
Principles of self-maintenance in an on-board architecture
including active diagnosis

Elodie Chanthery∗,∗∗ and Yannick Pencolé∗
∗ LAAS-CNRS, University of Toulouse, Toulouse, France

∗∗ University of Toulouse, INSA, Toulouse, France
[elodie.chanthery; yannick.pencole]@laas.fr

Abstract

This article presents some principles for self-
maintenance in an on-board architecture that em-
beds on-line active diagnosis. The objective of ac-
tive diagnosis is to find an action plan that refines
the diagnosis without radically changing the mis-
sion plan. This leads to the definition of a planning
problem that relies on an active diagnoser. Accord-
ing to a decision criterion, the aim is then to find
the best conditional plan to reach a diagnosable re-
gion of the active diagnoser. The interactions prob-
lems between the result of the planning for diagno-
sis and the mission planning are then detailed and
a solution that uses the execution controller of the
on-board architecture is proposed.

1 Introduction
Autonomy is the ability to independently perform decisions
and act in a changing environment. One of the most important
characteristic of an autonomous system is its ability to take
care of itself when performing its mission. This ability, also
called self-maintenance, requires on-line diagnosis (fault de-
tection and isolation) and on-line planning/replanning [Chan-
thery et al., 2005] launched by processes integrated in the
on-board architecture of the system.
On-line diagnosis is usually considered as a task that reacts to
a flow of observations provided by sensors and returns esti-
mations of the system’s state. On-line diagnosis may be com-
pared with a supervision task. The goal is to follow the tem-
poral evolution of a dynamic system. However, this process
is often too limited in practice due to a limited number of pos-
sible observations.
Off-line diagnosis is focused on the localisation of the fault.
The goal is to determine additional information that will re-
fine the diagnosis with minimal cost. This may be compared
with a test sequencing problem and can be solved as a post-
mortem diagnosis problem. Initially described by [Pattipati
and Dontamsetty, 1992] for binary tests, then extended in the
framework of the AGENDA method [Olive et al., 2003] for
multi-valued tests, the test sequencing problem is an off-line
process. The problem consists in finding a test sequence that
may isolate each fault in minimizing the tests cost.

This paper proposes to make on-line diagnosis on an au-
tonomous system by taking into account the fact that au-
tonomous systems can act on themselves. One way to im-
prove the performance of the diagnostic process is to use the
action capabilities of the system in order to refine the diag-
nosis in case of ambiguity: this is what is called the active
diagnosis problem.

This paper is organised as follows. Section 2 presents re-
lated works on active diagnosis on dynamical systems. Sec-
tion 3 presents a formal background about fault diagnosis in
a DES. Section 4 proposes an on-board architecture for ac-
tive diagnosis and a formal characterisation of the active di-
agnoser. Section 5 explains how the planning problem for
active diagnosis can be derived from the active diagnoser. It
proposes a planning algorithm, and puts side by side the mis-
sion planning and the planning for diagnosis criteria. Sec-
tion 6 discusses the difficulties involved by the integration of
active diagnosis into an on-board architecture including the
mission planning process.

2 Related Works
The choice of the set of actions performed on-line for refining
the diagnosis may be compared with an on-line test sequenc-
ing problem. However, for dynamical systems that are cur-
rently performing a mission, the challenge of an active diag-
nosis process is to propose an admissible sequence of actions
(or plan) that refines the diagnosis without radically changing
the mission plan. The conflicts between the plan for diagno-
sis and the mission plan have to be taken into account.
To our best knowledge, there are very few works about ac-
tive diagnosis in dynamical systems. The main contribution
on active diagnosis of discrete-event systems is the work of
[Sampath et al., 1998]. Active diagnosis is formulated as a
supervisory control problem [Ramadge and Wonham, 1989]
where the legal language is an ”appropriate” regular sublan-
guage of the regular language of the system. The proposed
solution is to design a system controller in such a way that
it satisfies specified control objectives and results in a diag-
nosable controlled system. In other words, the action domain
is restricted so that the system always remains diagnosable.
This approach seems to be too restrictive for autonomous sys-
tems that realize a mission. Indeed, they need to keep all their
action capability, even if they intermittently loose their diag-
nosis capability. In this article, we reuse the idea that consists



