
Data Instance generator and optimization
models for evacuation planning in the event of

wildfire

Christian Artigues1 Emmanuel Hébrard1 Yannick Pencolé1
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Abstract

One critical part of decision support during the response
phase to a wildfire is the ability to perform large-scale evac-
uation planning. While in practice most evacuation plan-
ning is principally designed by experts using simple heuristic
approaches or scenario simulations, more recently optimiza-
tion approaches to evacuation planning have been carried
out, notably in the context of floodings. Evacuation plan-
ning in case of wildfires is much harder as wildfire propaga-
tions are inherently less predictable than floods. This paper
present a new optimization model for evacuation planning
in the event of wildfire aiming at maximizing the temporal
safety margin between the evacuees and the actual or po-
tential wildfire front. As a first contribution, an open-source
data instance generator based on road network generation
via quadtrees and a basic fire propagation model is proposed
to the community. As a second contribution we propose 0–1
integer programming and constraint programming formula-
tions enhanced with a simple compression heuristic that are
compared on 240 problem instances build by the generator.
The results show that the generated instances are compu-
tationally challenging and that the contraint programming
framework obtains the best performance.
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1 Introduction

The overall objective of the GEO-SAFE project [8] is to develop methods and tools enabling to
set up an integrated decision support system to assist authorities in optimizing the resources
during the response phase to a wildfire (fire suppression, life and goods protection). One critical
and crucial part of this integrated decision support is the ability to perform large-scale evac-
uation planning [15]. While in practice most evacuation planning is principally designed by
experts using simple heuristic approaches or scenario simulations [17], more recently optimiza-
tion approaches to evacuation planning have been addressed, using a variety of optimization
technology, as surveyed recenly in [2]. This paper presents a challenging variant of the evac-
uation planning problem in case of wild fire issued from exchanges with practitioners in the
context of the GEO-SAFE project and from a specific literature review. A large amount of
work has been carried out, notably at NICTA1,[11, 4, 12, 10, 5, 6, 9, 13] mainly in the context of
floodings, which can be transposed under some adaptations to evacuation in case of fires. Evac-
uation planning in case of wildfires is indeed much harder. Wildfire propagations are inherently
less predictable than floods. While flood levels mostly rely on the fixed topology of the area
and rainfalls, wildfire mainly depends on the wildland fuels [14, 1], on the slope of the burning
ground and more importantly on the speed and direction of the wind that can suddenly change
at any time [18, 16]. Therefore, evacuation planning dedicated to wildfires must be much more
robust to difference future scenarios. A good evacuation plan in case of wildfire must not only
minimize the evacuation time of the population but also maximize the spatial and temporal
safety margin between the evacuees and the actual or potential wildfire front.

This paper present a new optimization model for evacuation planning in the event of wildfire
as well as a problem instance generator. On these instances, basic 0–1 integer programming
and constraint programming formulations enhanced with a simple compression heuristic are
compared. In Section 2, we provide a literature review and we define the considered problem.
Section 3 presents the instance generator. The basic 0–1 integer programming, constraint pro-
gramming formulations and the heuristic are proposed in Section 4. Computational experiments
are given in Section 5.

2 State-of-the-art review and problem definition

2.1 Basic evacuation data

We adopt the notation an terminology given in [6]. There is a directed graph G(N = E∪T ∪S,A)
representing e.g. a road network in a region that must be evacuated. The graph is made of:

• the set of evacuation nodes E . An evacuation node represents a zone where people to be
evacuated are regrouped),

• the set of safe nodes S. A safe node represent a safe geographical zone that people located
in the evacuation nodes must reach during the planning horizon

• the set of transit nodes T . A transit node represent an intersection in the road network
that can be traversed by the vehicles carrying evacuated people from the evacuation zones
to the safe zones.
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Suppose the time is discretized in minutes. Each evacuation node k ∈ E is associated with a
number of evacuees dk. Each arc q ∈ A has a capacity ue in evacuees/minute, a travel time te
giving the number of minutes that a vehicle takes to traverse the arc and a end time be, which
gives the time at which the arc becomes unavailable due to the fire propagation.

