
How to use Model Checking for diagnosing
fault patterns in Petri nets

Johanne Bakalara ∗ Yannick Pencolé ∗ Audine Subias. ∗

∗ LAAS-CNRS, Université de Toulouse, CNRS,INSA, Toulouse,
France (ypencole@laas.fr,subias@laas.fr).

Abstract: This paper deals with the problem of fault pattern diagnosis in discrete event systems
modelled by Petri nets. A general framework for implementing a pattern diagnosis function by
model-checking is proposed. Two different approaches with experimental results are presented
and compared to a third approach from the literature.

Keywords: Diagnosis, model checking, fault patterns, Petri net, Linear Time Logic

1. INTRODUCTION

The original problem of diagnosis in discrete event systems
as introduced in Sampath et al. (1995) is to determine the
occurrence of a fault in a system, the fault being modelled
by a single event. In this work, our objective is to consider
the diagnosis of a fault event but also the diagnosis of more
complex faulty behaviours (called fault patterns) that can-
not be modelled by a simple event (see Jéron et al. (2006),
Boussif and Ghazel (2018)). Indeed, for some systems, a
change in the order of occurrence of the events, or the joint
occurrence of specific events, or the multiple occurrence of
a specific type of event may reflect a faulty behaviour.
This paper addresses the pattern diagnosis problem that
has been introduced in Pencolé and Subias (2017) for
Petri nets. The objective is to investigate several manners
to solve the problem that use model-checking techniques
(Clarke et al. (1999)). The advantages of model checking
methods are numerous: speed, no proof building, many
logics allowing to express large numbers of properties, gen-
eration of counter-examples. Model-checking has been well
studied for many years and many techniques are used to
counter the main obstacle of the combinatorial explosion
(e.g. abstraction, symmetries, reduction). The objective
of this article is to consider a range of approaches based
on model checking to solve the pattern diagnosis problem
and to compare their advantages and drawbacks. The
proposed approaches solve the same problem but differ
in the way they represent the three elements that define
a diagnosis problem: the system, the faulty behaviour and
the sequence of events observed. The paper is organized
as follows. The problem statement is presented in Section
2 followed by the description of the general method to
solve the pattern diagnosis problem with a model-checking
approach. Section 3 then presents a first method in which
the faulty behaviour and the observations are directly
expressed as a complex property to be verified in the
system’s model. A first series of experimental results are
then presented in Section 4 and compared with a method
proposed in Pencolé and Subias (2017). Based on these
results, a second approach is proposed in Section 5 and
compared with the others. Finally, conclusions and some
perspectives are given in Section 6.

2. PROBLEM STATEMENT

The system is modeled as a classical bounded labeled
Petri net, denoted LPN (possibly with transition prior-
ities and arc inhibitors): some labels represent observ-
able events (Σo = {o1, ..., op}) and the others represent
silent/unobservable events (Σu = {uo1, ..., uom}). A run of
the system is a sequence of fired transitions from an initial
marking and generates a word ρ ∈ (Σu ∪Σo)

∗. Now, given
a sequence of observed events from the system, denoted
σ ∈ Σ∗o, the Ω-diagnosis problem consists in determining
whether an unobservable pattern of events Ω has occurred
or not. A pattern of events Ω denotes a complex assembling
of events (a set of words from Σ∗u) and we say that Ω
has occurred in a run if the run generates a word ρ that
contains as a subword one of the words of Ω (see Pencolé
and Subias (2017) for more details). To solve this problem,
the objective is to design a diagnosis function ∆ that
returns one of the three results: ΩFaulty if the pattern has
certainly occurred (any run of the system that generates
σ is a run where Ω occurred), ΩAbsent if the pattern is
certainly absent (no run of the system that generates σ
is a run where Ω occurred) and ΩAmbiguous otherwise. In
this paper we investigate several approaches to design ∆
by using a model-checking tool called TINA (TIme petri
Net Analyzer http://www.laas.fr/tina/) that is able to
check properties over LPN and compare them with the one
of Pencolé and Subias (2017).