in combining monitoring, diagnosis capability and controller,
without restricting the controller’s action capabilities.
In the field of hybrid systems, [Bayoudh et al., 2008] pro-
pose to achieve active diagnosis in a hybrid system frame-
work. Starting in a non diagnosable region, the authors use
the diagnosability analysis method to determine the sequence
of controllable actions to be applied to the system in order to
bring it into a diagnosable one. The problem of the search
of an active diagnosis plan is formulated as follows: given
an uncertain state of the active diagnoser, the active diagno-
sis problem is to find a controllable path leading to a certain
state. The authors propose to solve this problem as a con-
ditional planning problem using an AND-OR graph, but the
solving algorithm is not implemented. In particular, the type
of tree exploration and the criterion for the exploration are not
given. We propose to give the formal definition of active di-
agnoser and to discuss the planning problem more precisely.
The integration of active diagnosis into production plans is
described in [Kuhn et al., 2008] and experimented on a model
of an industrial digital printing press. The method is based on
an active diagnoser that updates the current system state and
stimulates the planner to generate informative plans that may
determine faulty actions and achieve production goals as well.
The advantage of interleaving diagnosis and planning is that
diagnosis is quickly confirmed or invalidated. The objective
is to determine faulty actions without explaining the cause of
the failure. The repair procedure then consists in exchanging
the printer modules according to their failure probability un-
til the system is working properly. Our study focuses on au-
tonomous systems that face hardware/software faults without
any possibility of external repairing. The mission planner re-
quires explicit diagnosis that determines the current degraded
mode in order to optimally update the plan. Our approach
consists in separating diagnosis and mission planning mod-
ules, because this is today the most common way to construct
an on-board architecture for autonomous systems [Alami et
al., 1998].
The problem of diagnosis refinement by action planning has
also been raised by [McIlraith, 1995]. The author proposes
a formal situation calculus framework for diagnostic problem
solving which incorporates a theory of action and change.

3 Fault diagnosis in DES
This section recalls formal background about fault diagnosis
in discrete-event systems.

Definition 1 (Model of discrete-event system) A discrete-
event system is modelled as a tupleG = (X,Σ, T, x0) where:

• X is a finite set of states;

• Σ is a finite set of events;

• T ⊆ X × Σ×X is a finite set of transitions;

• x0 is the initial state of the system.

A discrete event system generates a regular prefix-closed
language L(G) ⊆ Σ? where Σ? denotes the Kleene closure
of Σ. Each word w of L(G) represents a finite sequence of
events occurring on the system from the initial state x0. The
set Σf ⊆ Σ denotes the set of faults of the system. In order

to perform diagnosis, it is then required to observe the sys-
tem with the help of sensors. Sensors implement a function
Obs : Σ → (Σo ∪ {ε}) that associates to any event of the
system, either an observable event of Σo or the empty event
ε. This function Obs is called the observation mask in [Jiang
and Kumar, 2004]. Let w ∈ L(G), Obs(w) denotes the ob-
servable trace of w and is recursively defined as follows:

Obs(w) = ε if w = ε

= Obs(u).Obs(v) if u ∈ Σ, v ∈ Σ?

Definition 2 (Observed system) An observed system is rep-
resented as a pair (G,Obs) whereG is a DES model andObs
is the observation mask.

To perform diagnosis, it is required to implement a mon-
itor that is able to process any possible observations that is
produced by the observed system, that is any observable se-
quence Obs(w),∀w ∈ L(G). The observable language of G,
denoted Obs(L(G)), is thus a subset of Σ?o.

The classical fault diagnosis problem on DES basically
consists in recording observations from the system and pro-
viding the set of possible faults whose occurrence is consis-
tent with these observations: given the recorded sequence
of observations σ, the occurrence of a fault F is consistent
with σ if there exists at least a sequence of events w in
the model G (w ∈ L(G)) that contains F and that is such
that Obs(w) = σ. In such a case, the observable sequence
Obs(w) is an observable trace of F .

Definition 3 (Observable trace) The set of traces
Traces(F ) of the fault F is the regular language de-
fined as the set of finite observable sequences:

Traces(F ) = {σ ∈ Σ?o,∃w ∈ L(G), (F ∈ w)∧(Obs(w) = σ)}.

Given the observations σ, a fault F is a possible solution
to the diagnosis problem if σ ∈ Traces(F ). There may be
several solutions as an observable sequence may be an ob-
servable trace of several faults. By extension, we also define
the traces of the absence of F , denoted Traces(¬F ), that
gathers the possible observable traces of the system when F
has not occurred:

Traces(¬F ) = {σ ∈ Σ?o,∃w ∈ L(G), (F 6∈ w)∧(Obs(w) = σ)}.

From these two sets, it follows:
1. if σ ∈ Traces(F ) \ Traces(¬F ), the occurrence of F

is sure;
2. if σ ∈ Traces(¬F ) \ Traces(F ), the occurrence of F

is impossible;
3. if σ ∈ Traces(F ) ∩ Traces(¬F ), the occurrence of F

is possible.
The set of traces of a fault F is defined as a regular

language so it can be represented by a minimal determin-
istic finite-state machine [Hopcroft et al., 2001] M(F ) =
(S,Σo, δ, s0, tag) where:
• S is a finite set of states;
• Σo is the alphabet of the machine;



DES (model G)

active diagnoser

observed events

diagnosis

controller

action

planner for diagnosis

plan

sensors

Pon-lineoff-line

∆ action 
notification

Figure 1: Part of the embedded architecture for active diag-
nosis.

