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Abstract—In every Model-Based Diagnosis (MBD) approach,
a model of a real-world system and some observations of
such a system are used by a diagnostic algorithm to compute
diagnoses. Contrary to MBD classical hypotheses, real-world
applications provide us with empirical data suggesting that
diagnostic systems, i.e. a model, observations and a diagnostic
algorithm, are sometimes abnormal with respect to some
required properties. This is where Meta-Diagnosis comes into
play with a theory to determine abnormalities in diagnostic
systems. Unfortunately, Artificial Intelligence lacks of a tool
putting meta-diagnosis theory to practice. Our first contribu-
tion in this paper is such a tool, called MEDITO. Moreover,
we provide a real-world example of MEDITO’s application
at meta-diagnosing an Airbus landing gear extraction and
retraction system with successful results.
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I. INTRODUCTION

In model-based diagnosis (MBD) [1][2], a diagnostic
algorithm uses a model of a real-world system under study
(hereafter referred to as believed system 1) along with some
observations gathered from it to compute diagnoses, i.e. to
determine the normal and abnormal physical units of the
real-world system.

Unfortunately, and contrary to classical assumptions, the
tuple (believed system, observations, diagnostic algorithm),
called diagnostic system, can be abnormal with respect
to some properties one wants it to have, such as, for
example: the truth and/or completion of believed systems,
the soundness and/or completeness of diagnostic algorithms
or the truth of observations; with a possible direct impact
on the quality of the computed diagnoses. Finding such
abnormalities constitutes a problem of meta-diagnosis, for
which a theory is provided in [3].

Meta-diagnostic problems are ubiquitous in real-world
applications. At Airbus, for example, with so many different,
highly-customizable and evolving aircraft, a lot of effort is
required for engineers to produce and maintain a true be-
lieved system - a necessary (although insufficient) condition
to ensure efficient fault isolation procedures with no delays -
by manually finding abnormalities in believed systems. More
examples come from SymCure users [4], who struggle to

1The word ”model” will be reserved for a model-theoretic context.

obtain true believed systems and true observations; for these
are constraints imposed by SymCure’s diagnostic algorithm.

If, on the one hand, [3] provides us with a theory of meta-
diagnosis enabling the formulation and theoretical solution
of meta-diagnostic problems; on the other hand, Artificial
Intelligence still lacks of a meta-diagnostic tool where real-
life meta-diagnostic problems such as the ones mentioned
above can be solved. We answer such need by contributing,
in Section III, with a detailed architectural and functional
description of a logic-based MEta-DIagnostic TOol (MED-
ITO), based on the referred meta-diagnostic framework.

Having MEDITO at our disposal, we also contribute, in
Section IV, by meta-diagnosing an Airbus Landing Gear Ex-
traction and Retraction System (LGERS) diagnostic system,
and providing some positive results obtained.

Finally, since such contributions rely on the frameworks of
diagnosis and meta-diagnosis of [1], [2] and [3], Section II
will be dedicated to an overview of such frameworks.

II. PRELIMINARIES

Before going any further, we assume that the reader is
familiar with model-theoretic notions of structure, model and
extensions [5]; as well as with the model-based diagnosis
framework described in [1] and [2].

Since sections III and IV rely on the theories of diagnosis
and meta-diagnosis, as well as in diagnostic system and
diagnostic results’ properties and their relations, we provide,
along the present section:
• an overview of the theory of diagnosis introduced by

Reiter in [1] and de Kleer and Williams in [2],
• a brief description of the theory of meta-diagnosis

proposed by Belard, Pencolé and Combacau in [3], and
• some of the diagnostic system and diagnostic results’

properties and property relations announced by the
latter authors in [6] and [3].

A. Characterising diagnoses

Model-based diagnosis is a reasoning problem that aims
at retrieving system abnormalities given a system description
(the so-called SD) and a set of observations OBS. For
such a couple (SD,OBS), the crucial assumption of MBD
is that (SD,OBS) matches with the underlying reality (i.e.
the real system and the real observations). More formally



speaking, reality is only accessible through a structure, let
us say Ψ, of raw information everyone would have access to
(in terms of behaviour and observations) if engineering and
computational resources were unlimited; and the principle of
model-based diagnosis is that there always exists a structure
s, model of SD∪OBS (i.e. s∈Mod(SD∪OBS)), that can
be extended to a structure t, i.e. s⊆t, which is isomorphic
to Ψ, denoted t 
 Ψ. In Tarki’s terms [7], MBD relies
on the fact that SD∪OBS is an ontologically true theory
”which says that the state of affairs is so and so, and the
state of affairs is indeed so and so”. In this paper, we call real
system a set R of interacting Replaceable Units (RU), where
maintenance actions resulting from diagnosis take place.
Its representation, denoted SD, will be called the believed
system. Finally, as written above, MBD aims at retrieving
abnormalities in the system, abnormalities that are always
dependent on the user viewpoint on the real system.