Other characteristics may appear in the variants considered in the cited papers.

2.2 Previously considered evacuation problems

We limit our review to the the NICTA papers as they explain the genesis of the final model w.r.t.
practical considerations. The first considered problem and solution methods were presented by
Pillac et al. in 2013 in a research report that was later published in [11]. One of the practical
motivation of the work was that in an urgency situation, the possibility of choices in a road
network, such as a fork, generate stress among the population. This is why it is preferable to
define a single evacuation path for each evacuation zone. Hence the problem considered in [11]
can be described as a two-level optimization problem, which can be solved in an integrated way
or by a two-phase approach. At the first level, exactly one evacuation path is determined from
each evacuation node to a single safe node. At the second level the flow of evacuees is scheduled
trough the path. A MILP (called the restricted flow model RF) is proposed to solve the problem
in an integrated way. It is based on time-expanded graph, in which each node is duplicated for
each time period. Arc capacities ue in the time expanded network ensure that the traffic does not
exceed the road capacity, especially when several paths use the same arc. The model includes
continuous flow variable per evacuation node per arc and in the expanded network and also a
binary variable per edge in the (non-expanded) graph G to ensure the uniqueness of the path
for each evacuation node. As the MILP is intractable on a set of instances (HN) derived from a
real case scenario involving 70000 evacuees in the Hawkesbury-Nepean floodplain, located North-
West of Sydney, an iterative column-generation-like two-phase heuristic is proposed. Given a set
of potential paths, a master problem solves the path selection and flow scheduling problem with
another MILP (called the conflict-based heuristic path generation master problem, CPG-MP)
involving a reduced number of binary constraints (one per path). A sub-problem finds new paths
based on a subset of critical nodes by solving a multiple-origin, multiple-destination shortest
path problem. A lexicographic objective is considered. The main objective is to maximize
the number of evacuated people during the time horizon, while a secondary objective aims at
maximizing the evacuation start time, based on the practical relevance. Note that the second
objective is only indirectly tackled by weighting each arc in the time-expanded graph by a cost
inversely proportional to the arc time, hence solving a min-cost flow problem.

Subsequent papers describe variants of the models and new methods. A more sophisticated
variant of the heuristic was proposed in Pillac et al. (2014) [12] for the same problem with,
however, a different secondary objective for the min-cost flow, aiming at minimizing the evacu-
ation time (called the clearance time), which is indirectly obtained by weighting the arc in the
time-expanded graph by a cost proportional to the arc time.

In Even et al. (2014) [4], an additional degree of freedom is introduced, giving the possibility
of selecting contraflow roads, which consists in reversing the direction of some major roads. In
practical cases, this possibility can highly increase the network capacity for evacuation. This is
done by introducing a subset Ac of arcs that can be used in contraflows and by modifying the
CPG-MP, interestingly without the need of introducing additional binary variables. A software
called the NICTA Evacuation Planner is also presented, with new instances with up to 1 000 000



evacuees, which are solved requiring up to 30 min. of CPU time.
In Even et al. (2015)[5], the case where the selected paths must form a convergent subgraph,

i.e. for which each node has at most one outgoing arc in the set of paths, is considered. This is
motivated by the fact that convergent evacuation paths can be better controlled. Indeed, even
if in the previous model, a single path was assigned to each evacuation node, in the case where
two paths are merged and then are separated again, a driver can be confronted to a choice and
take a decision that would not correspond to what was planed. Hence the set of paths now
form a tree rooted at the safe node. The solution method is still a two-phase method but does
not follow anymore the column generation principle. A tree is first built by a MIP working
on an aggregated graph (without time discretization). The second phase is the flow scheduling
problem given the computed tree, which is a maximum flow problem. The first phase is now
able to produce good upper bounds on the maximum number of evacuees and on the minimum
clearance time. A simulation study shows that the convergent model outperforms the general
model when the presence of a fork in the network generated an hesitation for the driver that is
captured by a 0.75 second delay.