2.1 Background on model checking

A model-checking problem consists in checking whether
some given states (or runs) of a formal model M sat-
isfy a given property φ encoded in a formula of some
temporal logic (Clarke et al. (1999)). A model-checking
tool checks if M satisfies φ (denoted M |= φ) i.e if φ
is true in all the worlds of M. To do so, one solution is
the automata based approach of model-checking. In this
case the problem is translated to a language intersection
problem by converting M and ¬φ as Büchi automata.
The Büchi automaton of M generates the infinitely long
words of Lω(M) describing the set of runs of M while
the Büchi automaton of ¬φ generates the infinitely long

words of Lω(¬φ) where ¬φ holds. The model-checker then
checks for L(M)∩L(¬φ) = ∅. If the intersection is empty,
then M |= φ, otherwise M 6|= φ and a counterexample is
returned as a word of L(M)∩L(¬φ). Linear temporal logic
(LTL) can be used to express the properties so that their
statements can easily be transformed in automata. TINA
is a model-checking tool that converts any LPN into a
specific enriched Kripke structure M (Berthomieu et al.
(2004), Berthomieu et al. (2007)) and checks properties
φ that are written in State/Event LTL (SE-LTL) logic.
A formula φ is a SE-LTL formula if it is a universally
quantified formula φ ::= ∀ϕ where ϕ ::= cst | r | ¬ϕ | ϕ ∨
ϕ | ϕ∧ϕ | ©ϕ | �ϕ | ♦ϕ | ϕtϕ. The constant cst can be
⊥ (false), > (true), dead (deadlock), div (temporal diver-
gence), sub (partially known state). r denotes constraints
e 4 e with 4 ∈ {=, <,>,≤,≥} between arithmetical

expressions e involving place and transition symbols from
the underlying LPN. Finally, modal operators ©,�,♦,t
are respectively the operators next, always, eventually and
until. SE-LTL expresses formulas about places and tran-
sitions of Petri nets, however, all along the paper, we
will express SE-LTL formulas with events from Σu ∪ Σo.
An event e being the label of one or several transitions
t1, . . . , tn of the net, by writing e in any of the following
formula we actually write the underlying SE-LTL formula
(t1 ∧ ¬(t2 ∨ · · · ∨ tn)) ∨ (t2 ∧ ¬(t1 ∨ t3 · · · ∨ tn)) ∨ . . . that
asserts that one (and only one) transition labeled with e
is fired.

2.2 General principle for implementing a diagnosis function
by model-checking

Algorithm 1 describes the general diagnosis algorithm
implementing the diagnosis function ∆ by model-checking.
M denotes the formal model that is investigated while
Ψ¬Ω is a SE-LTL formula corresponding to the question:
are we sure that pattern Ω never occurred in a run
consistent with the observation sequence σ? If the result
is true, ∆ can immediately returns ΩAbsent. If not, a new
question ΨΩ is asked: are we sure that Ω always occurred
in all the sequences consistent with σ? If the result is true,
∆ can return ΩFaulty, otherwise we are sure there is an
ambiguity (∆ returns ΩAmbiguous).

Algorithm 1 Diagnosis algorithm ∆ by model-checking

1: if M |= Ψ¬Ω then
2: return ∆(σ) = ΩAbsent
3: else if M |= ΨΩ then
4: return ∆(σ) = ΩFaulty
5: else
6: return ∆(σ) = ΩAmbiguous
7: end if

Algorithm 1 is actually an algorithm template as we have
not yet defined what isM, Ψ¬Ω and ΨΩ. The next sections
propose different methods and compare them.

