan. It starts from the RootNode, says what is the best ac-
tion to apply, and for all possible observations, indicates
what is the best action to preform, and so on. Figure 6
illustrates a conditional plan. The conditional plan is then
an AND-OR tree where there is only one AND-node af-
ter an OR-node. Leaves are nodes that are tagged F-sure,
F-safe, or F-undiscriminable, or also nodes that have been
detected as redundant in the CycleSearch function. Ter-
minal OR-nodes tagged F-undiscriminable correspond to
belief states where no action is applicable because of the
behavioural model.

On-line when the conditional plan is applied, only one
branch of the tree is really explored, depending of the ob-
servable events. Thus it is clear that a conditional plan do
not ensure to guide the system toward a totally discrimi-
nated belief state.

4.4 Criterion
The system has to apply the ”best” conditional plan

in order to refine the diagnosis. This supposes that there

Initialisation;1

Build RootNode ;2

ORnodeToBeDeveloped← RootNode;3

CurrentNode =4

FirstNode(ORnodeToBeDeveloped);
while ORnodeToBeDeveloped is not empty do5

while (CurrentNode.status = unsolved) and6

(CurrentNode.status = not unsolvable) do
NextAndNodes←7

CreateSuccessorNodes(CurrentNode) ;
forall ANDnode in NextAndNodes do8

ANDnode.tag←9

GetTag(ANDnode.Successor) ;
ANDnode.Heuristic =10

ComputesHeuristic(ANDnode);
ANDnodeToBeDeveloped =11

BestSuccessor(NextAndNodes);
NextOrNodes = CreateSucce-12

sorsNodes(ANDnodeToBeDeveloped);
Order NextOrNodes in best first criterion13

order;
Cycle search;14

Put NextOrNodes on the front of15

ORnodeToBeDeveloped;
CurrentNode =16

FirstNode(ORnodeToBeDeveloped) ;
CurrentNode =17

FirstNode(ORnodeToBeDeveloped) ;
Reduce plan;18

Edit conditional plan solution ;19

Figure 5. AO*-like pseudo-code

exists a criterion that indicates the best conditional plan.
In the active diagnosis for autonomous systems, a condi-
tional plan should particularly:

• minimize costs for discriminating faults;

• allow to disambiguate faults that are the most critical
i-e faults that could cost a lot if they are sure and not
taken into account;

• maximize rewards on objectives.

Let T be the tree plan. Let P the set of paths p such
that the first node is the initial node of the tree and the
last node is a leaf of the tree. One defines three terms
for calculating the criterion. The first one is the cost of
a path p. It is the sum of all the actions that are chosen
in p. It is denoted Cost(p). The second one focuses on
the faults that are disambiguated along the path. Let FD
be the set of faults such F was tagged F-discriminable
in the first node of p and that get tagged F-sure for the
last node of the path. Let Ona be the set of objectives

383

o1

D

a2

a4

o3
o4
D

UD

o5

a1

UD UD

o1 o2 o5
o2 o5 o7

Figure 6. Illustration of a conditional plan

that are not achievable if all F in FD are finally tagged
F-sure and Ro the reward associated to the objective o.
The AvoidLossO f Income(p) is defined as the sum of

AvoidLossO f Income(p) =
�
o∈Ona

Ro (1)

The rewards accumulated on the objectives are em-
bodied by the third term of the criterion. This term repre-
sents the sum of the rewards for all the objectives that have
been achieved along the path. It is denoted Reward(p).

Finally, in order to calculate the criterion of a condi-
tional plan, it is necessary to evaluate all the branches of
the tree. For example, in Figure 6, there are 7 possible
branches to evaluate. There are three possibilities to eval-
uate the criterion. The first one is to evaluate the worst
branch of the tree:

CMAX = max
p∈P
{Cost(p) + AvoidLossO f Income(p)

− Reward(p)} (2)

Another solution is to evaluate the best case and take the
best branch of the tree:

CMIN = min
p∈P
{Cost(p) + AvoidLossO f Income(p)

− Reward(p)} (3)

The last solution consists in taking an average of the cri-
terion:

CAVE =
1
|P| .
�
p∈P
{Cost(p) + AvoidLossO f Income(p)

− Reward(p)} (4)

To conclude, a performance criterion has been defined
in order to evaluate the solutions that are proposed by the
algorithm.

5 Heuristic

5.1 Existing heuristics for AO*
The heuristics used in AO* are mainly those of Ye-

ung [15], Patippati [9]. Yeung’s heuristic uses the notion
of cost-entropy function that is an information-theoretic
lower bound of the expected cost of an optimal testing
tree. It takes into account the number of possible re-
sponses for each test and the cost of the test. In our ap-
proach, it is impossible to apply this solution because a
test is replaced by an action on the dynamic system: the
number of possible responses for each action is unknown
and depends on the current state of the state when the
action is applied. Patippati’s heuristic is used for test-
sequencing problems. It supposes that there are known
probabilities on the faults, and works with exclusive bi-
nary tests. Our context is different and even if some works
extend this heuristic for multivalued tests and dynamic
costs, it remains hard to apply in our case.