This model is further developed by Kumar et al. (2016) [9] to incorporate network design
aspects in the problem to model possible infrastructure enhancement decisions, as for the west
Sydney case concerns about the capacity of the road network were expressed. Two additional
decisions are introduced : adding lanes to a road (arc) and elevating a road (arc). The first
decision results in an increase of the capacity of the arc while the second decision postpones
the flooding time, both coming at a cost. These decisions can be incorporated in the tree
design problem, which is also the master problem of a Benders decomposition method. The
objective is still to maximize the number of evacuated people under a budget constraint that
limits the infrastructure upgrades. The maximum flow subproblem is used to obtain a feasible
flow schedule and also to generate optimality cuts that are reinjected in the master problem.
To increase the performance of the Benders method, pareto-optimal cuts are generated.

All previous approaches assumed that each individual vehicle of an evacuation (flow unit)
moves independently from the other vehicles of the same zone, and exactly as prescribed by
the maximum flow model. Pillac et al. [10] propose to use the concept of response curves to
incorporate behavioral models in the problem. In practice, instead of assigning a start time to
each evacuee, the authorities can influence the evacuation start time of a zone and the level of
resources mobilized to increase the evacuation rate (e.g. number of agents knocking on people’s
door), to which people answer according to a behavioral model abstracted by a response curve.
It follows that to each evacuation zone k ∈ E , a set of response curves Fk is given. For each
evacuated zone, a start time δk and a response curve ff ∈ Fk has to be assigned such that the
flow of evacuees leaving zone k at time t is given by

φtk =

{
0 if t < δ
f(t− δ) if t ≥ δ.

A column generation approach is proposed where the set of all evacuation plans of a zone is
considered, where a evacuation plan is a path from the evacuated zone to a safe node, the start
time and the response curve. The master problem selects a plan for each evacuation zone in
such a way that the network capacity is satisfied and the total cost of the plans is minimized
(without ensuring that a convergent is obtained). The plan generation subproblem is solved
either via a MIP or via a shortest path approach. The methods experiences difficulties is solving
realistic instances due to a long-tail effect.



Another drawback of the flow model is that it generated preemptive evacuation plans. As
flow units are routed independently there are time periods in which the evacuation of a zone
may be stopped and reinitiated later. Even et al. (2015) [6] report that this creates serious
implementation issues for the evacuation plans. They propose another model in which the
evacuation rate is a decision variable that remains fixed as soon as the evacuation starts and
as long as the zone is not fully evacuated or the time horizon is reached. They assume that
the evacuation path of each evacuation zone is already determined and concentrate only on the
scheduling problem. We present this model in the case that all people must be evacuated and
the objective is to minimize the clearance time. Let δk denote the start time of evacuation of
zone k and let λk denote the evacuation rate of zone k. Let Ak = (e1k, . . . , e

|Ak|
k ) the evacuation

path of zone k given as its list of edges. An evacuation plan defines a task J ik for each edge eik
with a start time Sik = δk +

∑i−1
q=1 t

q
k where tik is the travel time of edge eik. The evacuation has

a variable duration pk and the total number of evacuees is pkλk with pkλk = dk since all people
must be evacuated. Each edge task eik ∈ Ak has duration pk. Let Je the set of tasks that use
edge e ∈ A. We also denote as uk the maximum evacuation rate of an evacuation node k, which
can be seen as a node capacity. The model can be written as follows :

min Cmax (1)

s.t.