• δ : S × Σo → S is the transition function;

• s0 ∈ S is the initial state;

• tag : S → {F -possible,F -impossible}.
By analogy, the set of traces Traces(¬F ) can also be rep-

resented by a machine M(¬F ) (see [Chanthery and Pencolé,
2009] for details). Both machines M(F ) and M(¬F ) can be
used as a monitor of the system and determine at any time
whether the current sequence of observations is a trace of F
or not. For instance, if M(F ) is in state s after observing the
sequence σ with tag(s) = F -possible then σ ∈ Traces(F ),
if tag(s) = F -impossible then σ 6∈ Traces(F ). The clas-
sical diagnoser [Sampath et al., 1996] can be trivially char-
acterised by the synchronous product of the set of machines
M(F ), F ∈ Σf [Pencolé et al., 2006].

4 Active Diagnosis
This section extends the classical framework in order to per-
form active diagnosis on DES. The proposed active diagnoser
takes into account the fact that at a given time, it may be pos-
sible to act on the system and get a better diagnosis if such an
action is performed. As shown in Figure 1, the purpose of the
active diagnoser modelled by the machine ∆ is firstly to pro-
vide a diagnosis for any observable situation (like any other
diagnoser) and secondly to provide information about how
useful the trigger of an active diagnostic session could be.
Furthermore, it provides the input data as a planning problem
P to a planner that could plan actions for refining the diagno-
sis (see Section 5).

4.1 Model extension for active diagnosis
From the system model point of view, an action performed by
the controller is represented as a controllable event [Ramadge
and Wonham, 1989].

Definition 4 (Action) An action is an event of the system that
occurs only if the controller of the system performs the action.

In the following, we suppose that the controller notifies the
diagnoser about the performed action which means that any
action is actually fully observed by the diagnoser (Figure 1).

Let Σa ⊆ Σ be the set of available actions on the observed
system modelled by (G,Obs) then it follows that:

∀a ∈ Σa, (a ∈ Σ) ∧ (Obs(a) = a)

in other words Σa ⊆ Σo.
Finally, in order to ensure that the controller is always able

to perform an action on the system, the study of the active di-
agnosis problem is restricted to the subclass of discrete-event
systems in which the following hypothesis holds.

Hypothesis 1 From any state x ∈ X , it is always possible
to perform an action a ∈ Σa after the occurrence of a finite
sequence of reactive events e ∈ Σ \ Σa.

In the case that this hypothesis does not hold, it means that
the system can reach a state from which the controller cannot
perform any more actions. In this case, the active diagnosis
problem has trivially no solution.

For the sake of readability, the definition of the active di-
agnoser ∆ is decomposed into two steps. First, we introduce
a specialised active diagnoser ∆(F ) for a given fault F and
then present the active diagnoser as the union of these spe-
cialised diagnosers.

4.2 Specialised active diagnoser
The challenge of active diagnosis is to refine diagnosis by
pruning ambiguities about the presence or the absence of
faults at a given time by acting on the system. The defini-
tion of the diagnoser ∆(F ) relies on the following facts:

1. if there is an active solution for diagnosing the fault F
with certainty then this solution produces an observ-
able trace that necessarily belongs to Traces(F ) \
Traces(¬F );

2. if there is an active solution for diagnosing the absence
of the fault F with certainty then this solution pro-
duces an observable trace that necessarily belongs to
Traces(¬F ) \ Traces(F ).

Let M(F ) = (S1,Σo, δ1, s01, tag1) denote the
machine representing Traces(F ) and M(¬F ) =
(S2,Σo, δ2, s02, tag2) denote the one of Traces(¬F ),
the active diagnoser is then obtained by synchronising the
machines M(F ) and M(¬F ) on the observable events.

Definition 5 The active diagnoser of F is the complete de-
terministic finite-state machine ∆(F ) = (S,Σo, δ, s0, tag)
where:

• S = S1 × S2 is the set of states;

• Σo is the set of observable events;

• δ : S × Σo → S is the transition function:

∀s1 ∈ S1, s2 ∈ S2, o ∈ Σo,
δ((s1, s2), o) = (δ1(s1, o), δ2(s2, o));

• s0 = (s01, s02) is the initial state;

• tag : S → {F -safe, F -sure, F -discriminable,
F -undiscriminable, nonAdmissible} is incrementally
defined as follows,∀s = (s1, s2) ∈ S :



1. if tag1(s1) = F -possible and tag2(s2) =
¬F -impossible then tag(s) = F -sure;

2. if tag1(s1) = F -impossible and tag2(s2) =
¬F -impossible then tag(s) = nonAdmissible;

3. if tag1(s1) = F -impossible and tag2(s2) =
¬F -possible then tag(s) = F -safe;

4. if tag1(s1) = F -possible and tag2(s2) =
¬F -possible, two cases hold:

(a) if there exists a sequence of transitions from
s to a state s′ such that tag(s′) = F -sure
or tag(s′) = F -safe , then tag(s) =
F -discriminable;

(b) else tag(s) = F -undiscriminable.

