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Abstract: Fault Detection and Isolation (FDI) analytical-redundancy-based systems rely on
a model of a real-world system and on some observations obtained from sensor readings to
determine what faults are present in that same system at a given time. In this framework,
it is sometimes assumed that the models used are a true representation of the artefact under
study. Unfortunately, in real-world applications this is not always the case and errors in models
may entail false diagnoses with huge economic consequences. Call the problem of detecting
and identifying faults in models a problem of meta-diagnosis; an unsolved issue in the FDI
community and a very difficult problem to address especially in the case of complex systems. In
this paper, we contribute by providing this community with a method of meta-diagnosis making
use of the link between the FDI analytical redundancy approach and the DX consistency-based
logical approach; and illustrate such contribution with a DC motor example. Finally, the meta-
diagnosis is generalised for detecting and identifying errors in observations and algorithms.
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1. INTRODUCTION

Just like nuclear power plants or satellites, aircraft are
complex systems with tens of interacting subsystems and
thousands of underlying parts; some of which may be
complex systems on their own. As so, the paradigm behind
the maintenance of such systems has suffered tremendous
changes and the time where mechanics knew exactly what
components to change based on their own experience is
long gone. In this context, Fault Detection and Isolation
(FDI) analytical-redundancy-based systems are slowly in-
vading the industrial world and Airbus is not an exception.

In order to fit model-based diagnosis needs, [Airbus] en-
gineers build subsystem models considering a compromise
between the correctness of what is encoded in the model,
the complexity of that same model and its future usage.
Thus, models are typically built not to represent every pos-
sible real-world phenomena, but instead to approximate
every predicted situation the system will be confronted to.
Then, they are tested through a finite set of experiments
and its validity is eventually admitted. If on one hand, this
is perfectly acceptable from an industrial point of view; on
the other hand one must be conscientious that:

• models representing artefacts of the real-world can
never be proved true due to the problem of induction
in the scientific method Hume (1978); Popper (1963);
• it is impossible in practice to perfectly represent, in a

model, all the situations a system will be confronted
to and, even if this was possible, the model would

be too complex for practical real-life applications
(qualification problem McCarthy (1977)); and

• human errors are ubiquitous in the real-world and
models are sometimes badly encoded.

In a nutshell, models will always be subjected to errors
(hereafter referred to as “model faults”) which may entail
the computation of false diagnoses and, consequently, huge
economic losses in practical applications. Now, at this
point, one can follow two distinct paths. The first one is to
develop methods for reasoning in the presence of possibly
faulty - or uncertain, or failing to correctly represent
noise, and so on - models. This is what several works
in the FDI community have been aiming at. Chen and
Patton (1999), Erik Frisk and Lars Nielsen (2006) and
Adrot et al. (1999) are just some of the many examples.
However, even such fields make some hypotheses about
the unknown, about how approximate the model is to
reality or about how the reality is structured; this among
many others hypotheses described, for instance, by Patton
et al. (2000). Straightforwardly, these assumptions are
sometimes confirmed to be false, which brings us directly
to the second path. Concerning this second option, to
our knowledge the FDI community is chronically missing
of a method in its arsenal to detect and isolate faults
in diagnostic models; a tool which would greatly help
engineers to repair diagnostic models of complex systems.

Motivated by the discussion above, we contribute in this
paper by providing FDI analytical redundancy approach
with a method for detecting and isolating faults in diag-
nostic models of complex systems: meta-diagnosis.
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As for the organisation, Section 2 starts by providing the
reader with an example of how model faults can entail
errors in a DC motor fault diagnosis. Then, in Section 3,
the Bridge (cf. Cordier et al. (2000b) and Cordier et al.
(2000a)) between the FDI analytical redundancy approach
and the DX (a community focused on the principles of
model-based diagnosis) consistency-based logical approach
will be used to transform our problem into Reiter (1987)
framework; a precondition enabling solution of our prob-
lem through the computation of meta-diagnoses using a
“theory of meta-diagnosis” by Belard et al. (2011a), in
Section 4. We will then return to the FDI community’s
world and explain and generalise our results. This will be
the subject of Section 5. Finally, the main contributions
and a few generalisations as well as some perspectives
are provided in Section 6. A final remark: the reader is
assumed to be familiar with the model-theoretic notions
of structure, substructure, isomorphism or satisfiability. If
not, Hodges (1993) provides the material needed.