Cmax ≥ S
|Ak|
k + pk ∀k ∈ E (2)

Sik + pk ≤ beik ∀k ∈ E ,∀i = 1, . . . , |Ak| (3)

pkλk = dk ∀k ∈ E (4)

Sik = δk +
i−1∑
q=1

tqk ∀k ∈ E ;∀i = 1, . . . , |Ak| (5)∑
Ji
k∈Je,S

i
k≤t<S

i
k+pk

λk ≤ ue ∀e ∈ A,∀t ≥ 0 (6)

δk ≥ 0 ∀k ∈ E (7)

uk ≥ λk ≥ 0 ∀k ∈ E (8)

pk ≥ 0 ∀k ∈ E (9)

This is a no-wait total work- and resource-constrained project scheduling problem where (4)
are the total work constraints, (5) are the no-wait constraints, as the start time of the evacuation
task on a arc of the evacuation path starts exactly at the decided evacuation time δk plus the
total travel time along the path toward edge e. Constraints (6) are the capacity constraints on
each edge e. The problem was efficiently solved in [6] via constraint programming for both the
clearance time minimization version and the maximization of the number of evacuated people
variant.

2.3 A new evacuation planning problem in case of wild fires

In the work of Even et al. (2015) [6] and previous studies, the time be at which arc e becomes
unavailable comes from a flood propagation model, which is pretty accurate. In the case of
fire, even if precise propagation models can be obtained, they depend on multiple parameters.
Among them, the wind has a great variability. The subject of promising further studies would be



to consider explicitly uncertainty via robust of stochastic approaches, but this would require the
definition of various scenarios possibly associated with probability distributions. An alternative
to modeling uncertainty of the unavailability dates would be to consider an objective function
that seeks to maximize the length of the time interval [Ce, be], where Ce is the completion time
of the last task using edge e. It follows that in this paper we consider the following optimization
problem, with objective function (10) giving the maximum (possibly negative) slack on each
evacuation arc, weighted by the population.

max min
k∈E,∀i=1,...,|Ak|

dk(beik − S
i
k + pk) (10)

s.t.(4), (5), (6), (7), (8), (9) (11)

3 Realistic data instance generator

Catastrophic wildfire requiring large population evacuation are, thankfully, rare events. How-
ever, it means that obtaining useful data is difficult, and indeed this a key problem within the
GEO-SAFE project. A significant part of the project revolves around simulation tools such as
EXODUS [7], however, even simulated data was hard to come by.

Therefore, we opted for taking advantage of the project environment to contribute to this
effort by generating our own “realistic” dataset. On the one hand, this approach may introduce
biases since we must use models to generate realistic road networks and simulate wildfires.
On the other hand, we believe that it will make it much more convenient for benchmarking
algorithms in the future. As it turns out, the generated instance are challenging even though
relatively modest in size, thus being interesting from an academic viewpoint as well.

3.1 Generation of road networks

The first step is to generate a graph standing for the road network. To this end, we used the
quadtree model described in [3]. In a nutshell, this model starts with a single square formed
by four nodes and four edges. At each iteration, a square is chosen and five nodes are added,
one in the center of the square, and one on each edge connected by a perpendicular edge to
the center node. A parameter r controls the sprawl, that is, the preference for splitting larger
squares (r < 1) or smaller square (r > 1). The graphs generated in this manner share a many
features with real road networks: they are planar, embedded in an Euclidean plane, have similar
density distributions, path lengths are within a constant factor of the Euclidean distance, and
the number of turns is logarithmic with high probability. An example of random quadtree
network is shown in Figure 1a. The colors on the edges correspond to road capacity. To
allocate capacities, we first compute a minimum Steiner tree spanning three randomly chosen
nodes in high density areas (“cities”) and connect these cities to the nearest corner of the outer
square. The corresponding set of edges are given the highest capacity and are coloured in blue
in Figure 1a. A second set of edges, forming a grid are given an intermediate capacity, they are
coloured in green.



(a) road network (b) simulated wildfire (c) evacuation plan

Figure 1: An example of generated instance

3.2 Simulating wildfire

The second step consists in determining safety due dates for every edge of the evacuation tree,
that is, a time after which the edge become unsafe. To this purpose we use a relatively simple
fire propagation model. We chose to use a simple model based on two parameters: a constant
intensity γ representing the type of fuel material as well as the temperature, and a wind direction.
Indeed, the goal is not so much to accurately predict fire propagation, as it is to generate safety
due dates consistent with a wildfire. Of course, should the authorities use this type of planning
tools during a real event, then correctly predicting fire propagation would be among the most
important factor.