After introducing MBD foundations by relating the real-
world system and its representation - the believed system
-, let us briefly recall the classical model-based diagnosis
framework that will be used throughout this paper [2] [1].
Definition 1 (Believed system). A believed system S is a
pair (SD,COMPS) where:

1) SD, the believed system description, is a set of first-
order sentences.

2) COMPS, the believed system components, is a finite
set of constants representing the real-world system
physical units to diagnose 2.

Observations are one of the few connections between real
and believed systems. Intuitively, observations are captured
from the real system by a set of sensors measuring the value
v(p) of a real parameter p; and used, along with the believed
system and p and v(p) representations, in the diagnostic
reasoning.
Definition 2 (Observations). The set of observations, OBS,
is a set of first-order sentences.

Relying on the definitions of believed systems
and observations, a diagnostic problem is the tuple
(SD,COMPS,OBS).

Diagnostic problems are solved according to the model-
theoretical definition of diagnosis relying on the con-
cept of believed system health state, σ(∆,COMPS\∆) =
[
∧

c∈ ∆Ab(c)] ∧ [
∧

c∈(COMPS\∆) ¬Ab(c)]; where the predi-
cate Ab(c) (resp. ¬Ab(c)) represents the abnormality (resp.
normality) of the component c ∈ COMPS.
Definition 3 (Diagnosis). Let ∆ ⊆ COMPS. A diagnosis,
D, for the diagnostic problem (SD,COMPS,OBS) is the set
of all diagnosis hypotheses σ(∆,COMPS\∆) such that:

SD∪OBS∪σ(∆,COMPS\∆)
is satisfiable.

2We assume that there is a bijection between R and COMPS, as R is
defined by the user and the actions that can be performed on R if one of
the unit is abnormal.

Finally, in real-world applications a diagnostic algorithm,
noted A, computes diagnoses ideally following the frame-
work provided by Definition 3.

B. Characterising meta-diagnoses
Subsection II-A developed around diagnostic systems.

Definition 4 (Diagnostic system). A diagnostic system is a
tuple (SD,COMPS,OBS,A).

Now, contrary to most classical hypotheses, diagnostic
systems can be abnormal with respect to some properties
one wants them to have. For example: modeling errors can
result in false believed systems; observations can be different
from the real parameter values due to perception errors; and
diagnostic algorithms can produce diagnostic hypotheses not
respecting the model-theoretic definition. Straightforwardly,
meta-diagnosis aims at finding such abnormalities. In this
subsection, based on [3], we provide a brief overview of
meta-diagnosis.

First of all, the atoms in meta-diagnosis are meta-
components, i.e. the parts of the diagnostic system
whose normality/abnormality one wants to assess. Meta-
components behavior and interactions are described in a
meta-system description thanks to the unary predicate M-
Ab(·); which carries the semantic of meta-component’s ab-
normality. Meta-components and meta-system descriptions
form meta-systems:
Definition 5 (Meta-system). A meta-system is a pair (M-
SD,M-COMPS) where:

1) M-SD, the meta-system description, is a set of first-
order sentences.

2) M-COMPS, the meta-system components, is a finite
set of constants.

The choice of meta-components depends on the goals
and underlying hypotheses. As so, meta-components can be
defined at different abstraction levels and it is not mandatory
for every element of a diagnostic system to be considered
a meta-component. For instance, if for a given problem
one assumes that diagnostic algorithms and observations are
never abnormal; to determine if each sentence in the believed
system description describes the real system behaviour in
a correct manner; one can associate a meta-component to
every sentence in the believed system description and no
meta-components to the rest of the diagnostic system.

From meta-systems one can move to introducing meta-
observations. These can be, by and large, every possible
observation at a diagnosis level along with every possible
observation about the diagnostic system itself, such as the
real-world system health state.
Definition 6 (Meta-observations). The set of meta-
observations, M-OBS, is a finite set of first-order sentences.