2. WHEN MODELS HURT MODEL-BASED
DIAGNOSIS: A DC MOTOR TRIAL

The present section is devoted to illustrating how faults
in diagnostic models can affect the computed diagnoses
and to providing a basis example for the remainder of this
paper. We will start by building a diagnostic model of a
DC motor and move to exposing how a diagnostic system
based on this model fails to compute a valid diagnosis.

2.1 Modelling a DC motor

Imagine a team of engineers working in a diagnostic system
of a DC motor through an FDI analytical redundancy
approach. Moreover, suppose these engineers perceive the
motor as depicted in Figure 1. Straightforwardly, from the

22 1. The Physics of the DC Motor

A picture of a DC motor servo system and its associated schematic is shown
in Figure 1.19. In the schematic, R is the resistance of the rotor loop, L is
the inductance of the rotor loop, £ — K^UJR is the back emf, r.m = Kri is
the motor torque, J is the rotor moment of inertia, and / is the coefficient
of viscous friction. The positive directions for r m , OR, and TL are indicated
by the curved arrows. The fact that the curved arrow for TL is opposite to
that of r m just means that if the load torque is positive then it opposes a
positive motor torque rm.

f

FIGURE 1.19. DC motor drawing and schematic.

Electromechanical Energy Conversion

The mechanical power produced by the DC motor is rmujR = KT^OJR =
i^i^BujR while the electrical powTer absorbed by the back emf is z£ =
iKjjUjR — UI^BUJR. The fact that KT = Kb — l\^B must be for conser-
vation of energy to hold. That is, the electrical power absorbed by the back
emf equals (is converted to) the mechanical power produced. Another way
to view this energy conversion is to write the electrical equation as

di

The power out of the voltage source Vs(t) is given by

di
Vs(t)i(t) = Ri2(t) + Li- + iKbu>Rat

= Re + !L(lLeyKTiuJR
r>-2 d / ! r ^

(JAJ \ ^ J

Thus the power Vs{t)i(t) delivered by the source goes into heat loss in
the resistance R, into stored magnetic energy in the inductance L of the
loop and the amount i£ goes into the mechanical energy TmujR.

Remark Voltage and Current Limits
The amount of voltage Vs that may be applied to the input terminals

Ti, 72 of the motor is limited by capabilities of the amplifier supplying the
voltage, that is, \Vs\ < Vmax. Let Vc(t) be the voltage commanded to the

Fig. 1. A graphical representation of a DC motor.

electrical part of this circuit they can extract the following
equations of interest:

VL = VS −R · i−Kv · ωR

d(i)

d(t)
= −R

L
· i− Kv

L
· ωR +

VS
L

where R is the resistance of the resistor R, L is the
inductance of the inductor L, VL is the voltage across L,
VS is the drive voltage, i is value of the current in the rotor
loop, ωR is the shaft angular velocity and Kv is the velocity
constant determined by the flux density, the reluctance of
the core, and the number of turns of the armature winding.
Moreover, admit R and L are modelled as constants.

As for the mechanical part of the circuit, suppose it is
represented by the following equation:

d(ωR)

d(t)
=
KT

J
· i− f

J
· ωR −

τL
J

where J is the rotor moment of inertial, f is the coefficient
of viscous friction, τL is the load and KT is the torque

constant determined by the flux density, the reluctance of
the core, and the number of turns of the armature winding.
Again, suppose J and f are modelled as constants.