The land area is discretized into squares of fixed size (we use another parameter to control this
size) which can be in three states: untouched, burning and burned. The fire starts as a single
burning square, then at each iteration, any untouched square adjacent of a burning square
catches fire with probability γ(π−A

π
)2, where γ stands for the intensity of the fire, and A is the

angle between the wind an a vector going from the center of burning square to the center of
the untouched square. Moreover, any burning square that did not propagate stop burning with
probability γ2. Figure 1b illustrate the state of the simulated wildfire, with burning squares in
red and burned squares in black.

3.3 Generating evacuation plans

The third step consists in generating the actual evacuation plan, that is, an embedded tree
connecting a set of evacuation nodes E to a safe node r. Here again, the goal is not to compute
the best evacuation plans, however they must be representative of what would be actual plans.

We first randomly pick a predefined number of evacuation nodes among the nodes of the graph
that are in the state burned or burning of the simulated fire. Then we use the convention that
the safe zone is the furthest corner from the center of the fire. The evacuation tree is computed
simply by using a shortest paths algorithm, however with respect to an arc labeling taking into
account first the safety due date of the arc, and only then its length and its capacity.

At this point we have all the information we need to define a fire evacuation problem as
defined in Section 2.3.



The tools we developed as well as the benchmarks instances we used in this paper can be
accessed here: https://github.com/ehebrard/evacsim.

4 Formulations and heuristic

In this section, we propose two formulations for the problem: a 0–1 integer linear programing
formulation and a constraint programming formulation. Then, we describe a simple compression
heuristic able to find quickly an initial solution.

4.1 0–1 linear programming formulation

Let H denote an upper bound on the latest evacuation completion time on the evacuation nodes
(the time by which the last evacuee leaves the evacuation node). We propose an integer 0-1
linear formulation that makes a discrete approximation of the problem. The set of discrete
evacuation possible start times is equal to Hk = {0, . . . , H−pk} where pk = d dk

uk
e is the smallest

possible integer evacuation processing time. For an evacuation start time t ∈ Hk, the set of
possible evacuation processing times is Pkt = {pk, . . . ,min(dk, H − t)}. Let pmk ∈ Pkt denote
the mth smallest possible processing time for m = 1, . . . , |Pkt|. We introduce a 0–1 variable xktm
equal to 1 if and only if δk = t, pk = pmk et λk = dk

pmk
. By analogy to multi-mode scheduling

problems, set {1, . . . , |Pkt|} represent the set of processing modes available for scheduling an
evacuation task that starts at time t. For a given mode m and a given time t, we denote by
I iktm ⊆ Hk the maximal discrete time interval such that

∀τ ∈ I iktm, t ∈ [τ +
i−1∑
q=1

tqk, . . . , τ +
i−1∑
q=1

tqk + pmk − 1]

i.e. the set of evacuation start times τ in mode m that make evacuation on edge eik in process
at time t. This interval is precisely:

I iktm = {t−
i−1∑
q=1

tqk, . . . , t−
i−1∑
q=1

tqk − pmk + 1} ∩ Hk

Given these elements , the problem can be expressed as the following 0–1 integer linear program:

max Wmin (12)

s.t.

