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Abstract. The GEO-SAFE project gathers academic researchers and
fire emergency practitioners from EU and Australia with the objective
to design innovative models and efficient response tools based on opti-
mization methods for fighting wildfires. In this paper, we consider an
evacuation planning problem in a scenario issued from models discussed
with practitioners, where a wildfire is threatening a region with interme-
diate populated centres.
As in previous approaches proposed in case of flood, we use a constraint
optimization model involving tasks to represent the evacuation of a pop-
ulation and a cumulative constraint per shared route segments. However,
we consider malleable tasks. Indeed, in order to mitigate congestion risks,
the authorities may delay the start of the evacuation but they may also
affect the rate of evacuation by modulating the method used to alert
the population. We also consider a different objective: we maximize the
minimum “safety margin”, weighted by the size of population, over every
evacuated population and every road segment.
We introduce a new heuristic and a global flow constraint propagator.
Moreover, we also propose an instance generator based on a random
generation of road networks and basic fire propagation models. This gen-
erator produces challenging benchmarks even with very few evacuation
tasks. Finally, we report the results of extensive computational experi-
ments done using CP Optimizer, and discuss their relevance both to the
GEO-SAFE project and to CP.

1 Introduction

In EU and Australia, every year thousands of square miles of forests and other
lands burn due to wildfires. These fires cause important economic and ecological
losses, and often, human casualties as for instance during the Black Saturday
bushfires across the Australian state of Victoria in February 2009 [12]. The
overall objective of the GEOSAFE project [7] is to develop methods and tools
enabling to set up an integrated decision support system to assist authorities in
optimizing the resources during the response phase to a wildfire (fire suppression,
life and goods protection). One critical and crucial part of this integrated decision
support is the ability to perform large-scale evacuation planning. As detailed



in [13], there are commonly three categories of evacuees: the ones that leave
early, the ones that shelter in refuge and the ones who stay at their properties
and fight. This work focuses on the evacuation of this third group (late evacuees)
which is called the late evacuation planning problem.

While in practice most evacuation planning is principally designed by experts
using simple heuristic approaches or scenario simulations [15], more recently op-
timization approaches to evacuation planning have been addressed, using a va-
riety of optimization technology [2]. The usual test case for most of this work
is flood evacuation planning [10, 5, 8]. Given accurate measurements of rainfall
and topology, flood evacuation planning can make use of very accurate predic-
tions of future water levels, and therefore has a very accurate model of what
infrastructure will be available at each stage of the evacuation.

Evacuation planning in case of wildfires is much harder. Wildfire propagations
are inherently less predictable than floods. While flood levels mostly rely on the
fixed topology of the area and rainfalls, wildfire mainly depends on the wildland
fuels [11, 1], on the slope of the burning ground and more importantly on the
speed and direction of the wind that can suddenly change at any time [16, 14].
Therefore, evacuation planning dedicated to wildfires must be much more robust
to difference future scenarios. A good evacuation plan in case of wildfire must
not only minimize the evacuation time of the population but also maximize
the spatial and temporal safety margin between the evacuees and the actual or
potential wildfire front.

In this paper, we consider that the authorities already identified the ac-
cessible routes and shelters and estimated the population of the late evacuees.
Evacuation takes place in individual vehicles and each center has a known popu-
lation and a single predefined suggested evacuation route. All routes issued from
each center converge toward a safe place, so congestion may appear on route
segment shared by several evacuation paths. The interest of convergent evacu-
ation plans has been underlined by several studies such as in [4] since it avoids
congestion issued by driver slow-downs at forks. Furthermore fire propagation
models give a deadline on each route segment beyond which taking this seg-
ment comes at high risk. To mitigate these risks, the authorities may delay the
evacuation start time and rate for each center. Indeed in practice, besides the
possibility of assigning a start time to each evacuated zone, the authorities can
also mobilize different levels of resources to increase the evacuation rate (e.g.
number of agents knocking on people’s door), to which people answer according
to a behavioral model abstracted by a response curve [9]. Based on these con-
cepts, the evacuation planning model is close to the one proposed in [5] called
the non-preemptive evacuation planning problem (NEPP) in the context of a
flood. In contrast with previously proposed models, the NEPP considers non
preemptive evacuation. Once the evacuation of a zone has started, it cannot be
interrupted. Indeed, considering preemptive evacuation would make the problem
much easier to solve but is hard to implement in practice. In case of wildfire, this
would notably cause undesirable stress on evacuees. The major difference of the
model considered in this paper with the NEPP model lies in the objective func-