Now, hypothesizing no electromagnetic losses entails that
electrical and magnetic powers equal each other and Kv

= KT = K. From all this information, the following state-
space representation can be built:(

i̇
ω̇R

)
=

−RL −KLK

J
−f
J

 · ( i
ωR

)
+

 1

L
0

0 − 1

J

 · ( VSτL
)

Suppose also that R = 1Ω, L = 0.5H, K = 0.01N.m/A,
J = 0.01kg.m2/s2, f = 0.1N.m.s and τL = 0.

Moreover, imagine there is a set of sensors placed for
diagnosis purposes so that the voltage across L, the an-
gular velocity of the shaft ωR and the current i can be
measured. Furthermore, admit that engineers predict pos-
sible faults in the rotor causing changes in the resistance
and inductance of the rotor loop, in the rotor moment of
inertia, in the coefficient of viscous friction or in the torque
constant/velocity constant, resp. fR, fL, fJ, ff, and fK.

The next step into building a diagnostic system using
an analytical redundancy approach is the computation of
the Analytical Redundancy Relations (ARR) of interest.
Imagine that these engineers determined the following
ARR’s, where the first three correspond to a motor with
a positive drive voltage and the fourth one corresponds to
a motor in an open circuit:

ARR1 r1 where r1 = VLobs
− [Vs −R · i(t)−K · ωR(t)]

ARR2 r2 where r2 = iobs − i(t)
ARR3 r3 where r3 = ωRobs

− ωR(t)
ARR4 r4 where r4 = ωRobs

− ωR(t)

As for their structures, ARR1 has a structure {fL,fR,fK},
ARR2 has a structure {fL,fR,fK,fJ,ff}, ARR3 has a struc-
ture {fL,fR,fK,fJ,ff} and ARR4 has a structure {fK,fJ,ff}
In this case, when rejecting both the exoneration and the
no-compensation assumptions Cordier et al. (2000b) the
fault signature matrix was determined to be:

fL fR fK fJ ff
ARR1 x x x 0 0

ARR2 x x x x x

ARR3 x x x x x

ARR4 0 0 x x x

This is the model that will be used for diagnosis.

2.2 Diagnosing the DC motor

All the necessary elements to tackle the problem are
now gathered. Suppose the DC motor is installed in an
helicopter. Suppose that, in a given mission, the DC motor
was started with a drive voltage of 1V. Then, 1s after
its start VL, i and ωR were measured to be, respectively,
0.0822V, 0.7348A and 0.0713rad/s. Some minutes later,
admit the DC motor was put in an open circuit and
that 0.2s after this, ωR was measured to be 0.0135rad/s.
Figure 2 illustrates these four measurements (crosses) and
depicts the predicted values of those same variables. Based
on such observations, the vector of residuals was computed
to be [1,1,1,0]T . The consequent diagnosis, assuming the
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Fig. 2. The first three figures correspond to the model
of VL(t), i(t) and ωR(t) in the first situation plotted
against the observed values of these variables. The
fourth figure corresponds to the second situation.

existence of no faults or repairs between observations,
is: {fL} , {fR}, {fK} or any multiple fault resulting as a
combination of at least these faults.

Finally, suppose that when the helicopter went back to the
hangar for maintenance purposes maintenance operators
checked for these three faults, but everything was found to
be normal. They are now facing a meta-diagnosis problem
that needs to be solved: why does the diagnostic system
determines some faults to be present while their own
perception is that every component is normal?

3. FROM AN FDI APPROACH TO A DX ONE:
TRANSFORMING THE PROBLEM

A precondition for computing meta-diagnoses through
the work of Belard et al. (2011a) is having a problem
formalised in a DX consistency-based logical framework.
As so, the present section is devoted to transforming
the FDI analytical-redundancy-based framework of the
previous section into a DX consistency-based logical one.
This will be done with the help of Bridge (cf. Cordier et al.
(2000b) and Cordier et al. (2000a)).