Wmin ≤ dk(beik −
∑
t∈Hk

|Pkt|∑
m=1

(t+ pmk)xktm −
i−1∑
q=1

tqk) ∀k ∈ E ,∀i = 1, . . . , |Ak| (13)

∑
t∈Hk

|Pkt|∑
m=1

xktm = 1 ∀k ∈ E (14)

∑
Ji
k∈Je

|Pk0|∑
m=1

∑
τ∈Iiktm

λkmxktm ≤ ue ∀e ∈ A,∀t = 0, . . . , H − 1 (15)

xktm ∈ {0, 1} k ∈ E , t ∈ Hk,m ∈ Pkt (16)

https://github.com/ehebrard/evacsim


4.2 Constraint Programming formulation

In [6], the NEPP was modeled using standard cumulative constraints. We adapt here this
model for our problem. Let x (resp. x) denote the largest (resp. smallest) value in the domain
of a variable x. Given a set of tasks J with start time variable si ∈ [si, si], processing time
variable pi ∈ [pi, pi], height variable λi ∈ [λi, λi] and a resource r of constant capacity ur, recall
that cumulative((si, pi, λi)i∈J , ur) enforces the relations

∑
i∈J |si≤t<si+pi

λi ≤ ur ∀t ∈ H

Consequently, to model the problem, it suffices to associate a task J ik to each arc on the
evacuation path of each evacuation node k ∈ E , with height variable λk ∈ [1, uk], start time
variable Sik ∈ [0, H − dv

uv
], duration variable pk ∈ [ dv

uv
, dv]. A resource is defined per arc e ∈ A,

with capacity ue.
The baseline constraint program for the evacuation planning problem is obtained by replacing

constraints (6) in the problem formulation of Section 2.3 by:

cumulative((Sik, pk, λk)Ji
k∈Je , ue) ∀e ∈ A (17)

4.3 Heuristic

We propose a simple compression heuristic to find an initial upper bound. The heuristic is based
on the assumption that scheduling all evacuation tasks at time 0 with the minimum evacuation
rate yields a feasible solution, with a high cost. Starting from this solution (∀k ∈ E , we set the
start time sk := 0, the end time ek := dk, and the rate λk := 1). Now an iterative process starts
where, at each iteration, the critical evacuation tasks, i.e. the one that minimizes the cost on
some edge, is identified. Then, its duration is decreased and its height is consequently increased
until (i) either no more height increase/duration decrease can be performed without exceeding
an edge capacity or (ii) the task is not critical anymore and another task becomes critical. If
case (i) occurs the process stops, otherwise, if case (ii) occurs, the compression process restarts
with the new critical task unless the objective increase is smaller than a predefined parameter
ε, in which case the process also stops. Due to the possibility of only left shifting a task k by ε

dk
at each iteration, this descent heuristic is of pseudo polynomial computational complexity.

5 Computational experiments

We generated 240 benchmark instances following the protocol described in Section 3. They are
organized into three types of road networks: Dense, Medium and Sparse where the density refers
to the number of intersections (respectively 400, 800 and 1200) in the land area. Notice that
the graph has always 4 edges per node, so this corresponds to graph size. The impact on the
instance is that larger graphs allow for more choices for the shortest paths and therefore longer
independent paths. For every type of road network, we generated 4 classes of instances, with
respectively 10, 15, 20 and 25 evacuation nodes. Finally, for every class we simulated 20 random
wildfires and the subsequent evacuation trees.

We used CPLEX 12.7 to solve the MILP formulation with default settings and CPOptimizer
12.7 for solving the CP formulation. The heuristic was used to provide an initial solution to



both solvers. We ran every method on every instance of the dataset with a time limit of 45
minutes on 4 cluster nodes, each with 35 Intel Xeon CPU E5-2695 v4 2.10GHz cores running
Linux Ubuntu 16.04.4.

We provide here e few implementation details. We only used discrete evacuation rates as it
was simpler to implement in the CP solver. It follows that Constraints (4) was implemented
as an inequality (≥). The number of edges on which to check the cumulative constraint was
reduced thank to the observation that in a path on an evacuation only one edge is a bottleneck.
It follows that only one edge per path has to be considered as a limited resource. Last, the
opposite of the weighted slack was actually minimized, which amounts to a maximum weighted
lateness objective. The results are displayed in table 1, where we give for each solver the average
upper bound on each instance family and the optimality ratio, i.e. the percentage of verified
optimal solutions found.