5.2 Guidance Heuristic on AO* for active
Diagnosis

It is well-known that the task of finding an optimal
testing tree is an NP-complete problem. Therefore the
use of heuristics to search for an optimal tree is inevitable
when the problem is large. As defined in [15], the heuris-
tic search process relies on a heuristic evaluation function
(HEF) as a guide to avoid evaluating all the possible test-
ing trees before finding the optimal one. An HEF is an
easily computable heuristic estimate (usually in a form of
a lower or an upper bound) of the optimal cost-to-go at a
non terminal node of a testing tree.

Another contribution of this work is to propose an
original heuristic adapted with active diagnosis. The ob-
jective of active diagnosis is to find the sequence of actions
that:

• minimizes costs for discriminating faults;

• allows to disambiguate faults that are the most criti-
cal i-e faults that could cost a lot if they are sure and
not taken into account;

• maximizes rewards on objectives;

• penalizes undiscriminable nodes.

As it is crucial to take into account the impact of the
the active diagnosis session on the all mission, we choose
to evaluate the criterion until the end of the mission. In the
AND-OR graph exploration, the decision is on the AND-
node: only one AND-node is chosen at each step whereas
all the OR nodes that follow the chosen AND-nodes are
developed. Then the heuristic has to give information for
guiding the choice of the AND-node to develop.

Intuitively, the goal is to minimize a criterion C that
is defined as: C = Costs to discriminate faults + loss of

384

income of ”sure” faults - sum of rewards on the past . In
other words, one prefers discriminating a fault that could
cost a lot in the future if it appears to be F-sure instead of
a fault that could give a lot of rewards if it appears to be
F-safe. That means that the most important is the critic-
ity of a fault. One recalls that the heuristic has to give a
maximum bound of C.

5.2.1 AND node heuristic
The heuristic HAND of an AND node n is equal to the

action cost associated to n plus the value of the heuristic
of all the OR nodes that follow n.

HAND(n) = Cn +
�

ns∈S uccessors(n)
HOR(ns) (5)

where Cn is the action cost associated to n;
S uccessors(n) is the set of the successors of n; HOR is
the heuristic for an OR node.

5.2.2 OR node heuristic
Let ns be the OR node for which we want to calculate

the heuristic value. One distinguishes 3 different heuris-
tics depending of the tag of each fault for ns.

Heuristic for undiscriminable faults: belief states
with a lot of faults tagged F-undiscriminable have to be
avoided in the plan. Thus undiscriminable faults are pe-
nalized. Let Penality be a number 100 times greater that
the order of magnitude of the costs and reward used in the
behaviour model of the system, and FuD the set of faults
tagged F-undiscriminable in ns.

H1(ns) =
�

F∈FuD
Penality (6)

Heuristic for repairable faults: the simplest action to
discriminate the fault is to repair it. A fault tagged
F-discriminable becomes F-safe in any cases. As the fault
is repaired, there is no consequence on the future rewards.
Let Crepair(F) be the cost to repair the fault F and FDr

the set of faults tagged F-discriminable in ns and that are
reparable.

H2(ns) =
�
F∈FDr

Crepair(F) (7)

Heuristic for non reparable faults: for this type of faults,
the number of steps to a goal node has to be evaluated.
When the diagnoser is developed, an evaluation of this
distance is given. Let neMAX be the maximum number of
steps for discriminating a node tagged F-discriminable for
the set of not repairable faults. Let CaMAX be the maxi-
mum cost of an action. Let FDnr be the set of faults that
are tagged F-discriminable and that are not repairable, and
|FDnr | its cardinal. So the maximum cost to disambiguate
a state is:

CMAX = neMAX .CaMAX . |FDnr | (8)

For a node ns with some faults tagged F-discriminable,
the loss of income is defined as follows. Let Ona be the
set of objectives will not be achievable if all F in FDnr are
finally tagged F-sure and Ro the reward associated to the
objective o. The loss of income is:

LossO f Income =
�
o∈Ona

Ro (9)

So, for non repairable faults, we define the heuristic H3
as:

H3(ns) = neMAX .CaMAX . |FDn| +
�
o∈Ona

Ro (10)

The heuristic HOR(n) for an OR node ns is the follow-
ing:

HOR(ns) = H1(ns) + H2(ns) + H3(ns) (11)

6 Spatial case study and results

The AO*-like algorithm has been implemented in
C++ and tested on a module (a hotspotter) of a fictive
satellite developed in the AGATA project (see Figure 1).
This module has four possible actions: on, reset, close
and off and 11 types of observable events are available on
this module. 13 types of fault may occur in this module.
The behavioural DES model associated to the module has
13538 states and 39366 transitions. Table 1 presents min-
imal/average/maximal computation time to solve different
active diagnosis problems. Each column represents 1000
runs for one particular fault F. To initiate the run, a gen-
erator of random scenarios has been used. A first result
is that the number of interesting scenarios (IS) , i-e gen-
erated scenarios such that the diagnosis returned by the
diagnoser is ambiguous, is limited. It is indicated in the
first line of Table 1 in percent. Another result is that each
interesting run stops in less than 407 ms which is satisfac-
tory thanks to the heuristics. The average time for getting
a conditional plan is about 32 ms.