3.1 Characterising diagnoses in a consistency-based logical
approach

Before going any further, let us state that the DX
consistency-based logical approach sees model-based di-
agnosis as a reasoning problem that aims at retrieving
abnormalities in a real-world artefact given a represen-
tation of that artefact (the so-called SD) and a set of
observations OBS. Now, reality is accessible to every one of
us, observer-participants, through information: a mathe-
matical structure (of the cognitive-world), hereafter noted
Ψ, underlying every observer-participant’s percepts. As
for percepts, they are the result of perception, a process
through which observer-participants interpret a substruc-
ture of information corresponding to their sensed part
of reality. This discussion will prove to be useful in the

remainder of this paper. For now, let us move one step
further and introduce the concept of believed system:

Definition 1. (Believed system). A believed system S is a
pair (SD,COMPS) where:

(1) SD, the believed system description, is a set of first-
order sentences. Semantically, typically represents the
systems’ structure, behaviour, functions and goals.

(2) COMPS, the believed system components, is a finite
set of constants. Semantically, represents the systems’
components whose faults one wants to diagnose.

As for SD-sentences, they rely on the Abnormality predi-
cate to represent the behaviour of components:

Definition 2. (Abnormality predicate). Ab(.), the abnor-
mality predicate, is a unary predicate. If c ∈ COMPS is
a believed system component, then Ab(c) and ¬Ab(c) are
well-formed-formulas. Semantically, Ab(.) represents the
abnormality of a component; and ¬Ab(.) its normality.

Observe that, in the same way as ARR’s may contain
errors, sentences in believed system descriptions may suffer
from the same problem. This point will be highlighted
in the following section. Apart from believed systems,
consistency-based approaches rely on observations:

Definition 3. (Observations). The set of observations, OBS,
is a set of first-order sentences. Semantically, they repre-
sent the perception of some observables in the believed
system description.

Believed systems and observations are, thus, the DX
consistency-based approach equivalent of the ARR’s and
measurements of the FDI analytical-redundancy-based
approach. Now, the concept of diagnostic problem arises
from the notions of believed system and observations:

Definition 4. (Diagnostic problem). A diagnostic problem
DP is a tuple (SD,COMPS,OBS).

As for its solution, it is a set of health states respecting
some conditions. Intuitively, health states determine the
normality or abnormality of every element in COMPS:

Definition 5. (Health state). σ(∆,COMPS\∆), a health -
state, is [

∧
c∈ ∆Ab(c)]∧[

∧
c∈(COMPS\∆) ¬Ab(c)].

Finally, the notion of consistency-based diagnosis appears,
complemented with the concepts of partial and kernel
diagnosis enabling an easier representation of diagnoses.
Courtesy of Reiter (1987) and de Kleer et al. (1992):

Definition 6. (Diagnosis). Let ∆ ⊆ COMPS. A diagnosis,
D, for the diagnostic problem (SD,COMPS,OBS) is the set
of all diagnosis hypotheses σ(∆,COMPS\∆) such that:

SD∪OBS∪σ(∆,COMPS\∆)

is satisfiable.

Definition 7. (Partial diagnosis). A partial diagnosis for a
diagnostic problem DP is a satisfiable conjunction Q of
Ab-literals such that for every satisfiable conjunction R of
Ab-literals covered by Q 1 , SD∪OBScons∪R is satisfiable
and SD∪OBScons∪R |= OBSexp.

Definition 8. (Kernel diagnosis). A kernel diagnosis is a
partial diagnosis whose only partial diagnosis covering it
is itself.
1 A conjunction of Ab-literals is said to cover another conjunction
of Ab-literals if every literal of the former is present in the later.
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3.2 Re-diagnosing a DC motor

One is now ready to analyse the DC motor problem from a
DX consistency-based perspective; and transform ARR’s
and measurements into believed systems and observations.
First, the set COMPS may be defined as {L,R,K,J,f},
semantically representing the inductor, resistor, rotor mo-
ment of inertia, torque/velocity constant and coefficient
of viscous friction “components”. Moreover, SD can be
designed by adapting the structures and the residuals in
the analytical redundancy relations. The following first-
order sentences extended with the appropriate axioms for
arithmetic, the equations describing i(t) and ωR(t) and so
on determine, SD.