Examples of meta-observations obtained from available
test cases could be real system health state σreal, the diag-
noses computed by a diagnostic algorithm, observations and
so on.



With meta-components, a meta-system description and
some meta-observations; a meta-diagnostic problem is ready
to be solved.
Definition 7 (Meta-diagnostic problem). A meta-diagnostic
problem M-DP is a tuple (M-SD,M-COMPS,M-OBS).

Solving a diagnostic problem consists in determining the
normality/abnormality of meta-components. This is why,
before focusing on a definition of meta-diagnoses, one needs
to apprehend the concept of meta-health state:
Definition 8 (Meta-health state). Let Φ ⊆ M-COMPS be
a set of meta-components. The meta-health state π(Φ,M-
COMPS\Φ) is the conjunction:

[
∧

mc∈ ΦM-Ab(mc)]∧[
∧

mc∈(M-COMPS\Φ) ¬M-Ab(mc)]
From the notion of meta-health state one can now move

to solving the meta-diagnostic problem.
Definition 9 (Meta-diagnosis). Let Φ ⊆ M-COMPS. A
meta-diagnosis, M-D, for the meta-diagnostic problem (M-
SD,M-COMPS,M-OBS) is the set of all M-D hypotheses
π(Φ,M-COMPS\Φ) such that:

M-SD∪M-OBS∪π(Φ,M-COMPS\Φ)
is satisfiable.

Finally, one shall notice that the diagnosis and meta-
diagnosis worlds are not so different. In fact, if one takes
a close look at Definitions 3 and 9 one may see that they
are syntactically equivalent; the only difference being that a
meta-diagnostic problem can be seen as a diagnostic problem
where the artifact being diagnosed is a diagnostic system.
A corollary is that every diagnostic algorithm can become a
meta-diagnostic algorithm if it is sound and complete with
respect to the underlying semantics [5]. This fact will prove
extremely useful in Section III.

C. Diagnostic system and diagnostic results’ properties and
property relations

At this point one has a complete characterisation meta-
diagnoses enabling the detection and isolation of abnormal
properties in diagnostic systems. However, in order to pro-
vide the principles of MEDITO is Section III, we are still
lacking of a description of some 3 diagnostic system and
diagnostic results’ properties and relations; which will be
summarily provided, hereafter, based on [6] and [3].

1) Diagnostic result properties: Model-theoretic diag-
noses’ quality can be evaluated thanks to two properties:
validity and certainty. Let us, in this paper, focus on nothing
but the former.
Definition 10 (Validity of a diagnosis). Let σreal be the be-
lieved system health state such that, for every c∈COMPS, if
c is the image of r∈R: 1) if r is abnormal, ¬Ab(c)∧σreal|=⊥;
and 2) if r is normal, Ab(c)∧σreal|=⊥. A diagnostic result,
D, is said to be valid if σreal ∈ D; and invalid otherwise.

3In this paper we provide nothing but the diagnostic system and di-
agnostic result properties injected into the current version of MEDITO
code. Nevertheless, MEDITO can be easily extended to account for other
properties and relations such as the ones in [6] (cf. Section III).

As so, valid diagnoses are, intuitively, those covering the
correct physical units to replace.

2) Observations properties: Concerning observations, we
will focus on a single property, truth, assuring that real-world
system parameter values are correctly perceived.
Definition 11 (Truth of the observations). Let Ω be the set
of all structures and Ψ ∈ Ω the raw information about the
reality. The observations OBS are an ontological truth iff
∃s∈Mod(OBS) ∃t∈Ω (s⊆t)∧(t
Ψ).

3) Believed system properties: Among the various inter-
esting believed system properties we will, as we did when
describing observations properties (cf. Subsection II-C2),
focus on a single property, truth, assuring that for every
system description sentence stating X, X happens in reality.
Definition 12 (Truth of the believed system). Let Ω be the
set of all structures and Ψ ∈ Ω the raw information about
the reality. A believed system is an ontological truth iff, for
all true OBS, ∃s∈Mod(SD∪OBS) ∃t∈Ω (s⊆t)∧(t
Ψ) [7].