3. A PURE MODEL-CHECKING APPROACH

This section presents a method that is called pure model-
checking approach (denoted PURE for short). It is called
pure in the sense that the method aims at fully encoding
the pattern diagnosis problem with the questions ΨΩ and

Ψ¬Ω based on the model of the system that is encoded with
M. There are actually two subproblems to solve. The first
one is: what are the runs of the system that are consistent
with σ? The second one is: among these runs, what are the
ones where Ω has occurred and the ones where it has not.
The two formulae Ψ¬Ω (absence of Ω) and ΨΩ (occurrence
of Ω) are then as below:{

Ψ¬Ω : Φσ ⇒ Φ¬Ω

ΨΩ : Φσ ⇒ ΦΩ

(1)

Φσ is the part of the formula that expresses that any run of
interests in the question is consistent with the observation
sequence σ while Φ¬Ω (resp. ΦΩ) expresses that Ω has not
occurred in any run (resp. Ω has occurred in any run).
It follows that Ψ¬Ω is true either if Ω does not occur in
any run consistent with σ or if there is no run consistent
with σ. For ΨΩ, in the remainder it is supposed that the
observed sequence is correct and that it always exists at
least one run in the model of the system that is consistent
with the observation σ. Therefore, ΨΩ is true if Ω occurs
in any run consistent with σ.

3.1 Definition of Φσ

Let us consider now the representation of the observa-
tion sequence σ in the SE − LTL formula (Φσ). We de-
note NOE the disjunction of all the unobservable events,
NOE =

∨
1≤i≤m uoi = uo1 ∨ uo2 ... ∨ uom with

NOE = > if the set is empty. An observation sequence
σ = o1o2 can be described by the following formula:
NOEt(o1∧©(NOEto2)). In other words, an observation
sequence is a trace including some unobservable events
(NOE) until (t) an observable event o1 and this event
o1 is directly followed (©) by unobservable events (NOE)
until (t) o2. Note that the Until operator (a t b) accepts
the traces that satisfy a until b but also nothing before
b. So, if no unobservable event occurs between the two
observed events o1 and o2 in a run, this property holds in
the run. In the general case an observation sequence σ of
k = |σ| events is then recursively given by Φσ = ϕ1 with
ϕn for n from (k − 1) to 1 such that:{

ϕk = NOE t ok
ϕn = NOE t (on ∧© (ϕn+1))

(2)

Let us consider σ = o1o2o3, ϕ1 is given by:

ϕ3 = NOE t o3

ϕ2 = NOE t (o2 ∧©(ϕ3)))
= NOE t (o2 ∧©(NOE t o3)))

ϕ1 = NOE t (o1 ∧©(ϕ2)))
= NOE t (o1 ∧©(NOE t (o2

∧© (NOE t o3))))))

then Φσ = ϕ1 = NOE t (o1 ∧©(NOE t (o2 ∧©(NOE t
o3)))))).

3.2 Definitions of ΦΩ,Φ¬Ω: the single fault case

We consider first the single fault case: Ω is the occurrence
of a single fault f ∈ Σu. To define Φf ,Φ¬f , we need to
distinguish two cases: diagnosis problem with or without
silent closure (introduced in Lamperti and Zanella (2003)).
In the case that the diagnoser does not want to address

the silent closure issue (i.e. the diagnosis function does not
look for what could have happened after the last observed
event of σ), only unobservable events occurring before or
during executions that are consistent with the observation
sequence σ are considered.

Diagnosis without silent closure
To check that the fault has not ocurred in any run

(i.e Φ¬f) it is necessary to express that the fault does
not occur neither at the beginning of the observation
nor between observable events. Note that at this stage
only the relevant runs are considered due to the double
implication of Equation (1). As an example let us consider
an observation sequence σ = o1o2, any run in which Φ¬f
holds must be such that it does not include f until (t) o1

that is followed (©) by some events that are not f until
o2. This can be expressed by: (¬f t (o1 ∧©(¬f t o2))).

From this example it appears that the formula can be
expressed in a recursive way such that: Φ¬f = ϕ1 with
ϕn for n from (k − 1) to 1.{

ϕk = ¬ f t ok
ϕn = ¬ f t (on ∧© (ϕn+1))

(3)

Let us consider the observation sequence σ = o1o2o3, ϕ1

is then given recursively by:

ϕ3 = ¬f t o3

ϕ2 = ¬f t (o2(∧© (ϕ3)))
= ¬f t (o2(∧© (¬f t o3)))

ϕ1 = ¬f t (o1(∧© (ϕ2)))
= ¬f t (o1(∧© (¬f
t(o2(∧© (¬ f t o3)))))

Then Φ¬f = ¬f t (o1(∧© (¬f t (o2(∧© (¬f t o3)))))

Now let us define Φf , we need to express that the fault
may appear before the observed events or between the
observed events. Let us consider a simple sequence of two
events σ = o1o2. Any run where Φf holds must include
unobservable events different from f (NOE/{f}) until f
or the event o1 directly followed by unobservable events
different from f until f :NOE/{f}t(f∨(o1∧©(NOE/{f}t
f))). This can be formalized in a recursive way by: Φf = ϕ1

with ϕn for n from (k − 1) to 1.