S1: Closed(circuit)∧¬Ab(L)∧¬Ab(R)∧¬Ab(K) ⇒
⇒ (VLobs

− [Vs −R · i(t)−K · ωR(t)] = 0)

S2: Closed(circuit)∧¬Ab(L)∧¬Ab(R)∧¬Ab(K)∧
∧¬Ab(J)∧¬Ab(f) ⇒ (iobs − i(t) = 0)

S3: Closed(circuit)∧¬Ab(L)∧¬Ab(R)∧¬Ab(K)∧
∧¬Ab(J)∧¬Ab(f) ⇒ (ωRobs

− ωR(t) = 0)

S4: Open(circuit)∧¬Ab(K)∧¬Ab(J)∧¬Ab(F) ⇒
⇒ (ωRobs

− ωR(t) = 0)

The reader may notice that sentence S1 corresponds to
ARR1, and so on. This will be exploited later in this paper.
As for the observations, they are two sets associated to the
two situations mentioned before:

OBS1 = {Closed(circuit) , t = 1 , Vs = 1 ,
VLobs

= 0.0822 , iobs = 0.7348 , ωRobs
= 0.0713}

OBS2 = {Open(circuit) , t = 0.2 , ωRobs
= 0.0135}

Kernel diagnoses can then be computed for both the di-
agnostic problems DP1 = (SD,COMPS,OBS1) and DP2

= (SD,COMPS,OBS2), using the same assumptions as in
the previous section, i.e. rejecting both the exoneration
and no-compensation hypotheses (a default in consistency-
based approaches). These are KD1 = {{Ab(L)},{Ab(R)}
,{Ab(K)}} and KD2 = {∅}. Finally, assuming that no
faults or repairs occurred between both situations, the final
kernel diagnosis is: KD = {{Ab(L)},{Ab(R)},{Ab(K)}};
the exact same result as the one obtained in FDI’s ana-
lytical redundancy approach. This comes with no surprise
since as affirmed in Cordier et al. (2000b), when no fault
models are present - and they never are in the present FDI
analytical redundancy approach - and when “releasing the
exoneration and the no-compensation assumptions”, then
“FDI and DX views agree on diagnoses”.

4. META-DIAGNOSIS

At this point, let us stop for a moment and re-gain a
high-level vision of this paper. In Section 1 the need for
a method to detect and isolate faults in FDI analytical
redundancy approaches was introduced. This need was
then illustrated with a DC motor example in Section 2.
When this stage was reached, we stated that a precon-
dition for computing meta-diagnoses through the work
of Belard et al. (2011a) was having a problem formalised
in a DX consistency-based logical framework. As so, the
previous section was devoted to transforming the FDI
analytical-redundancy-based depart framework into a DX
consistency-based logical one. It is now finally the time to
tackle the issue by using the tools formalized and devel-
oped by Belard et al. (2011a) and Belard et al. (2011b).

4.1 Characterising meta-diagnoses

First of all, the atoms in meta-diagnosis are meta-
components, i.e. the parts of the model whose normal-
ity/abnormality one wants to assess. Meta-components
behaviour and interactions are described in a meta-system
description thanks to the unary predicate M-Ab(·); seman-
tically representing meta-component’s abnormality.

Definition 9. (Meta-system). A meta-system is a pair (M-
SD,M-COMPS) where:

(1) M-SD, the meta-system description, is a set of first-
order sentences. Semantically, it typically represents
the model structure and behaviour.

(2) M-COMPS, the meta-system components, is a finite
set of constants. Semantically, it is a representation
of the model meta-components to be meta-diagnosed.

As stated by Belard et al. (2011a), the choice of meta-
components depends on the users’ goals and underlying
hypotheses, that is, meta-components are defined accord-
ing to what the user considers to be a fault in the model.
For instance, to determine if each sentence in the believed
system description describes the artefact to be diagnosed
in a correct manner; one can associate a meta-component
to every sentence in this description. We encourage the
reader to keep this in mind; for it will be useful for
understanding the work presented in the next subsection.
From meta-systems, one can move the definition of meta-
observations.