From this definition can be directly derived the following
results, for any state s of ∆(F ):

Theorem 1 1. tag(s) = F -sure ≡ for any observable se-
quence σ such that δ?(s0, σ) = s, for any sequence of
eventsw of the systemG such thatObs(w) = σ, F ∈ w;

2. tag(s) = F -safe ≡ for any observable sequence σ such
that δ?(s0, σ) = s, for any sequence of events w of the
system G such that Obs(w) = σ, F 6∈ w;

3. tag(s) = F -discriminable ≡ for any observable se-
quence σ such that δ?(s0, σ) = s, for any sequence
of events w of the system G such that Obs(w) = σ,
there exists at least one finite sequence of observable
events σs→s′ such that δ?(s, σs→s′) = s′ and tag(s′) ∈
{F -sure,F -safe};

4. tag(s) = F -undiscriminable ≡ for any observable se-
quence σ such that δ?(s0, σ) = s, for any sequence of
events w of the systemG such thatObs(w) = σ, there is
no finite sequence of observable events σs→s′ such that
δ?(s, σs→s′) = s′ and tag(s′) ∈ {F -sure,F -safe}.

4.3 Active diagnoser
Let F1, . . . , Fn be the set of anticipated faults, let ∆(Fi) =
(Si,Σo, δi, s0i, tagi) be the active diagnoser of fault Fi. The
active diagnoser ∆ of G is then defined as the union of spe-
cialised diagnosers as follows. For any sequence of obser-
vations σ, the specialised diagnoser ∆(Fi) reaches the state
si with a tag tag(si). The result of the active diagnoser ∆
after observing σ is then: s = s1, . . . , sn and tag(s) =
{tag(s1), . . . , tag(sn)}. The active diagnoser then provides
the following pieces of information:

1. Current diagnosis: for any fault F it provides the current
status about the presence of F . For instance, if ∀i ∈
{1, . . . , n}, the status of Fi is safe, it means that no fault
has occurred.

2. Status of active diagnostic session: it provides a general
view about how useful the trigger of an active diagnos-
tic session is. The optimal goal of such a session is to
disambiguate between the presence and the absence of
any fault F such that tag(s) contains F -discriminable
if possible (see next section for details). If there is a
plan of actions that reaches these goals, its execution is
necessarily represented as a sequence of transitions from
state s to a state s′ such that tag(s′) contains F -sure or

F -safe . Any execution from state s to the state s′ that
contains nonAdmissible is not admissible by G.

5 Planning for diagnosis
5.1 Background about mission planning
The mission planning problem is described in [Chanthery et
al., 2005] or [Meuleau et al., 2009]. An autonomous system
must act autonomously for achieving a set of objectives in
an uncertain environment. Each objective has an associated
reward that depends on the operator interest. This problem
is known as an over-subscription planning problem [Smith,
2004]. In this problem, it is infeasible to achieve all objec-
tives. The mission planning system must choose a feasible
subset of these that can be achieved within the time and re-
sources limits and that maximizes expected return.

5.2 Planning for diagnosis problem formulation
The last section allows us to obtain the active diagnoser
∆ = (S,Σo, δ, s0, tag). Suppose that ∆ reached a state sI
where it exists at least one i in {1, . . . , n} such that tag(sI) =
(. . . ,Fi -discriminable, . . . ). Then by Theorem 1: there ex-
ists at least one finite sequence of observable events σ such
that δ?(sI , σ) = s′ and tagi(s′i) ∈ {Fi -sure,Fi -safe}. Let
πσ be the sequence of actions resulting from the projection of
σ to Σa, then πσ is a possible sequence of actions for decid-
ing whether Fi has certainly occurred or not. The planning
problem is to choose the best admissible sequence of actions
to perform in this case in order to refine the diagnosis.

For the sake of readability, the formulation of the planning
problem is decomposed into two steps in the same way that
the active diagnosis. First, we formulate the problem for one
fault F and then present the entire planning problem.

Planning problem for a single fault
Suppose that ∆ reached a state sI for which it exists only
one F that is tagged F -discriminable; the other faults Fj
are tagged Fj -sure or Fj -safe . Then the set of admissible
sequences of actions for diagnosing F with certainty is con-
tained in APF where:

APF = {πσ|∃σ, δ(sI , σ) = s′,

s′ is tagged F -sure or F -safe}

By Theorem 1:

Proposition 1 If it exists a sequence of actions that can be
performed by the system and that refines the diagnosis, it is
in APF .

The objective here is to reformulate the problem into a clas-
sical planning problem. Thus, we decide to define the prob-
lem as a tuple P = (si, S,A, T,Goal, C) where the follow-
ing pieces of information are extracted from the active diag-
noser:

• the initial state si is sI ;

• A = Σa;

• S the finite set of states of ∆;

• T : S ×A× S → {0, 1} is the transition function:



– T (s, a, s′) = 1 if s′ can be reached when a is per-
formed in s, i-e πs→s′ = a;

– T (s, a, s′) = 0 otherwise 1;

• The set of goal states Goal = {s′ ∈ S such that s′ is
tagged F -sure or F -safe};
• C a criterion to minimize.