4) Property relations: With the series of diagnostic sys-
tem and diagnostic result properties described above, one
can finally focus on an important relation between such
properties (among the many others described in [6] and [3]);
establishing that model-theoretic diagnoses obtained using
an ontologically true believed system and some ontologically
true observations are always valid:
Theorem 1. If (SD,COMPS) is an ontologically true
believed system, then for every diagnostic problem
(SD,COMPS,OBS) with ontologically true observations,
every model-theoretic diagnosis DM-T is valid.

This theorem, whose proof can be found in [3], will
become part of MEDITO’s core in the following section.

III. MEDITO: A META-DIAGNOSIS TOOL

Up until this point the reader as been provided with both
a diagnosis and a meta-diagnosis theory that, although far
from a practical application, are a necessary condition for
building one. It is now time to introduce MEDITO: a logic-
based MEta-DIagnostic TOol aiming at computing the di-
agnostic systems’s normal and abnormal meta-components.

As for the computational implementation, MEDITO relies
on the fact that every meta-diagnostic problem can be
seen as diagnostic one. This way, MEDITO uses Zhao and
Ouyang [8] [9] diagnostic algorithms for determining all
kernel meta-diagnoses for a given meta-diagnostic problem.
Since these algorithms require a test for determining the
consistency of a logical theory, MEDITO also implements a
Constraint Satisfaction Problem (CSP) solver, CHOCO [10].
Note that the choice of CHOCO (as a CSP solver) and Zhao
and Ouyang algorithms (as diagnostic algorithms) was one
among the many possible choices of diagnostic algorithms
and CSP solvers available.

With respect to MEDITO limitations, due to CHOCO lan-
guage constraints, MEDITO can only meta-diagnose those



diagnostic systems where SD is a finite first-order theory;
a reasonable limitation in real-world applications with no
serious consequences.

In the two subsections that follow, we will focus on:
1) providing a general view on MEDITO’s architecture, 2)
giving a detailed view on MEDITO’s modules.

A. MEDITO’s architecture

Let one start by focusing on MEDITO’s architecture.

GUI

Database 

Management 

Tool

Database

Meta-diagnoser

Core 

Algorithms

Parsing 

Tool

Model 

Tool

Figure 1. MEDITO’s architecture

As depicted in Figure 1, MEDITO is composed of six
interacting modules, where:
• the GUI module provides an Graphical User Inter-

face for handling user inputs such as adding, edit-
ing or removing believed systems, observations and
meta-observations; as well as for displaying the meta-
diagnostic results,

• the Database Management Tool module is responsible
for managing and querying MEDITO’s SQL database
containing believed systems, observations and meta-
observations,

• the Meta-diagnoser module manages the computation
of meta-diagnoses based on a user choice of meta-
components and test-cases, i.e. pairs of observations
and meta-observations,

• the Parsing Tool module transforms user-input text into
CHOCO Java objects,

• the Model Tool module creates a CSP model in CHOCO
and checks for the consistency between such model and
a given CHOCO constraint, and

• the Core Algorithms module is responsible for im-
plementing Zhao and Ouyang algorithms [8] [9] for
computing all hitting sets and all minimal conflict sets
for a given theory.

B. A detailed view on MEDITO’s modules

Following the architectural overview of MEDITO in the
preceding subsection, we provide, hereafter, a detailed view
of each MEDITO module.

1) MEDITO’s GUI module: First of all, MEDITO’s
Graphical User Interface is divided in three main screens.

In MEDITO’s System manager screen, depicted in Fig-
ure 2, the user is able to create, change and delete a believed
system. Believed systems are represented by two text blocs,
the first one containing the believed system components and
observables’ declarations and the second one containing the
system description.

Figure 2. MEDITO’s System Manager screen

In the first text bloc, text lines of the form:
• “component c”, and
• “observable o range a b”

are used to declare, respectively, a believed system compo-
nent c and a believed system observable o ranging from
value a to b.

As for the second text bloc, a system description is
declared through a series of text lines; each of them rep-
resenting a SD-sentence in the Skolem normal form and
with all the universal quantifiers omitted.

From MEDITO’s System manager screen we can move
to describing MEDITO’s Test Cases manager screen where
the user is able to create, change and delete a series of test-
cases, i.e. pairs of observations and meta-observations, for
each believed system. Observations and meta-observations
are represented by two text blocs containing text lines
representing OBS and M-OBS sentences.