{
ϕk = NOE/{f} t f
ϕn = NOE/{f} t (f ∨ (on ∧© (ϕn+1)))

(4)

To illustrate this formula let us consider σ = o1o2o3.

ϕ3 = NOE/{f} t f
ϕ2 = NOE/{f} t (f ∨ (o2 ∧©(ϕ3)))

= NOE/{f} t (f ∨ (o2 ∧©(NOE/{f} t f)))
ϕ1 = NOE/{f} t (f ∨ (o1 ∧©(ϕ2)))

= NOE/{f} t (f ∨ (o1 ∧©(NOE/{f}t
(f ∨ (o2 ∧©(NOE/{f} t f))))))

then Φf = ϕ1 = NOE/{f} t (f ∨ (o1 ∧©(NOE/{f} t (f ∨
(o2 ∧©(NOE/{f} t f)))))).

How to deal with silent closure
By considering the silent closure, the diagnoser must now

also take into account the fact that the fault can also occur
after the last observed event. To check that the fault is

absent all along the run, we then need to modify Φ¬f . Let
OE =

∨
1≤i≤p oi = o1∨ o2 ... ∨ op be the disjunction of all

observable events from Σo. Let us consider an observation
sequence σ = o1o2. The runs that we want to characterize
with Φ¬f do not include the fault event f until o1, that
is followed by unobservable events different from f until
o2, that is followed by unobservable events different from f
until any observable event. So by generalizing, the formula
Φ¬f is given in a recursive way as Φ¬f = ϕ1 with ϕn for
n from k to 1.

{
ϕk+1 = ¬ f t OE
ϕn = ¬ f t (on ∧© (ϕn+1))

(5)

Suppose now that M |= Φσ ⇒ Φ¬f is true, the diagnosis
function stops and returns fAbsent (see Algorithm 1). If it
is not true, suppose that f occurs before the last observed
event in every run such that Φσ holds, then with the
previous formula Φf ,M |= Φσ ⇒ Φf is true and ∆ returns
fFaulty. Finally, if there is a run, such that Φσ holds, in
which f occurs only after the last observed event, then
there is also a run, such that Φσ holds, in which f does
not occur at all (it is a prefix of the previous run) so in
this last case, ∆ must return fAmbiguous. Therefore, the
formula Φf remains unchanged when dealing with silent
closure, only Φ¬f is modified.

3.3 Extension to fault class diagnosis

We now propose to extend this pure model-checking ap-
proach to deal with a specific type of patterns called fault
class. A fault class gathers a set of independent fault events
denoted F = {f1, f2, .., fq} ⊆ Σu. Following Algorithm 1,
the diagnosis principle is to check first that no fault of
the class has occurred in a run of the system consistent
with the observation sequence. If the result is true (i.e.
M |= Ψ¬F), the diagnosis result is FAbsent i.e it is sure
that the fault class has not occurred. Otherwise, if in any
system’s run consistent with the observations σ, at least
one fault of the class F has occurred, the diagnosis result
is FFaulty. Finally, ∆ returns FAmbiguous if there are at
least two runs consistent with σ such that one contains
at least a fault of the class F and the other run does not
contain any fault of the class.

Fault class diagnosis without silent closure
The SE-LTL formula that checks the absence of a fault

class is similar to the one proposed in the case of simple
fault where the simple fault event f is replaced by F that
denotes the disjunction of all the faults of F : F =

∨
f∈F f .