tion. In [5], the main objective was to maximize the number of evacuees, while
a secondary objective was to minimize the makespan, i.e. the total evacuation
time, while enforcing deadlines on route segments. In case of wildfire, the high
variability in the fire propagation makes it necessary to avoid taking a route
segment close to the expected deadline. Hence, we consider a single objective
by maximizing the minimum gap for all evacuated zones and all route segments
between the deadline and the by which the last evacuee leaves a route segment,
weighted by the population of the evacuated zone.

2 The evacuation planning problem

We are given an a tree G = (E∪T ∪{r},A) rooted in r standing for the evacuation
routes from evacuation nodes E (leaves) to the safe node r through transit nodes
T . Every leaf/evacuation node v ∈ E is associated with a population count wv.
Every arc u, u′ has a length luu′ and a capacity non-ambiguously denoted qu as
G is a tree. Moreover the length of the path from a node u to a node u′ is also
written luu′ .

Let H = [0, H] denote the time horizon of the evacuation planning. We
want to associate every leaf/evacuation node v ∈ E to a real sv representing
the delay of the evacuation notice and to a “response curve” φv describing the
evacuation flow out of node v over time (starting from sv). Population flows out
of leaf/evacuation node v at rate φv(t) that is zero before time sv ≥ 0, and such
that: ∫ H

0

φv(t)dt = wv

Let p(u) denote the parent of u in G, p̂(u) its ascendants, C(u) its children,
Ĉ(u) its descendants and L(u) those of its descendants that are leaves of G. We
assume that the evacuees never stop, so the flow in the downstream arcs can be
computed by summing the flows in the incoming arcs and the flow φu(t) for any
arc ∈ E ∪ T at any time t ∈ H is

φu(t) =
∑

v∈L(u)

φv(t− luv − sv)

In this paper we consider as in [5] a simple response curve. The flow out of
an evacuation node v ∈ E is a continuous decision variable and remain constant
during the evacuation process, that is, the flow out of node v ∈ E is equal to hv
within the time interval [sv, ev], with ev = sv+ wv

hv
and zero otherwise. Therefore,

the flow out of a node u ∈ E ∪ T at time t ∈ H is:

φu(t) =
∑

v∈L(u),sv+luv≤t<sv+luv+
wv
hv

hv

It follows that the considered evacuation planning problem can be formally
defined as the following constraint optimization problem.



Variables: We have a set of |E| non-preemptive tasks, one for every evacuation
node. For every task standing for an evacuation node v ∈ E we need two variables,
one for the constant rate hv ∈]0, qv] at which the evacuation will proceed and
one for its start time sv ∈ [0, H − wv

qv
] at which the evacuation will start.

Constraints: We have a single family of constraints: we must avoid “jams”, that
is, flow exceeding the capacity of an arc. More precisely, for each node u ∈ T , we
have a cumulative resource constraint of capacity qu ensuring that φu(t) ≤ qu,
whis is written: ∑

v∈L(u),sv+luv≤t<sv+luv+
wv
hv

hv ≤ qu, ∀u ∈ T ,∀t ∈ H

Objective: To every transit node u is associated a due date du, corresponding to
the time at which the following road portion becomes unsafe. The objective is
to minimize the maximum lateness of any task, i.e., the difference between the
time at which it leaves a node u and du, weighted by the population. Hence the
objective is:

min max
u∈T ,v∈L(u)

sv + hv/wv + luv − du

Dominance rules and problem formulation A first observation is that we can
simplify the objective function by retaining the transit node u minimizing du −
luv. Let dv = minu∈T {du − luv} denote this value.

The objective can therefore be rewritten as the maximum of |E| expressions:

min max
v∈E

sv + hv/wv − dv

The second following observation, also made in [5], allows to reduce the num-
ber of cumulative constraints to consider.

Observations 1 For any two transit nodes u, u′ ∈ T , if qu ≤ qu′ and u′ ∈ Ĉ(u),
then a jam in u′ entails a jam in u.