The planning problem may be formulated as follows: find-
ing a conditional plan of the type:

action;
if observation1 then action1

else if observation2 then action2 . . . ,

that will perform one of the sequences:
< action; action1, . . . >; < action; action2, . . . >, know-
ing that at least one of them leads the diagnoser from si to
a state sp ∈ Goal, minimizing a criterion C and respecting
resources constraints. The conditional plan can be seen as a
tree. Note that action1, action2, . . . could also be sequences
of actions, followed by an observation.

Definition 6 A plan is admissible from si iff resources con-
straints are respected and if it performs at least one sequence
of actions {ai+1, ai+2, . . . , ap} such that it exists sp ∈ Goal
for which

∀k ∈ {i+ 1, . . . , p}, T (sk−1, ak, sk) = 1

General planning problem
Suppose that ∆ reached a state sI for which there exists a
subset D ⊆ {1, . . . , n} such that for all i in D, sI is tagged
Fi -discriminable and for all j in {1, . . . , n}\D, sI is tagged
Fj -sure or Fj -safe . Then the set of sequences of actions for
diagnosing all the Fi for which i is in D with certainty is
contained in AP where:

AP = {πσ|∃σ, δ(sI , σ) = s′,

∀i ∈ D, s′ is tagged Fi -sure or Fi -safe}

The set AP may be the empty set. Actually,

Proposition 2 The set of sequence of actions that are admis-
sible for diagnosing all the Fi for which i is inD is contained
in the intersection of the APFi sets.

AP =
⋂
i∈D

APFi .

The reformulation of the problem into a classical plan-
ning problem is a tuple P = (si, S,A, T,Goal, C) where
si, S,A, T and C are the same as the one of the planning
problem for a single fault and Goal is defined by

Goal = {s′ ∈ S such that ∀i ∈ {1, . . . , n},
if s is tagged Fi -discriminable

then s’ is tagged Fi -sure or Fi -safe}.

The planning problem remains the same.

1T (s, a, s′) = 0 in particular if a is an action that cannot be
performed in s for security or physical reason.

5.3 Planning algorithm
The problem of the search of the optimal tree can be formu-
lated as a search in a AND/OR tree [Nilsson, 1998]. We
use an iterative depth-first search that explores the graph as
it was an AND-OR tree where OR nodes correspond to sys-
tem states and AND nodes correspond to actions. We choose
a depth-first search approach because once the first plan has
been computed, the algorithm is any-time. So, even if all
branches of the AND-OR tree are not explored for time rea-
son, there exists an admissible plan. Finally, we come back
to a widely studied problem, even in the diagnosis area that
is the search in an AND-OR tree [Pattipati and Dontamsetty,
1992] excepted that the plan has to respect resources con-
straints. The problem is to determine the optimal solution
tree in the AND-OR tree. This problem is NP-complete. The
planning algorithm should use a heuristic search in order to
choose the best action to perform in case of multiple choices,
as in the AO* algorithm [Olive et al., 2003] and prune the
search tree. The heuristic function should be an easily com-
putable estimation of the criterion from the current state to a
goal state. The solution is a tree that we call the tree plan.

The on-line planning algorithm consists in these steps:

1. According to the active diagnoser, compute an AND-OR
graph that is the entry of the planning problem;

2. Find the best tree with the heuristic iterative depth-first
search algorithm. Send this tree to the controller that
applies it;

3. If tree plan succeeds, i-e that the current state of ∆ is in
Goal, then END (Situation 1). The tree plan could fail
for several reasons:

• after an action, the active diagnoser is a state s
where a fault is tagged F -undiscriminable. Then
the tree plan fails and there is no possibility to re-
fine the diagnosis, so END (Situation 2).

• The tree plan is reduced to a limited number of
actions and after the last action, the active diag-
noser is in a state s where some faults are tagged
F -discriminable. Then the tree plan fails but the
process could iterate in (1) (Situation 3).

5.4 Criterion
In this paper, we propose to formalize a single aggregate ob-
jective function. The following criteria should be taken into
account: Similarity between the results of the active diagnosis
plan and the mission plan (a plan that performs a sequence of
actions that finally leads the system to a state that is compati-
ble with the mission achievement should be preferred. Simi-
larly, a plan that performs a sequence of actions that is an ob-
stacle to the mission achievement should be discarded); fault
criticity; action cost.

Actions of A are separated into 3 types: repair actions: re-
pairing a fault may involve one or more actions; replan ac-
tions: they represent computational actions; other actions:
like move, observe, transmit information, etc. These actions
are used for the achievement of the mission. This set of ac-
tions is denoted Am.