Then Φ¬F = ϕ1 with ϕn for n from (k − 1) to 1.{
ϕk = ¬F t ok
ϕn = ¬F t (on ∧© (ϕn+1))

(6)
[

1 1 1
1 2 0
−1 −1 0

]
0 0 0

0 0 0
0 0 0

Formula ΦF is also derived from the simple case (see
Equation (4)). ΦF = ϕ1 with ϕn for n from (k − 1) to
1.

{
ϕk = NOE/F t F
ϕn = NOE/F t (F ∨ (on ∧© (ϕn+1)))

Case of the silent closure
For the absence of fault class with the silent closure, the
formula is similar to the one given for the simple fault (see
Equation (5)) by replacing the event f by F . To check the
occurrence of the fault class, the same formula as the one
used in the case without the silent closure is considered for
the same reason as in the simple fault case.

4. FIRST EXPERIMENTAL RESULTS

This section describes some experimental results about the
PURE approach presented here above. These experiments
are performed on the example from Pencolé and Subias
(2017): a product transportation system.

4.1 Product transportation system

The proposed example is a two-level system composed of
two product sites (namely sites 1 and 2) at level 2 where
a set of products is stored and two assembly stations at
level 1 that request products from level 2. A lift is used
between the two levels. Each site has a conveyor belt to
move a product from the site to the lift and each station
also has a conveyor belt to get the products from the lift.
Figure 1 presents the system LPN model. Once a product
is detected on the site 1, a Product1 signal (denoted Pr1)
is emitted. The product is then put in a box and becomes
available. The box is then pushed and sent into the lift
(action Push1 that starts with event P1 and ends with
event EP1). Site 2 behaves in a similar manner. A product
from site 1 has a priority access to the lift. In the Petri net
model of Figure 1, this priority relation is indicated by a
dashed edge between the transitions labeled by P1 and P2.
After a product has been pushed into the lift, the lift goes
down (action Down) to reach level 1 (signal D detects the
end of theDown action). At this level the box is directed to
the station that makes the request (either request Req1 or
request Req2). If it is request Req1, then the box is pushed
on the conveyor belt of station 1 (action PushReq1 that
starts with event Req1 and ends with event EPReq1). Then
the conveyor belt performs a move-left action (LeftReq1,
ELReq1) to deliver the box with the product and a move-
right action to go back to initial position (RightReq1,
ERReq1). The behaviour of station 2 is similar except that
its conveyor belt moves right first (RightReq2, ERReq2)
and then moves left (LeftReq2, ELReq2). Once the box has
been pushed on a conveyor belt, the lift goes up (action
Up ending with the emission of signal U) to level 2. In
Figure 1 only underlined events are observable events.

4.2 Results

The objective in this experimental setting is to diagnose
the occurrence of the event Req1 based on

σ : Pr1 Pr2 D U D ERReq2 ELReq2 ELReq1 ERReq1 U

composed of ten observable events. In the approach that
we already described, the Kripke structure M computed
by TINA depends only on the system and has 204 states
and 625 transitions. Table 1 presents the results and any

Prod1

Prod1Avail1

Push1

Pr1

P1

EP1

Prod2

Prod2Avail2

Push2

Pr2

P2

EP2

WaitUp

Up

Down

WaitDown

U

DWait1

PushReq1

LeftReq1

RightReq1

Req1

EPReq1

ELReq1

ERReq1

Wait2

PushReq2

RightReq2

LeftReq2

Req2

EPReq2

ERReq2

ELReq2

Fig. 1. Case study: the product transportation system

Obs. Ψ¬f Ψf Diagnosis Time(ms)

Pr1 T F Absent 32
Pr2 T F Absent 24
D F F Ambiguous 22
U F F Ambiguous 50
D F F Ambiguous 126

ERReq2 F F Ambiguous 55
ELReq2 F F Ambiguous 3189
ELReq1 F T Faulty 25522
ERReq1 F T Faulty 240524

U x x x x

Table 1. Fault event diagnosis with silent closure

Obs. Ψ¬f Ψf Diagnosis Time(ms)

Pr1 T F Absent 12
Pr2 T F Absent 14
D T F Absent 13
U F F Ambiguous 22
D F F Ambiguous 153