Finally, MEDITO’s Meta Diagnoser screen, (cf. Figure 3),
enables the user to chose a believed system and a series
of test-cases to compute meta-diagnoses, according to some
preferences on meta-components. In MEDITO’s current ver-
sion, one can chose 4:
• every SD-sentence to be a meta-component whose

property of truth may be lacking,

4MEDITO’s modularity enables easily adding new meta-component
choices by changing the GUI module’s Meta Diagnoser screen and the
Meta Diagnoser module.



• every OBS-sentence to be a meta-component whose
property of truth may be lacking, and/or

• the diagnostic algorithm to be a meta-components
whose properties of soundness and/or completeness
may be lacking 5.

Figure 3. MEDITO’s Meta-diagnoser screen

Finally, according to users choices, kernel meta-diagnoses
are displayed in this same screen.

2) MEDITO’s Database Management Tool module and
database schema: As for the Database Management Tool
(DMT) module, it enables the user to store, change and
delete believed systems and test-cases in a SQL database;
and provides the Meta-diagnoser module access to such
database in order to compute meta-diagnoses. Figure 4
illustrates MEDITO’s SQL database schema.

SystemSD

PK Constraint_ID

FK1 System_ID

 Constraint

SystemVariables

PK Variable_ID

FK1 System_ID

 Variable

TestCases

PK Observation_ID

FK1 GlobalSituation_ID

 Observation

Systems

PK System_ID

 System_Name

ObservedSystems

PK GlobalSituation_ID

FK1 System_ID

 Situation_ID

MetaTestCases

PK MetaObservation_ID

FK1 GlobalSituation_ID

 MetaObservation

Figure 4. MEDITO’s database schema

3) MEDITO’s Meta-diagnoser module: The Meta-
diagnoser module has the objective of managing the compu-
tation of meta-diagnoses by making use of the Parsing Tool
(PT), Model Tool (MT) and Core Algorithms (CA) modules.

5In the present paper no details are given on this functionality since,
by format constraints, the theoretical foundations needed for introducing it
were not given in Section I.

The algorithm implemented in the Meta-diagnoser mod-
ule is provided hereafter.
Input: A believed system name, systemName
Input: A test-case identification, situationID
Input: Meta-comps. choice, {sdOp,obsOp,algOp}
{Step1: Get observables (Ob), COMPS, OBS, M-OBS from DB, parse
urser-text and initialize variables}
mdPbText ← DMT.imp(systemName,situationID)
pb ← PT.parse(mdPbText)
pb.mOb ← pb.Ob
pb.mSD ← ∅
{Step2: Create M-COMPS, M-SD and M-OBS based on user meta-
component choices}
if sdOp = TRUE then

pb.mCOMPS ← createMCOMPS(pb.SD)
pb.mSD ← pb.mSD∪transfToMeta(pb.SD)
pb.mOb ← pb.COMPS∪pb.mOb

end if
if obsOp = TRUE then

pb.mCOMPS ← pb.mCOMPS ∪ createM-
COMPS(pb.OBS)
pb.mSD←pb.mSD∪sToMeta(pb.OBS)
pb.mOb ← pb.COMPS∪pb.mOb

else
pb.mOBS ← pb.mOBS∪pb.OBS

end if
if algOp = TRUE then

(...)
end if
{Step3: Solve the meta-diagnostic problem}
CSPmod ← MT.create(pb)
(mDiag,mDiagMinCard) ← CA.metaDiag(
CSPmod,pb.mCOMPS)
return (mDiag,mDiagMinCard)

Intuitively, this algorithm’s:
Step 1: serves the purpose of importing a meta-diagnostic

problem using Database Management Tool module’s import
function; using the Parsing Tool module to transform user-
input-text components and observables declarations into
CHOCO variables; and system descriptions, observations
and meta-observations into CHOCO constraints.

Step 2: serves the purpose of building meta-components
and a meta-system description, by taking user choices of
meta-components into account.

Firstly, function createMCOMPS(·) associates a meta-
component to each sentence in the input theory.

As for function transfToMeta(·), it transforms every
SD-sentences and/or OBS-sentences stating “A” into meta-
SD-sentences: ¬M-Ab(mc) ⇒ A; where mc is the meta-
component associated to the sentence. This is as so because
if a sentence stating “A” is not guaranteed to be ontologically
true, then either “A” is ontologically true or the meta-



component mc associated to such sentence is abnormal, i.e.
¬M-Ab(mc) ⇒ A.