Definition 10. (Meta-observations). The set of meta -
observations, M-OBS, is a finite set of first-order sentences.
Semantically, it represents the perception of some param-
eter of the diagnostic system or the artefact itself.

In the same way as believed systems and observations were
reunited to form diagnostic problems, meta-systems and
meta-observations form meta-diagnostic problems:

Definition 11. (Meta-diagnostic problem). A meta-dia -
gnostic problem M-DP is (M-SD,M-COMPS,M-OBS).

Solving a diagnostic problem consists in determining the
normality/abnormality of meta-components. This is why,
before focusing on a definition of meta-diagnoses, the
concept of meta-health state needs to be apprehended:

Definition 12. (Meta-health state). Let Φ ⊆ M-COMPS
be a set of meta-components. The meta-health state
π(Φ,M-COMPS\Φ) is the conjunction:

[
∧

mc∈ ΦM-Ab(mc)]∧[
∧

mc∈(M-COMPS\Φ) ¬M-Ab(mc)]

Definition 13. (Meta-diagnosis). Let Φ ⊆ M-COMPS. A
meta-diagnosis, M-D, for the meta-diagnostic problem (M-
SD,M-COMPS,M-OBS) is a set of all M-D hypotheses
π(Φ,M-COMPS\Φ) such that:

M-SD∪M-OBS∪π(Φ,M-COMPS\Φ)

is satisfiable.

Before ending this subsection, the reader may notice that
Definitions 6 and 13 are syntactically equivalent. Thus,
a meta-diagnostic problem can be seen as a diagnostic
problem where the artefact being diagnosed is a diagnostic
system; and a DX consistency-based logical approach can
be used to tackle meta-diagnostic problem. This is proved
in Belard et al. (2011a) and Belard et al. (2011b).
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4.2 Meta-diagnosing a DC motor model

With a formal theory of meta-diagnosis introduced, the
DC motor diagnostic model can finally be meta-diagnosed.
According to the theory, meta-diagnosis starts by defining
the meta-components. Now, in the previous subsection it
was stated that: “meta-components are defined according
to what the user considers to be a fault the model”. Now,
intuitively, one is looking for the reason behind the invalid
diagnoses computed. But how can this help the choice of
meta-components?

In order to answer this question and definitely solve the
problem, four definitions and a theorem are now borrowed
from Belard et al. (2011a) 2 :

Definition 14. (Ontological truth of a theory). Given:

• T, a logical theory,
• Ω, the set of all structures,
• Mod(T), the set of all structures models of T, and
• Ψ ∈ Ω, the structure of information (Subsection 3.1),

the theory T is said to be an ontological truth iff:

∃s∈Mod(T) ∃t∈Ω (s⊆t)∧(t
Ψ)

where s⊆t means that s is a substructure of t and t
Ψ
means that t is isomorphic to Ψ. If T is an ontologically
true theory, then so are every sentences in T.

Definition 15. (True health state). σT, the true health
state, is the only ontologically true health state (cf. Defi-
nitions 5 and 14) at a given time.

Definition 16. (Validity of a diagnosis). Let σT the true
health state. A diagnosis, D, is said to be valid iff σT ∈ D;
and invalid otherwise.

Definition 17. (Ontological truth of B.S. description). A be-
lieved system description is an ontological truth iff, for all
ontological true theories OBS, SD∪OBS is an ontologically
true theory (cf. Definition 14).

Theorem 1. If (SD,COMPS) is an ontologically true be-
lieved system, then for every diagnostic problem (SD,
COMPS,OBS) with ontologically true observations, every
diagnosis D is valid.