Costs and rewards
The considered costs are the following:

• Each action a ∈ Am has a cost Ca > 0;

• Faults may be repairable or not [Cordier et al., 2007].
For each fault F , this is modeled by a variable φF such
that φF = 1 if F is repairable; φF = 0 otherwise. Each
fault may be repaired with a cost CrepairF > 0. For a
fault F that is non repairable, CrepairF =∞.

• The cost of replanning from a goal state s′ depends of
the similarity between this active diagnosis goal and the
states included in the mission plan defined in subsection
5.1. Because of the difficulty to determine the state s′,
it is supposed that the cost of the replanning action is
constant, equal to Creplan > 0.

LetO be the set of possible objectives of the mission. Each
objective o ∈ O has an associated reward Ro > 0.

Criterion and constraints
The idea is to use a criterion that is similar to the one for mis-
sion planning. Let πmσ be the sequence of actions performed
by the system for achieving its mission from a state sI to a
state s and Om the subset of O that is really achieved if this
sequence of actions is performed. We recall that the mission
planning criterion from a state sI to a state s is the following:

min(
∑
a∈πmσ

Ca −
∑
o∈Om

Ro)

under the time and resources constraints

In the same way, it is possible to define the planning for
diagnosis criterion from a state sI to a state s′. πσ is the
sequence of actions performed by the system for refining di-
agnosis from sI to a state s′.{ min(Costs− FutureR)

under the time and resources constraints

where Costs represents the costs of actions and FutureR
represents an evaluation of the future rewards. If s′ /∈ Goal
then:

Costs =
∑
a∈πσ

Ca

If s′ ∈ Goal then let Ds be the subset of faults F such that
s is tagged F -sure . Costs may be separated into 3 types:

• Costs due to actions in Am that are in the sequence πσ .
This set of actions is denoted Apim;

• Costs due to reparation if it is possible;

• Costs due to replanning.

Costs =
∑
a∈Apim

Ca +
∑
F∈Ds

φFCrepairF + Creplan

As it is not easy to evaluate the future rewards, we use a
heuristic that gives the possible maximum reward. Let OI
be the set of objectives already achieved before sI , let OF

be the set of objectives that may be achieved knowing that F
occurred. Then

FutureR =
∑
F∈Ds

(φF
∑

o∈O\OI
Ro + (1− φF )

∑
o∈OF \OI

Ro)

The use of future rewards allows to take into account the
criticity of the fault.

6 Integrating Active diagnosis into an
on-board architecture

To sum up the previous sections, three modules should co-
operate at the decision level for autonomous systems. Two
modules have been defined for refining the diagnosis:
• The active diagnoser monitors the system and detects

situations where it is useful to trigger an active diagnosis
session;
• The planner for diagnosis takes as input a planning

problem P given by the active diagnoser and compute
a tree plan for refining the diagnosis.

The mission planner takes as input the current state of the
system and computes a mission plan that achieves a feasible
subset of objectives within the time and resources limits and
that maximizes expected return.

These three computational tasks have to be integrated in
an on-board architecture. For dealing the conflicts that could
appear, an execution control level has to be introduced.

6.1 The execution control level
The concept of execution control level was introduced by
[Alami et al., 1998] in the framework of autonomous mo-
bile robots architectures. The role of the execution control
level is to handle the conflicts between different functional
modules and to maintain a logical description of their op-
erating states. Several tools [Fleury et al., 1997], [Barbier
et al., 2006] exist in the literature for designing the exe-
cution control level. These tools allow to design complex
on-board architectures such as autonomous mobile robots or
satellites, that require the integration of heterogeneous oper-
ational functions with various real-time constraints and algo-
rithm complexities (mission planning, diagnosis, active di-
agnosis, guidance algorithm, trajectory computations, etc.);
an homogeneous integration of these functions in the control
architecture which requires coherent and predictable behav-
iors (starting, ending, error handling), and standard interfaces
(control, parameterization, data flow).

In this article, we choose to design the execution control
level with the ProCoSA tool because it allows to specify the
links between modules and to manage their interactions.

6.2 The ProCoSA tool
In an architecture designed with ProCoSA, modules encap-
sulate functions that are dynamically started, interrupted or
(re)parameterized upon asynchronous requests sent to the
modules. Modules are so standardized servers that man-
age the execution of a set of functions or algorithms on a
host machine. They can deal with several functions, syn-
chronous or asynchronous, and execute several treatments in



parallel. When a treatment ends, the module answers in an
asynchronous way to the module that sent the request. This
answer is an event. The data-processing components of the
deliberative part of the vehicle such as a planning algorithm
or active diagnosis are thus implemented as on-board mod-
ules. Off-line, ProCoSA allows to model the execution level
as a Petri net by means of a convivial graphic user interface.
It also generates an on-line controlling net in presence of con-
straints on the marking of a Petri net. In an architecture de-
signed by ProCoSA, an automaton, called the Petri Player,
manages on-line the update of the Petri nets marking.