Hotspotter Fault Type F1 F2 F3

Nb of IS (%) 100 3,8 6,1
Min (ms) < 1 31 16
Max (ms) 94 109 407

Average (ms) 19,6 53,8 50,3
Hotspotter Fault Type F4 F5 F6

Nb of IS (%) 2,6 4,6 1,3
Min (ms) < 1 < 1 31
Max (ms) 16 31 94

Average (ms) 6,9 11,7 50,3

Table 1. Results: AO* computation time

385

7 Conclusion and future works

To conclude, this paper shows the feasibility of active
diagnosis for space systems like satellites. An adapted
AO*-like algorithm has been implemented with dedicated
heuristics. In the future, it would be interesting to develop
some variant of this algorithm. One interesting case is
to develop the tree plan with a limited depth so as to be
faster online and more efficient. After the application of
this partial plan, it will be decided to replan with uncer-
tainties or to recompute a partial plan for diagnosis with
the AO*-like algorithm. Thanks to that, we will avoid the
danger of a too large diagnoser and the development of
some branches of the tree for nothing. Furthermore, we
are interested in studying how active diagnosis, planning
and diagnosis may be integrated in a distributed architec-
ture, when decision is distributed between the ground and
the satellite for example, or between several satellites.

References

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and
F. Ingrand. An architecture for autonomy. Intern.
Journal of Robotics Research, 17:315–337, 1998.

[2] M. Bayoudh, L. Travé-Massuyès, and X. Olive. To-
wards active diagnosis of hybrid systems. In Proc of
DX’08, 2008.

[3] B. Bonet and H. Geffner. Planning with incomplete
information as heuristic search in belief space. In
Planning with incomplete information as heuristic
search in belief space, pages 52–61, 2000.

[4] E. Chanthery and Y. Pencolé. Monitoring and ac-
tive diagnosis for discrete-event systems. In 7th
IFAC Symposium on Fault Detection, Supervision
and Safety of Technical Processes, 2009.

[5] A. Grastien, Anbulagan, J. Rintanen, and Elena Ke-
lareva. Diagnosis of discrete-event systems using
satisfiability algorithms. In R. Holte, editor, Nine-
teenth National Conference on Artificial Intelligence
(AAAI-07). AAAI Press, 2007.

[6] P. Kan John and A. Grastien. Local consistency
and junction tree for diagnosis of discrete-event sys-
tems. In European Conference on Artificial Intelli-
gence (ECAI-08), 2008.

[7] L. Kuhn, B. Price, J. de Kleer, M. B. Do, and
R. Zhou. Pervasive diagnosis: The integration of di-
agnostic goals into production plans. In AAAI 2008,
pages 1306–1312, 2008.

[8] S. McIlraith. Incorporating action into diagnostic
problem solving (an abridged report). In Work-
ing Notes of the 1995 AAAI Spring Symposium on

Extending Theories of Action: Formal Theory and
Practical Applications, pages 139–144, 1995.

[9] K. R Pattipati and M. Dontamsetty. On a generalized
test sequencing problem. IEEE transactions on sys-
tems, man, and cybernetics, 22(2):392–396, 1992.

[10] Y. Pencolé, D. Kamenetsky, and A. Schumann. To-
wards low-cost diagnosis of component-based sys-
tems. In 6th IFAC Symposium on Fault Detection,
Supervision and Safety of Technical Process (SAFE-
PROCESS), 2006.

[11] P.J.G. Ramadge and W.M. Wonham. The control of
discrete event processes. In IEEE Proc.: Special is-
sue on Discrete Event Systems, 1989.

[12] M. Sampath, S. Lafortune, and D. Teneketzis. Active
diagnosis of discrete-event systems. IEEE Transac-
tions on Automatic Control, 43, 1998.

[13] M. Sampath, R. Sengupta, S. Lafortune, K. Sin-
namohideen, and D. Teneketzis. Failure diagnosis
using discrete event models. IEEE Transactions on
Control Systems Technology, 4(2):105–124, March
1996.

[14] A. Schumann, Y. Pencolé, and S. Thiébaux. A spec-
trum of symbolic on-line diagnosis approaches. In
Twenty-Second Conference on Artificial Intelligence
(AAAI-07), Vancouver, Canada, July 2007.

[15] R.W Yeung. On noiseless diagnosis. IEEE Trans-
actions on systems, man, and cybernetics, 24:1074–
1082, 1994.

	Back