CPO MIP

ub opt ub opt

dense 10 (20) 23294 0.95 58746 0.70
dense 15 (20) 161100 0.70 346404 0.00
dense 20 (20) 311676 0.45 659395 0.00
dense 25 (20) 531016 0.00 1044248 0.00
medium 10 (20) 48591 1.00 103151 0.55
medium 15 (20) 124921 0.70 306552 0.05
medium 20 (20) 276101 0.25 581273 0.00
medium 25 (20) 488282 0.10 955786 0.00
sparse 10 (20) 3747 1.00 14359 0.70
sparse 15 (20) 120173 0.65 288432 0.05
sparse 20 (20) 235771 0.35 554373 0.00
sparse 25 (20) 437618 0.00 868438 0.00

avg (240) 230191 0.51 481763 0.17

Table 1: CPO vs MIP: upper bound and optimality ratio

We can first remark that the generated instances are hard to solve optimally for both solvers:
on average only 51% of the instances are solved to optimality with the same behavior for the
families: almost all the instances with10 evacuation node and a large part of the instances
with 15 evacuation nodes car be solved to optimality, while instances with 20 evacuation nodes
becomes much harder and the ones with 25 activities are intractable. As an outcome, our
generator is able to produce computationally challenging instances.

In terms of comparison between integer and constraint programming, the integer program is
significantly outperformed by CP, both in terms of optimality ratio and of upper bounds on
maximum weighted lateness. This is both due to slower convergence time and memory issued
due to the huge size of the IP model. As a typical example, the instance medium 10 30 3 2 has
328147 binary variables and 3198 constraints after CPLEX preprocessing.

In terms of the obtained objective function values, on the 240 instances only 45 have negative
values, meaning that in a majority of instances the evacuation could not be performed on some
edge before the expected deadline. Interestingly, all these 45 instances were solved to optimality,
which represents 36% of the 123 instances solved to optimality. 74% of the remaining instances,
correspond to pessimistic scenarios where the evacuation road network is unable to ensure the
evacuation of the the whole population before the traversal of some route segment would become
critical. If such situation occurred in actual road network this could give helpful support to the
authorities for increasing the capacity of specific road segments or to build better prescribed



evacuation routes.

6 Concluding remarks

We have proposed a data instance generator and optimization frameworks for a computationally
challenging evacuation planning problem, with an objective function tailored to the event of
wildfire. This generator could be improved by incorporating more sophisticated fire propagation
models and actual road networks. The generation of evacuation routes is also an optimization
problem in itself. Feedback from the evacuation planning, in the case, which often occurred in
our experiments, where obtained safety margin are not sufficient should be used to modified the
evacuation routes accordingly. In terms of the evacuation planning problem we have proposed
new integer and constraint programming formulation. To obtain competitive results with IP, one
should obviously consider decomposition approach as the problem is huge. Continuous models
could also be designed to reduce the number of variables. Even if CP obtains much better
results, the vast majority of medium size instances could not be solved to optimality. As future
research directions, we will specific global constraint that better capture the structure of the
problem as well as dedicated search strategies. Finally, we believe that coupling our approach
with simulation and/or stochastic–robust optimization will lead to useful decision support tools
in case of response to wild fires.

Acknowledgement

This work is partially funded by the H2020-MSCA-RISE-2015 European project GEO-SAFE
(id 691161)

References

[1] Hal E. Anderson. Aids to determining fuel models for estimating fire behavior. Technical
Report 122, United States Department of Agriculture- Forest Service, Intermountain Forest
and Range Experiment Station Ogden, UT 84401, April 1982.

[2] Vedat Bayram. Optimization models for large scale network evacuation planning and man-
agement: A literature review. Surveys in Operations Research and Management Science,
2016. DOI: 10.1016/j.sorms.2016.11.001.

[3] David Eisenstat. Random road networks: the quadtree model. CoRR, abs/1008.4916, 2010.