The real-time level of this language will depend on the ap-
plication; in this work, the architecture behaves like a soft
real-time system. Indeed, there is no guarantee on time re-
sponse mainly because ProCoSA internally uses a socket
communication protocol and events treatments depend on the
Petri Player state.

An original functionality of the ProCoSA Petri nets is
the possibility to assign events and requests to transitions.
Thanks to this functionality, the modules are integrated in the
architecture in a coherent and homogeneous way: a transition
is fired if the marking validates it and if an assigned event
occurs. The crossing of this transition produces the assigned
requests. These requests are either events toward other tran-
sitions or requests toward a module. Finally, modules can
produce events.

6.3 Conflicts between planning for diagnosis and
mission planning management

The solution proposed for dealing the conflicts between plan-
ning for diagnosis and mission planning is to stop the execu-
tion of the mission plan if the active diagnoser detects an am-
biguous state that needs to be disambiguate. After that, the
execution controller has to open a session of active diagno-
sis, apply the plan for diagnosis, repair if required, then close
the active diagnosis session and launch a mission replanning.
This solution is illustrated on Figure 2.

On the right of the figure, there are the three functional
modules implied in the conflicts management: active diag-
noser, planner for diagnosis and mission planner. The Pro-
CoSA tool is used to specify the links between them and to
manages their interactions thanks to the Petri net on the left of
the figure. At the beginning, the system performs its mission.
Then the active diagnoser detects a situation where an active
diagnosis session is useful. It sends a message ”ambiguous
state”: the execution controller stops the execution of the mis-
sion and sends a request of planning for diagnosis, associated
with the problem P provided by the active diagnoser. The
planner for diagnosis finds the best tree plan and sends it to
the controller. The place ”ACT FOR DIAGNOSIS” embod-
ies the application of the tree plan. There are three possible
situations described in Section 5.3:

• (Situation 1) The tree plan succeeds: the system is in a
state where all faults are tagged F -sure or F -safe . Then
the controller sends a request to the mission planner to
replan with the new mission context. The new plan may
include repair actions.

• (Situation 2) The tree plan fails and there is no possibil-

MISSION PLAN 

EXECUTION

ACT FOR 

DIAGNOSIS

ambiguous state

Active diagnoser

stop mission plan planning for diagnosis
Planner for 
diagnosis

plan for diagnosis

plan-failed

planning for 
diagnosis

non-ambiguous state = new context
OR
Active diagnosis abandon

replaning with new 
context

MISSION 

PLANNIG Mission planner
mission plan

Functional modulesExecution controller

Request for functional modules

Output of functional modules

Figure 2: Conflicts management between mission planner
and active diagnosis

ity to refine the diagnosis: the active diagnosis session
has to be closed. The execution controller sends a re-
quest to the mission planner to replan with a degraded
and uncertain mission context.

• (Situation 3) The tree plan fails but the active diag-
noser detects a state where some faults are still tagged
F -discriminable, the execution controller sends a new
request of planning for diagnosis, associated with a new
problem P provided by the active diagnoser.

If the mission planner is requested, it replans the mission and
sends the best mission plan to the execution controller that
controls its execution.

Several problems remains open :

• What is the criterion used by the controller for suspend-
ing the mission plan execution? Actually, the solution
that consists in stopping the mission plan execution each
time the active diagnoser detects an ambiguous state
could imply that the mission is never performed. This
criterion should help the execution controller to find a
trade-off between refining the diagnosis and performing
the mission.

• What is the criterion used by the controller for abandon-
ing the active diagnosis session if (Situation 3) arrives
more than once? If the plan for diagnosis fails again and
again, a criterion should help the execution controller to
chose between replanning for diagnosis or abandon the
active diagnosis session. If the active diagnosis session
fails, it is still possible to replan the mission under un-
certainties.

• Are the repair actions a part of active diagnosis or a part
of the actions chosen by the replanning? Because of
our definition of Goal, the repair actions are rejected



in the mission replanning. The advantage is that even
if a repairable fault is detected, the mission planner may
choose a plan that not repair this fault because it is not
worthwhile for the rest of the mission.

7 Conclusion and future works
This paper defines the concept of active diagnosis for
discrete-event system without reducing the number of possi-
ble actions performed by the controller. This point is crucial
for autonomous vehicles that realize a mission. The formal
definition of an active diagnoser and the implementation of its
generation in the framework of finite-state automata provide
solid foundations for further works. This paper shows how
the active diagnoser can be transformed into a planning prob-
lem and gives some key ideas for its resolution. It presents
how the active diagnoser is integrated in an on-board archi-
tecture and how it is linked with the mission planner.

In the future, we will focus on how to embed an algorithm
that provides the capability of an active diagnoser, for exam-
ple using the techniques proposed in [Pencolé et al., 2006].
Moreover, another idea is to interleave active diagnosis and
mission planning in creating ”artificial” objectives with re-
ward. The mission planner will have to choose between per-
forming actions for achieving real objectives or for refining
the diagnosis regarding the underlying rewards.