Finally, if either the SD or OBS sentences can be
ontologically false, the real-system health state is added as
a possible meta-observable as a result of Theorem 1; and if
the observations are assumed to be ontologically true, then
they are added directly as meta-observations.

Step 3: uses the Model Tool and Core ALgorithms mod-
ules, respectively, to 1) create a CHOCO CSP model where
the decision variables are the meta-components (though the
function createModel(·)), and 2) compute, based on such
model, all the kernel meta-diagnoses and minimal cardinality
diagnoses for the meta-diagnostic problem (through the
function metaDiagnose(·)).

4) MEDITO’s Parsing Tool module: MEDITO’s Pars-
ing Tool module implements the parsing of user-input-
text fields into CHOCO variables and constraints. This is
done according to the syntax and semantics described in
Subsubsection III-B1.

5) MEDITO’s Model Tool module: The Model Tool mod-
ule in MEDITO encodes two simple functionalities. First of
all, it enables the construction of a CHOCO model based on
a series of CHOCO variables and constraints. Secondly, it
enables one to test the consistency between a CHOCO model
and a constraint, by making use of CHOCO exception in the
“propagate” method.

6) MEDITO’s Core Algorithms module: The last module
to be described is MEDITO’s Core Algorithms module. By
making use of the syntactic equivalence between diagnosis
and meta-diagnosis (cf. Section II) this module implements
Zhao and Ouyang diagnostic algorithms and applies them
to meta-diagnosis to compute kernel meta-diagnoses. More-
over, it also transforms the problem into a min-CSP problem
and solves it with CHOCO in order to obtain all the minimal
cardinality meta-diagnoses. Finally, we state, once again,
that this was one of the possible choices of algorithms.

In a more detailed manner:
• Zhao and Outang SE-tree based Minimal Hitting Set

computation algorithm [8] is implemented in MED-
ITO’s Core Algorithms module “computeMetaDiag-
noses” function to compute the kernel meta-diagnoses
for a given meta-diagnostic problem, based on all
Minimal Conflict Sets for that same problem.

• In order to compute all the Minimal Conflict Sets
for the meta-diagnostic problem, MEDITO’s Core Al-
gorithms module implements Zhao and Ouyang SE-
tree based Minimal Conflict Set computation algorithm
detailed in [9]. To do so, the algorithm takes as input the
CHOCO model generated by the Model Tool module
and representing the diagnostic problem to be solved,
as well as the set of meta-components in the meta-
diagnostic problem.

• Finally, Zhao and Ouyang algorithm for computing all
Minimal Conflict Sets needs an underlying consistency

checker to verify if a set is a conflict set. As so,
MEDITO’s Core Algorithms module transforms the set
to be verified into a CHOCO conjunction constraint
and makes use of Model Tool module’s consistency
check function to test the consistency between that
constraint and the CHOCO model representing the
meta-diagnostic problem.

As for the minimal cardinality meta-diagnoses, these are
obtained by adding a constraint on the number of abnormal
meta-components to the CHOCO CSP model representing
the meta-diagnostic problem; and solving the resulting new
CSP model by minimizing such constraint.

IV. META-DIAGNOSING AN AIRBUS LANDING GEAR
EXTRACTION AND RETRACTION DIAGNOSTIC SYSTEM

Once a detailed description of MEDITO has been given
in Section III, one is now able to put such a tool to
work in a real-world application: an Airbus A380 Landing
Gear Extraction and Retraction System (LGERS) diagnostic
system. In order to do so, we will start this section by giving
a general description of the real-world system; introduce a
possible LGERS believed system used at Airbus; and meta-
diagnose such believed system taking real-world observa-
tions and meta-observations into account.

A. An Airbus landing gear extraction and retraction system

The purpose of the Airbus A380 Landing Gear Extension
and Retraction System (LGERS) is to provide controlled
Landing Gear extension and retraction and door open-
ing/closing such that the aircraft can perform a normal
landing and cruise flight.

Structurally speaking, an A380 landing gear consists of: a
retracting Nose Landing Gear (NLG), two retracting Wing
Landing Gears (WLG), and two retracting Body Landing
Gears (BLG).

In terms of the associated actuators, all the landing gears
(NLG, WLG and BLG) have retract, unlock and gear uplock
actuators; and the associated doors are, for the most part,
hydraulically operated through some hydraulic actuators,
being the remaining doors mechanically operated.