[4] Caroline Even, Victor Pillac, and Pascal Van Hentenryck. NICTA evacuation planner:
Actionable evacuation plans with contraflows. In ECAI 2014 - 21st European Conference on
Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic - Including Prestigious
Applications of Intelligent Systems (PAIS 2014), pages 1143–1148, 2014.

[5] Caroline Even, Victor Pillac, and Pascal Van Hentenryck. Convergent plans for large-scale
evacuations. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence, January 25-30, 2015, Austin, Texas, USA., pages 1121–1127, 2015.

[6] Caroline Even, Andreas Schutt, and Pascal Van Hentenryck. A constraint programming
approach for non-preemptive evacuation scheduling. In Principles and Practice of Con-



straint Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31
- September 4, 2015, Proceedings, pages 574–591, 2015.

[7] Edward R. Galea, Mathew Owen, and Peter J. Lawrence. The EXODUS Model. Fire
Engineers Journal, pages 26–30, 1996.

[8] Geo-safe - geospatial based environment for optimisation systems addressing fire emergen-
cies, MSCA-RISE-2015 - Marie Sk lodowska-Curie Research and Innovation Staff Exchange
(RISE) European projet – id 691161. http://fseg.gre.ac.uk/fire/geo-safe.html. Ac-
cessed: June 16, 2018.

[9] Kanal Kumar, Julia Romanski, and Pascal Van Hentenryck. Optimizing infrastructure
enhancements for evacuation planning. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA., pages 3864–3870,
2016.

[10] Victor Pillac, Manuel Cebrián, and Pascal Van Hentenryck. A column-generation approach
for joint mobilization and evacuation planning. Constraints, 20(3):285–303, 2015.

[11] Victor Pillac, Caroline Even, and Pascal Van Hentenryck. A conflict-based path-generation
heuristic for evacuation planning. Transportation research part B, (83):136–150, 2016.

[12] Victor Pillac, Pascal Van Hentenryck, and Caroline Even. A path-generation matheuristic
for large scale evacuation planning. In Hybrid Metaheuristics - 9th International Workshop,
HM 2014, Hamburg, Germany, June 11-13, 2014. Proceedings, pages 71–84, 2014.

[13] Julia Romanski and Pascal Van Hentenryck. Benders decomposition for large-scale prescrip-
tive evacuations. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA., pages 3894–3900, 2016.

[14] Richard C. Rothermel. A mathematical model for fire spread predictions in wildland fuels.
Technical Report 115, USDA For. Serv., lntermt. For. and Range Exp. Stn., Ogden, Utah,
USA, 1972.

[15] Shahrooz Shahparvari, Prem Chhetri, Babak Abbasi, and Ahmad Abareshi. Enhancing
emergency evacuation response of late evacuees: Revisiting the case of australian black
saturday bushfire. Transportation Research Part E: Logistics and Transportation Review,
93:148 – 176, 2016.

[16] Alexander Stepanov and James MacGregor Smith. Modeling wildfire propagation with
delaunay triangulation and shortest path algorithms. European Journal of Operational
Research, 218(3):775 – 788, 2012.

[17] Anand Veeraswamy, Edwin R Galea, Lazaros Filippidis, Peter J Lawrence, and Robert J
Gazzard. The simulation of urban-scale evacuation scenarios: Swinley forest fire. In Pro-
ceedings 6th Int Symp Human Behaviour in Fire, pages 221–232, 2015.

[18] David R. Weise and Gregory S. Biging. A qualitative comparison of fire spread models
incorporating wind and slope effects. Forest Science, 43(2):170–180, 1997.

http://fseg.gre.ac.uk/fire/geo-safe.html

	Introduction
	State-of-the-art review and problem definition
	Basic evacuation data
	Previously considered evacuation problems
	A new evacuation planning problem in case of wild fires

	Realistic data instance generator
	Generation of road networks
	Simulating wildfire
	Generating evacuation plans

	Formulations and heuristic
	0–1 linear programming formulation
	Constraint Programming formulation
	Heuristic

	Computational experiments
	Concluding remarks