Will all this material, it can now be formally stated that
one is looking for the reason behind invalid diagnosis (cf.
Definition 16). Moreover, Theorem 1 indicates that this
reason can be the ontological falsehood of the believed
system description (cf. Definition 17). This being so,
meta-components can be chosen as a representation of
the sentences in SD, i.e. M-COMPS = {S1,S2,S3,S4}.
Moreover, since either our meta-component is abnormal
or the sentence is ontologically true, the following meta-
system description, M-SD, can be built:

¬M-Ab(S1) ⇒
[
Closed(circuit)∧¬Ab(L)∧¬Ab(R)∧

∧¬Ab(K) ⇒ (VLobs
− [Vs −R · i(t)−K · ωR(t)] = 0)

]
¬M-Ab(S2) ⇒

[
Closed(circuit)∧¬Ab(L)∧¬Ab(R)∧

∧¬Ab(K)∧¬Ab(J)∧¬Ab(f) ⇒ (iobs − i(t) = 0)
]

¬M-Ab(S3) ⇒
[
Closed(circuit)∧¬Ab(L)∧¬Ab(R)∧

∧¬Ab(K)∧¬Ab(J)∧¬Ab(f) ⇒ (ωRobs
− ωR(t) = 0)

]
¬M-Ab(S4) ⇒

[
Open(circuit)∧¬Ab(K)∧¬Ab(J)∧

∧¬Ab(f ⇒ (ωRobs
− ωR(t) = 0)

]
2 The reader is encouraged to refer to Belard et al. (2010), Belard
et al. (2011a) and Belard et al. (2011b) for more details.

extended with the appropriate axioms for arithmetic, the
equations describing i(t) and ωR(t) and so on. As for
meta-observations, they contain all the observations at
system-level. Moreover, this theory is extended by taking
into account the unobserved abnormality in the three
components analysed by maintenance operators: L, R and
K. As so,

M-OBS1 = {¬Ab(L) , ¬Ab(R) , ¬Ab(K) ,
Closed(circuit) , t = 1 , Vs = 1 , VLobs

= 0.0822 ,
iobs = 0.7348 , ωRobs

= 0.0713}
M-OBS2 = {¬Ab(L) , ¬Ab(R) , ¬Ab(K) , Open(circuit)

, t = 0.2 , ωRobs
= 0.0135}

With a meta-system and some meta-observations the ker-
nel meta-diagnoses for both meta-diagnostic problems M-
DP1 = (M-SD,M-COMPS,M-OBS1)) and M-DP2 = (M-
SD,M-COMPS,M-OBS2)) can now be computed. These
are M-KD1 = {M-Ab(S1)} and M-KD2 = {∅}. Finally,
since it is assumed, as in Section 1 that no changes in the
model occurred between both situations, then the final
kernel diagnosis is: M-KD = {M-Ab(S1)}. In a nutshell,
the meta-diagnosis tells us that the first sentence in the
believed system description must be repaired.

5. BACK TO AN FDI APPROACH

In the previous section a method was provided for comput-
ing meta-diagnoses using a DX consistency-based logical
approach. However, what does that means in terms of
the elements in FDI’s analytical redundancy framework:
ARR’s and measurements?

The answer to such question relies on the fact that, under
some assumptions, believed system description sentences
are perfectly equivalent to ARR’s residuals and their
structure. We recall, once again, the words of Cordier
et al. (2000b): “Releasing the exoneration and the no-
compensation assumptions (...) FDI and DX views agree
on diagnoses”. As also stated in that work, this is true
whenever one is not interested in fault models; for the
present analytical redundancy approach cannot handle
these objects. Now, since these were exactly the assump-
tions made all along the present paper (and these as-
sumptions can always be made when one wants to meta-
diagnose FDI analytical redundancy approach models)
then the result from the previous section tells us that
ARR1 needs to be repaired, either in terms of its structure
or in terms of its residual definition.

Now, using this result, engineers inspected the residual
in ARR1, i.e. r1 = VLobs

− [Vs − R · i(t) − K · ωR(t)
and found out the problem. In fact, our DC motor was
always tested in low temperatures. Unfortunately, when
the helicopter flew to a region where high temperatures
were registered the resistance of our resistor changed.
This happens because being made of iron, the resistor has
an electrical resistance temperature coefficient of, by and
large, 0.0062K−1. When changing the residual equation of
ARR1 to r1 = VLobs

− [Vs−R0 ·(1+α ·(T −T0)) · i(t)−K ·
ωR(t) with R0 = 1Ω, the test temperature T0 = 5C and
the temperature registered in the region where the flight
took place T = 45C; engineers verified that, in fact, the
diagnostic system provided the correct answers. The model
was then assumed as being correct once again. Figure 3
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extends Figure 2 with the new model to provide a visual
representation of what has been stated.
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Fig. 3. An extension of Figure 2 with the repaired model
of the DC motor depicted in a dashed red line.