As for the Landing Gear Control [and Indication] System
(LGCIS), its simplified general architecture is depicted in
Figure 5, where component real names and some details
have been changed/removed for confidentiality issues.

First of all, one shall note that LGCIS is decomposed, for
safety purposes, into two redundant sides executing, by and
large, the same functions in alternate active/standby modes.

In terms of sensor data, each LGCIS side has its own
sensor inputs which are transmitted to the Core Processing
Input and Output Modules (CPIOM) - that can be seen
as aircraft generic computers - through some Remote Data
Concentrators (RDC) by means of Arinc 429 data links.

Using such sensor data and the control commands pro-
vided by the landing gear control lever (not represented
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Figure 5. LGCIS architecture

in Figure 5), CPIOM W (resp. Y) LGERS COM HIGH
software computes and sends control signals via the AFDX
network to the Electrical Power Distribution Centre 1 (resp.
2) controlling the actuators; and CPIOM X (resp. Z) LGERS
COM LOW software computes and sends control signals
through RDCs A and B (resp. C and D) to the actuators.

B. An Airbus LGERS believed system

From the brief description of an Airbus A380 LGERS
given in the previous subsection, let us move to providing
the reader with a very brief description of Airbus diagnostic
system and introduce a possible believed system represent-
ing the presented A380 LGERS.

Due to its complexity, airbus aircraft rely on a semi-
distributed diagnostic architecture with a series of distributed
system-level diagnostic agents, called Built-In Test Equip-
ments (BITE); and a central diagnoser, called Centralised
Maintenance System (CMS), responsible for processing in-
formation from BITEs and from the Flight Warning System
(FWS) and computing an aircraft diagnosis.

As for BITE, these pieces of software detect and isolate
system-level failures where maintenance is needed, based on
some discrepancies between a system’s normal and current
behavior; and send such maintenance information to the
CMS. An example of such failures is the loss of control
signal information given by the CPIOM X to the CPIOM W
through the AFDX network, represented as “Loss of COM1
AFDX data from CPIOM X to CPIOM W”.

The FWS, on its turn, determines if any aircraft-level
failure with an operational impact is present; based on all
the detected discrepancies in the aircraft, as well as on the
aircraft operating conditions. An example of such failures
is the loss of all the LGCIS side 1 function, represented as
“L/G CTL 1 FAULT”. If this is the case, it sends this failure
information to the aircraft crew and to the CMS by means
of warnings.

Based on BITE and FWS information, as well as on a
representation of each aircraft system and their interactions,

the CMS computes an aircraft-level diagnosis.
Now, relying on each system description, such as

the LGERS one provided in Subsection IV-A, and on
BITE/FWS isolation capabilities, Airbus engineers build a
CMS aircraft believed system. Suppose that a part of such
believed system is depicted in Figure 6, where: 1) continuous
arrows symbolize material implications, 2) dashed arrows
symbolize unrepresented nodes present in the believed sys-
tem, and 3) there is an underlying hypothesis that only the
predecessors of a node imply it (completeness hypothesis).
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Figure 6. LGCIS model used by the diagnostic system

So, for instance, the nodes L/G CTL 1 Fault, L/G CTL 1
Fault and L/G CTL 1+2 Fault as well as their edge relations
are involved in the first-order sentence: [L/G CTL 1 Fault
= >] ∧ [L/G CTL 2 Fault = >] ⇔ [L/G CTL 1+2 Fault
= >]; where the reader may notice the equivalence relation
due to the completeness hypothesis 6.

Finally, to provide the reader with some intuition on
such model, we can see, for instance, that engineers expect
LGCIS side 2 to be lost after a CPIOM Y fault, since as
described before the LGERS COM HIGH software in this
CPIOM computes non-redundant side 2 control inputs.

C. Meta-diagnosing an Airbus LGERS believed system with
MEDITO

As mentioned before, reality is sometimes different from
what one expects; and engineers continuously struggle to
produce ontologically true believed systems - a necessary
(although insufficient) condition to assure correct component
replacements (cf. Theorem 1). In this Subsection, we provide
an example of how to use MEDITO to automatically detect
and isolate ontologically false sentences in LGERS SD.

Using MEDITO’s “System manager” screen, the first
thing to do is to provide MEDITO with the LGERS believed
system one wants to meta-diagnose such as the one depicted
in Figure 6 (cf. Figure 2) 7.