We thus only need to check jams in nodes u such that ∀v ∈ p̂(u), qv > qu.
In practice, it means that given an evacuation node v ∈ E we can explore the
nodes in the route from v to r in reverse order, and for every stretch of road
without branch, keep only the arc of minimal capacity, called the critical arc.
Let T̃ denote the reduced set of critical transit nodes to consider. The problem
can thus be formulated as follows.

minimize max
v∈E

wv{sv + hv/wv − dv} (1)

subject to:
∑

v∈L(u),sv+luv≤t<sv+luv+
wv
hv

hv ≤ qu, ∀u ∈ T̃ ,∀t ∈ H (2)

hv ∈]0, qv], sv ∈ [0, H − wv

qv
], ∀v ∈ E (3)



3 Baseline approach using cumulative constraints

In [5], the NEPP was model using standard cumulative constraints. We consider
this model for our problem as the baseline approach. Given a set of tasks J with
start time si ∈ [ri,∞], completion time ei ∈ [0, di], height hi ∈ [0,mi] and a
resource r of constant capacity qr, cumulative((si, ei, hi)i∈J , qr) enforces the
relations

∑
i∈J|si≤t≤ei

hi ≤ qr ∀t ∈ H (4)

Consequently to model the problem, it suffices to consider a resource-unconstrained
task v for each evacuation node v ∈ E with height hv, release date rv = 0, due
date dv, and to duplicate and translate this task for each critical transit node
u on its path towards the safe node. For each critical arc u ∈ T̃ , let iuv denote
the duplicate for evacuation node v ∈ L(u). The duplicate has a release date
riuv = luv, a due date diuv = dv + luv and a height hiuv = hv. A resource is
defined per critical arc u ∈ T̃ , with capacity qu.

The baseline constraint program for the evacuation planning problem is ob-
tained by replacing constraints (2) in the problem formulation by:

cumulative((siuv , eiuv , hiuv ), qu) ∀u ∈ T̃ (5)

wv = hv(ev − sv) ∀v ∈ E (6)

siuv
= sv + luv ∀u ∈ T̃ ,∀v ∈ L(u) (7)

eiuv
= ev + luv ∀u ∈ T̃ ,∀v ∈ L(u) (8)

hiuv = hv ∀u ∈ T̃ ,∀v ∈ L(u) (9)

In the baseline model above, the information that tasks have a fixed energy
is lost to the cumulative constraint propagator. Given a task v with energy
wv start time sv, completion time ev and rate hv, the algorithm will consider

a task of duration
⌈

wv

mv

⌉
and consumption

⌈
wv

dv−rv

⌉
. When the upper bounds

on consumption and duration are large, these values tend to 0, thus greatly
hindering constraint propagation.

Example 1. Consider a resource of capacity 4 and four tasks with the following
parameters:

Given the total energy (second column) possible ranges for the rates, mini-
mum start times and maximum end times (3rd to 5th columns), bounds consis-
tency on the duration and demand variables yields the ranges shown in the 6th
and 7th rows, respectively.

Therefore, a standard cumulative constraint will use the lower bounds and
consider four tasks of durations and consumptions 2, 32 , 1 and 1, respectively. The
classic cumulative constraint will not adjust the domains further, as shown in



Table 1: Populations, maximum rates, minimum start times and maximum end
times of four evacuation tasks

wi mi ri di duration height

v1 6 3 0 3 [2, 3] [2, 3]
v2 6 4 1 5 [ 3

2
, 4] [ 3

2
, 4]

v3 4 4 1 5 [1, 4] [1, 4]
v4 4 4 1 5 [1, 4] [1, 4]

Figure 1. The set of 3 solutions illustrated in this figure shows that every bound
of every one of the eight variables (start times and height for each of the four
evacuation tasks) is consistent1.
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Fig. 1: Some feasible schedules

4 Flow Global Constraint

The standard cumulative constraint is weak for this class of problems since it
is unable to reason about total energy of each task. We can take advantage of
the knowledge that the product (duration × rate) is a constant by using a more
global constraint.

Given a set of tasks J with start time si ∈ [ri,∞], completion time ei ∈ [0, di],
height hi ∈ [0,mi], constant energy wi and a resource r of constant capacity qr,
energetic cumulative((si, ei, hi, wi)i∈J , qr) enforces the relations:

∑
i∈J|si≤t≤ei

hi ≤ qr ∀t ∈ H (10)

wi = hi(ei − si) ∀i ∈ J (11)

1 Tasks v4 and v3 are symmetric so we omit the bounds for v4



In other words, energetic cumulative is the conjunction of constraints (5)
and (6) of Section 3.