6. DISCUSSION AND PERSPECTIVES

In this paper, we provided FDI community with a theory
of meta-diagnosis, that is, a framework for detecting and
isolating faults in diagnostic models. We have motivated
the need for such contribution by the ubiquity of diag-
nostic model’s faults and its associated economic impact.
Furthermore, we have illustrated our point trough a DC
motor example that, although not conveying the complex-
ity of Airbus models with thousands of ARR’s, enables the
reader to understand our framework. The presented frame-
work also illustrates how the cooperation between the FDI
analytical redundancy approach and the DX consistency-
based approach can enrich both communities.

Let us now open up with a two-fold remark. First, although
in this paper we focused on detecting and isolating onto-
logically false ARR, this property is far from being the
only one affecting these sentences. In fact, diagnosability,
completeness and many other properties whose absence is
considered as a fault in the diagnostic model, can be meta-
diagnosed thanks to this work. In Belard et al. (2010) we
provide a detailed logical account on models’ properties
and their relations with diagnoses’ properties. Finally,
despite our interest in diagnostic models, they are also
far from being the only possible faulty part of diagnostic
systems. In fact, both observations and diagnostic algo-
rithms can be assigned some properties whose absence
is considered abnormal. The framework presented covers
such cases as proved by Belard et al. (2011a).

Finally, our perspectives are related to the question: do
we really have to go to a DX consistency-based logical
approach and come back every-time we meta-diagnose
models in an FDI analytical redundancy framework?

Since Definition 6 and Definition 13 are syntactically
equivalent and Cordier et al. (2000b) tells us that under
some assumptions “FDI and DX views agree on diag-
noses”, then one could certainly try to investigate the pos-

sibility of directly computing meta-diagnoses through an
FDI analytical redundancy approach whenever no meta-
fault-models are used.

In this perspective, one could take, for instance, the first
M-SD-sentence in the DC motor problem:

¬M-Ab(S1) ⇒
[
Closed(circuit)∧¬Ab(L)∧¬Ab(R)∧

∧¬Ab(K) ⇒ (VLobs
− [Vs −R · i(t)−K · ωR(t)] = 0)

]
and use the analogy between both worlds to formulate a
meta-ARR with a meta-residual:

m− r1 = (r1 − r1obs
)

with r1 = 0 if VLobs
− [Vs−R · i(t)−K ·ωR(t)]) = 0 and 1

otherwise; and r1obs
= 0 if no component in the structure

of ARR1 is meta-observed as faulty and 1 otherwise.
Moreover, rejecting the exoneration and no-compensation
hypotheses a m−r1 < 0 could be interpreted as a possible
misdetection and not as a fault in the model. Finally, the
M-ARR would have the structure {ARR1}.
This is the subject of our present investigations.
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Belard, N., Pencolé, Y., and Combacau, M. (2011b). MEDITO:
a logic-based meta-diagnosis tool. In Proceedings of the 23rd
International Conference on Tools with Artificial Intelligence
(ICTAI-11).

Chen, J. and Patton, R. (1999). Robust Model-Based Fault Diagnosis
for Dynamic Systems. Kluwer Academic Publishers.

Cordier, M.O., Dague, P., Dumas, M., Lvy, F., Montmain, J.,
Staroswiecki, M., and Travé-Massuys, L. (2000a). A Comparative
Analysis of AI and Control Theory Approaches to Model-based
Diagnosis. In Proceedings of the 14th European Conference on
Artificial Intelligence (ECAI-00).

Cordier, M.O., Dague, P., Dumas, M., Lvy, F., Montmain, J.,
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