ERReq2 F F Ambiguous 197
ELReq2 F F Ambiguous 1076
ELReq1 F T Faulty 7121
ERReq1 F T Faulty 66799

U x x x x

Table 2. Fault event diagnosis without silent closure

line represents one step of the scenario σ (i.e line 1 is
Pr1 , line 2 is Pr1 followed by Pr2 etc). Columns 2 and
3 indicate respectively the answer of the question are we
sure that the fault never occurred on a run consistent with
the observation sequence ? (Ψ¬f) and are we sure that f
always occurred in any run consistent with the observation
sequence ? (Ψf). Column 4 gives the diagnosis conclusion
and the last column is the computation times obtained by
TINA. Table 2 presents the results in the case without
silent closure. First of all, based on Table 2, the PURE
approach gets the same results as for the method proposed
in Pencolé and Subias (2017) (and denoted PROD here

below). Also, if we compare both Tables, we can see that
the results with the silent closure are sometimes more
ambiguous (line 3) which is explained by the fact that Req1
may occur between the occurrence of D and U. Without
the silent closure this possible occurrence is simply ignored
(the diagnosis is Absent) while the diagnosis is Ambiguous
when considering the silent closure. Now regarding the
computation time, results show the computation time is
not satisfactory as the computation time is exponential
with the size of the observation sequence and PROD
clearly outperforms PURE. A detailed analysis of the
set of experiments indicates the source of the complexity
problem. As explained in Section 2.1, one step of the
model-checking is the computation of the language L(¬Φ),
that is the conversion of the formula ¬Φ into its equivalent
Büchi automaton and this conversion is unfortunately
exponential to the length of formula Φ (i.e. O(2|Φ|)) and
so, by construction of the formula Ψf ,Ψ¬f (see Section 3),

PURE is exponential in the size of σ (O(2|Φ|) = O(2|σ|)).
Looking now at the PROD method, this limitation is not
present. Indeed, even if PROD follows the same algorithm
(see Algorithm 1), the information stored in M and in
ΨΩ,Ψ¬Ω are fundamentally different. PROD relies on a
set of specific products of LPNs to gather in one single
LPN the information about how a pattern Ω matches any
single run of the system and how any single run of the
system is consistent with σ. The size ofM is in O(2|σ|) in
PROD while in PURE the size of M does not depend
on |σ|. Secondly, in PROD, the questions ΨΩ,Ψ¬Ω do
not depend on the size of σ as opposed to the ones from
PURE. As opposed to PROD, our objective is to benefit
of the expressivity of SE-LTL to write pattern Ω and not
as an LPN like in PROD. To avoid that ΨΩ and Ψ¬Ω

depend on the size of σ, we propose a tradeoff between the
PURE and PROD approaches. The idea is to synchronise
first the system model with the observation sequence σ by
classical transition fusion as in PROD to isolate the runs
of the system consistent with the observation sequence.
The result of this synchronisation is an LPN that would
be converted as a Kripke structure M (in O(2|σ|) as in
PROD) and ΨΩ,Ψ¬Ω would only characterize the pattern
matching (independent from σ).

5. AN APPROACH OVER A MODEL
SYNCHRONISED WITH THE OBSERVATIONS

This section describes the model-checking approach de-
noted SYN that is a compromise between PURE and
PROD. The observed sequence σ is then modeled by a
LPN O as a single sequence of places and transitions.
A synchronised product between the LPN of the system
and the LPN of the observation sequence is performed
based on transition fusions (see Hack (1975)). Figure 2
presents such a synchronisation. The SYN approach is still
governed by Algorithm 1 and the formula ΨΩ and Ψ¬Ω

still follow Equation (1). But now, as opposed with the
PURE approach, and similarly to the PROD approach, Ψσ

consists in checking whether a system’s run will eventually
lead to a marking where pobs is marked in the synchronised
LPN (see Figure 2). It follows that in the SYN approach
Φσ = ♦ pobs whose length does not depend on |σ|.