Once this is done, observations and meta-observations are
added in MEDITO’s “test Cases manager” screen. In this

6> represents logical true; and ⊥ represents logical false.
7For space constraints the full LGERS believed system is not presented.



example, a test-case was added, by using some [not] re-
ceived FWS warnings: OBS = {LGERSCTL1n2FAULT=⊥,
LGERSCTL1FAULT=>, LGERSCTL2FAULT=⊥}; and
some mechanic feedback on real-world system unit faults:M-
OBS = {Ab(CPIOMW), ¬Ab(CPIOMX), ¬Ab(CPIOMZ),
¬Ab(SoftCPIOMXCOM)}.

Finally, in the “Meta Diagnoser” screen, the option “SD-
sentences may be false” is selected.

In this example, MEDITO computed three kernel diag-
noses for a fifteen-sentences SD in 29689 milliseconds; as
well as three minimal cardinality diagnoses in 63 milisec-
onds 8. The computed kernel meta-diagnoses were:
{SD-sentence2}, {SD-sentence8}, {SD-sentence4}

where:
SD-sentence2: [LossCPIOMX=>] ∨ [LossCOM1AFDX

DataFromXtoW=>] ∨ ... ⇔ [LGERSCTL1FAULT=>]
SD-sentence4: Ab(CPIOMX) ∨ Ab(SoftCPIOM XCOM)

⇔ [LossCOM1AFDXDataFromXtoW=>]
SD-sentence8: Ab(CPIOMX)⇔[LossCPIOMX=>]
Based on these results, one can see that either SD-

sentence2, SD-sentence4 or SD-sentence8 are ontologically
false. Now, as proved in [3] meta-diagnosis reasoning is
monotonic (assuming the meta-observations are always true)
and, being our meta-diagnosis engine sound and complete
with respect to the underlying logic, adding new meta-
observations can only reduce the set of meta-diagnoses.

As so, the provided test-case was extended by adding
some received BITE information to the set OBS:
LossCOM1AFDXDataFromXtoW=⊥. As depicted in Fig-
ure 3, the computed kernel meta-diagnoses were:

{SD-sentence4}
The fact that {SD-sentence4} was ontologically false

was later found: the abnormality of CPIOM W can also lead
to the loss of COM 1 AFDX data from CPIOM X to CPIOM
W; since the later CPIOM cannot acknowledge receiving
the data. This was confirmed by changing SD-sentence4 to
Ab(CPIOMX) ∨ Ab(SoftCPIOMXCOM) ∨ Ab(CPIOMW)
⇔ [LossCOM1AFDXDataFromXtoW=>]; and noticing
the resulting empty set of kernel meta-diagnoses.

V. DISCUSSION

Based on the frameworks of diagnosis and meta-diagnosis
of [1], [2] and [3] we have offered a detailed architecture
and functional description of MEDITO: a logic-based meta-
diagnostic tool. Relying on Zhao and Ouyung diagnostic al-
gorithms [8] [9] and on CHOCO CSP solver [10], MEDITO
provides empirical proof supporting meta-diagnosis claim
that any diagnostic algorithm can be used to solve a meta-
diagnostic problem.

Moreover, using MEDITO, we have meta-diagnosed an
Airbus A380 LGERS believed system with very positive
practical results. The success of this practical application is

8Intel Core 2 Duo CPU at 2.4GHz and 2Gb of RAM

currently letting Airbus engineers envisage using MEDITO
to meta-diagnose the whole aircraft believed system by
relying on in-flight observations and meta-observations.

As for its kernel meta-diagnosis computational perfor-
mances, by relying on Zhao and Ouyang diagnostic al-
gorithms MEDITO directly inherits from these algorithms
worst case complexity of O(2n) and consequent inability
to handle large amounts of meta-components (as it is the
case with every diagnostic algorithm aiming at computing
every diagnosis we are aware of). Moreover, MEDITO’s
performance is proportional to the time needed by CHOCO
to execute the consistency check of a CSP model.

Kernel meta-diagnosis somehow poor computational per-
formances were handled by compromising finding all the
meta-diagnoses and computing only the minimal cardinality
ones. This, in turn, can be seen as a min-CSP problem and
handled in CHOCO with much better performances.

All in all, meta-diagnosis complexity can be handled
in MEDITO by making use of classical Model-Based Di-
agnosis techniques such as hierarchical diagnosis; and by
optimizing the CSP model constraint choice. This will will
be a part of our future works.
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