References
[Alami et al., 1998] R. Alami, R. Chatila, S. Fleury,

M. Ghallab, and F. Ingrand. An architecture for auton-
omy. Intern. Journal of Robotics Research, 17:315–337,
1998.

[Barbier et al., 2006] M. Barbier, J.-F. Gabard, D. Vizcaino,
and O. Bonnet-Torrès. ProCoSA: a software package for
autonomous system supervision. In CAR’06 - First Work-
shop on Control Architectures of Robots, 2006.

[Bayoudh et al., 2008] M. Bayoudh, L. Travé-Massuyès,
and X. Olive. Towards active diagnosis of hybrid systems.
In Proc of DX’08, 2008.

[Chanthery and Pencolé, 2009] E. Chanthery and Y. Pen-
colé. Monitoring and active diagnosis for discrete-event
systems. In 7th IFAC Symposium on Fault Detection, Su-
pervision and Safety of Technical Processes, 2009. To ap-
pear.

[Chanthery et al., 2005] E. Chanthery, M. Barbier, and J-L.
Farges. Planning, Scheduling and Constraint Satisfaction:
from Theory to Practice, chapter Integration of Mission
Planning and Flight Scheduling for Unmanned Aerial Ve-
hicles. IOS Press, 2005.

[Cordier et al., 2007] M-O Cordier, Y. Pencolé, L. Travé-
Massuyès, and T. Vidal. Self-healability = diagnosability
+ repairability. In proceedings of the 18th International
Workshop on Principles of Diagnosis (DX’07), 2007.

[Fleury et al., 1997] Sara Fleury, Matthieu Herrb, and Raja
Chatila. Genom: A tool for the specification and the im-
plementation of operating modules in a distributed robot

architecture. In Intern.Conf. on Intelligent Robots and Sys-
tems, pages 842–848. IEEE, 1997.

[Hopcroft et al., 2001] J.E. Hopcroft, R. Motwani, and J.D.
Ullman. Introduction to automata theory, languages, and
computation (2nd ed). Addison-Wesley, 2001.

[Jiang and Kumar, 2004] S. Jiang and R. Kumar. Failure di-
agnosis of discrete-event systems with linear-time tempo-
ral logic specifications. IEEE Transactions on Automatic
Control, 49(6):934– 945, 2004.

[Kuhn et al., 2008] L. Kuhn, B. Price, J. de Kleer, M. B. Do,
and R. Zhou. Pervasive diagnosis: The integration of di-
agnostic goals into production plans. In AAAI 2008, pages
1306–1312, 2008.

[McIlraith, 1995] S. McIlraith. Incorporating action into di-
agnostic problem solving (an abridged report). In Working
Notes of the 1995 AAAI Spring Symposium on Extending
Theories of Action: Formal Theory and Practical Applica-
tions, pages 139–144, 1995.

[Meuleau et al., 2009] N. Meuleau, E. Benazera, R. I. Braf-
man, E. A. Hansen, and Mausam. A heuristic search ap-
proach to planning with continuous resources in stochastic
domains. Journal of Artificial Intelligence Research, 34:p
27–59, 2009.

[Nilsson, 1998] N.J Nilsson. Artificial intelligence, a new
synthesis. 1998.

[Olive et al., 2003] X. Olive, L. Trave-Massuyes, and
H. Poulard. Ao* variant methods for automatic genera-
tion of near-optimal diagnosis trees. In Proc. of the In-
ternational Workshop on Principles of Diagnosis (DX’03),
2003.

[Pattipati and Dontamsetty, 1992] K. R Pattipati and
M. Dontamsetty. On a generalized test sequencing prob-
lem. IEEE transactions on systems, man, and cybernetics,
22(2):392–396, 1992.

[Pencolé et al., 2006] Y. Pencolé, D. Kamenetsky, and
A. Schumann. Towards low-cost diagnosis of component-
based systems. In 6th IFAC Symposium on Fault Detec-
tion, Supervision and Safety of Technical Process (SAFE-
PROCESS), 2006.

[Ramadge and Wonham, 1989] P.J.G. Ramadge and W.M.
Wonham. The control of discrete event processes. In IEEE
Proc.: Special issue on Discrete Event Systems, 1989.

[Sampath et al., 1996] M. Sampath, R. Sengupta, S. Lafor-
tune, K. Sinnamohideen, and D. Teneketzis. Failure diag-
nosis using discrete event models. IEEE Transactions on
Control Systems Technology, 4(2):105–124, March 1996.

[Sampath et al., 1998] M. Sampath, S. Lafortune, and
D. Teneketzis. Active diagnosis of discrete-event systems.
IEEE Transactions on Automatic Control, 43, 1998.

[Smith, 2004] David E. Smith. Choosing objectives in over-
subscription planning. In 14th International Conference
on Automated Planning and Scheduling, 2004.