Fig. 2. σ on the left, the system on the right, the synchro-
nisation below

5.1 Diagnosis of a fault event

The objective is to check that no run consistent with the
observations contains the fault event f at the beginning
or between two observed events. The formula Φ¬f is then
given by: Φ¬f = �¬(f ∧©(♦(ok ∧©pobs))). Φ¬f asserts
that fault f never occurs (�¬) if in the future (©) 1 the
system eventually leads (♦) to the firing of the last event
of σ (ok ∧©pobs). It is necessary to consider the sequence
until the last observed event followed by pobs as the event
ok is not a sufficient condition since the same event can be
observed several times in the observation sequence, so its
observation does not guarantee the end of the execution
of the observation sequence. Moreover pobs is also not
sufficient as it remains marked after the execution of the
observations whereas some unobservable events can occur
after the last observation. The formula Φf is then given by
Φf = ♦(f ∧©(♦(ok ∧©pobs))): it means the system will
eventually (♦) fire f followed (©) by a set of transitions to
end as a run that is consistent with σ (ok ∧©pobs). Unlike
the PURE method, Φf has a size independent of |σ|.

5.2 Diagnosis of a fault class and multiple faults

The problem of fault class diagnosis can also be considered
by replacing the event f by F the disjunction of all the
faults of the class in the previous formulas Φ¬f and Φf
as in the PURE method. Now we may also be interested
in the diagnosis of multiple faults. Suppose for instance a
fault class F = {f1, f2}, the multiple fault associated with
F is the occurrence of fault f1 and f2 in the same run. To
diagnose such a multiple fault, the formulas Φ¬F , ΦF can
be adapted: Φ¬F = �¬(ϕ2) and ΦF = ϕ2 where

ϕ2 = ♦(f1∧©(♦(ok∧© pobs))))∧(♦(f2∧©(♦(ok∧© pobs))).

The problem can be generalised to F = {f1, f2, .., fq}, thus
Φ¬F = �(¬(ϕq)) and ΦF = ϕq where ϕq is such that{

ϕn = (ϕn−1) ∧ (♦(fn ∧©(♦(ok ∧©pobs))))
ϕ1 = (♦(f1 ∧©(♦(ok ∧©pobs)))) (7)

1 The next operator is used to traduce that the events f and ok are
not simultaneous, but it is not mandatory.

5.3 Pattern diagnosis

With the SYN approach, the problem of fault event diag-
nosis can be extended to the fault pattern diagnosis that
aims at diagnosing more complex faulty behaviours or any
normal behaviour of interest (Jéron et al. (2006), Pencolé
and Subias (2017)). For instance a pattern can describe
a sequence of n unobservable events: let us consider a
pattern Ω1 corresponding to the sequence e1e2e3. If Ω1

occurs in a run then the run first leads to e1 followed in the
future by e2 that is followed in the future by e3 followed by
the last observed event followed by end of synchronisation:

ΦΩ1 = ♦(e1 ∧©(♦(e2 ∧© (♦(e3 ∧©(♦(ok ∧©pobs))))))).
And the absence Ω1 in the run is characterized by the
negation: Φ¬Ω1 = �(¬ΦΩ1). This approach allows also to

p0

p1

p2p3

p4

Req1

Req1

Req1

Req2 Req2

Fig. 3. Pattern Ω2(3, 2): 2 occurrences of 3 requests Req1.

consider more complex behaviour that one might want to
diagnose. Let us come back to system of Figure 1. Figure 3
describes a pattern Ω2(3, 2) that models 3 consecutive
occurrences of events of type Req1 that are not interleaved
with any occurrence of Req2 events (the left conveyor
keeps having its requests fulfilled while the right conveyor
gets stuck) and this pattern should occur 2 times (the
pattern has a counter). This pattern is made up of normal
events but defines a behaviour that could be unexpected
(both conveyors at Level 1 should get items regularly).
In this case it is necessary first to express that in the
future the event Req1 is not followed by Req2 until
Req1 that is not followed by Req2 until Req1. Ξ =
♦(Req1∧©((¬Req2tReq1)∧©((¬Req2tReq1))). Then,
to check that the behaviour described above occurs twice
the formula ΦΩ2(3,2) is given by: ΦΩ2(3,2) = Ξ ∧ ©(Ξ ∧
©(♦(ok ∧©pobs))). The absence of the pattern is checked
through Φ¬Ω2(3,2) = �(¬(ΦΩ2(3,2))).

5.4 Results analysis

The SYN approach handle more complex problems than
the PURE approach with satisfactory size of observa-
tions but is still not as efficient as PROD (see Table 3).
Based on the pattern Ω2(n, counter) of Figure 3, several
comparisons have been made with the PROD approach
by selecting different values for n (the number of Req1),
counter and the size of the observation sequence. As an ex-
ample Table 3 shows the results of the two approaches for
one occurrence of five events Req1 without Req2, for ten
occurrences of ten consecutive events Req1, with several
sizes for the observation sequence. The SYN approach is
efficient relatively to the size of the Kripke structure that
only depends on the observation sequence. Nevertheless,
for the same reason as for the PURE approach, SYN is

size Req1 counter nS nT Diagnosis

SYN

2000 5 1 6601 8000 ΩFAbsent

5000 5 1 16501 20000 ΩFAbsent

2000 10 10 6601 8000 x
PROD

2000 5 1 1028 1223 ΩFAbsent

5000 5 1 25988 30983 ΩFAbsent

2000 10 10 10388 12383 ΩFAbsent

Table 3. Fault class diagnosis without silent closure

limited by the length of the pattern formula, SYN must
be only considered for small patterns only.

6. CONCLUSION AND FUTURE WORK

This paper addresses the diagnosis of fault patterns in
the context of Petri nets. This problem is formulated as
a model checking problem using the TINA tool taking
benefit of the expressivity of SE-LTL. According to the
knowledge encoded in the question and in the model.
several approaches are presented and compared. In our
perspectives, we plan to investigate alternative approaches
to keep a low complexity both in the formula and in the
models given to the model checker. One direction would
be to consider a new way for the intersection of Petri nets
(Lubat et al. (2019)). The applicability to online diagnosis
is also an issue.

REFERENCES

Berthomieu, B., Peres, F., and Vernadat, F. (2007).
Model checking bounded prioritized time petri nets.
In Automated Technology for Verification and Analysis.
Springer.

Berthomieu, B., Ribet, P.O., and Vernadat, F. (2004).
The tool tina – construction of abstract state spaces for
Petri nets and time Petri nets. International Journal of
Production Research, 42(14), 2741–2756.

Boussif, A. and Ghazel, M. (2018). Formal verification
of intermittent fault diagnosability of discrete-event
systems using model-checking. International Journal of
Critical Computer-Based Systems, 8(2), 193–213.

Clarke, E., Grumberg, O., and Peled, D. (1999). Model
checking. MIT press.

Hack, M. (1975). Petri net languages. Technical Re-
port 124, M.I.T. Project MAC, Computation Structures
Group, Massachusetts Institute of Technology.

Jéron, T., Marchand, H., Pinchinat, S., and Cordier, M.O.
(2006). Supervision patterns in discrete event systems
diagnosis. In 8th International Workshop on Discrete
Event Systems, 262–268. Ann Arbor, MI, United States.

Lamperti, G. and Zanella, M. (2003). Continuous diag-
nosis of discrete-event systems. In 14th International
Workshop on Principles of Diagnosis DX03, 105–111.
Washington DC, United States.

Lubat, É., Dal Zilio, S., Le Botlan, D., Pencolé, Y., and
Subias, A. (2019). A State Class Construction for Com-
puting the Intersection of Time Petri Nets Languages.
In 17th International Conference FORMATS, volume
11750 of LNCS. Springer, Amsterdam, Netherlands.

Pencolé, Y. and Subias, A. (2017). Diagnosis of supervi-
sion patterns on bounded labeled petri nets by model
checking. In 28h International Workshop on Principles
of Diagnosis DX17. Brescia, Italy.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamo-
hideen, K., and Teneketzis, D. (1995). Diagnosability
of discrete-event systems. Transactions on Automatic
Control, 40(9), 1555–1575.