The propagator works by building a flow network relaxation f(D) of the
problem, before it propagates, using the current domain D.

Given current domain D, let TV = {lb(sv), lb(ev), ub(sv), ub(ev) | v ∈ V } be
the set of O(n) minimum or maximum start and end times of the tasks of V and
let ti be the i-th largest element of TV . We partition the time line into the set
of consecutive intervals I(V ) = {[ti, ti+1[| 1 ≤ i < |TV |}

Next, we create a flow f(D) network as follows. We have source node S and
a first layer of task nodes V , the flow from S to v is wv for each v. We create
a second layer of time interval nodes Ii = [ti, ti+1[, 1 ≤ i ≤ n − 1. There is
an edge from v to Ii if lb(sv) ≤ ti ∧ ti + 1 ≤ ub(ev). The edge is bounded by
0..(ti+1− ti)×ub(hv). We create a final layer to a sink node E. There is an edge
from each interval node Ii to E with capacity bounded by (ti+1 − ti)× q.

Theorem 1. Any solution to energetic cumulative(s̄, ē, w̄, h̄, q) given cur-
rent domain D, is extendible to a solution of the flow network f(D).

Proof. Given a solution for energetic cumulative(s̄, ē, w̄, h̄, q) we extend it to
a solution of the flow network f(D) as follows. The flow from S to each node v is
set to wv. The flow from each node v to Ii is set to (min(ev, ti+1)−max(sv, ti))×
hv The flow from each node Ii to E is given by the sum of the incoming flows
to Ii. We show that these flows obey the bounds and flow balance equations.
Examining each node v, the flow in is wv and the flow out is hv × (ev − sv).
These must be equal by equation (6). Examining each node Ii the flow in is∑
v ∈ E((min(ev, ti+1) − max(sv, ti)) × hv but by equation (5) at no time is

there more than q resource being used, hence this is no more than (ti+1− ti)×q,
the capacity of the outgoing arc. The flow balance at Ii holds by construction.

ut

Example 2. If we consider the circumstances explained in Example 1, the con-
straint energetic cumulative generates the flow network shown in Figure 2.

While the standard propagate can determine nothing, the flow network is
infeasible, so the energetic cumulative propagator immediately fails.

5 Generating a Realistic Data Set

Catastrophic wildfire requiring large population evacuation are, thankfully, rare
events. However, it means that obtaining useful data is difficult, and indeed this
a key problem within the GEOSAFE project. A significant part of the project
revolves around simulation tools such as EXODUS [6], however, even simulated
data was hard to come by.

Therefore, we opted for taking advantage of the project environment to con-
tribute to this effort by generating our own “realistic” dataset. On the one hand,
this approach may introduce biases since we must use models to generate realis-
tic road networks and simulate wildfires. On the other hand, we believe that it
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Fig. 2: Flow network relaxation of the energetic cumulative constraint for the
state given in Table 1.

will make it much more convenient for benchmarking algorithms in the future.
As it turns out, the generated instance are very challenging even though relively
modest in size, thus being interesting from an academic viewpoint as well.

5.1 Generation of road networks

The first step is to generate a graph standing for the road network. To this end,
we used the quadtree model described in [3]. In a nutshell, this model starts with
a single square formed by four nodes and four edges. At each iteration, a square
is chosen and five nodes are added, one in the center of the square, and one on
each edge connected by a perpendicular edge to the center node. A parameter r
controls the sprawl, that is, the prefence for splitting larger squares (r < 1) or
smaller square (r > 1). The graphs generated in this manner share a many fea-
tures with real road networks: they are planar, embedded in an Euclidean plane,
have similar density distributions, path lengths are within a constant factor of
the Euclidean distance, and the number of turns is logarithmic with high proba-
bility. An example of random quadtree network is shown in Figure 3a. The colors
on the edges correspond to road capacity. We first compute a minimum Steiner
tree spanning three randomly chosen nodes in high density areas (“cities”) and
connect these cities to the nearest corner of the outer square. The corresponding
set of edges are given the highest capacity and are coloured in blue in Figure 3a.
A second set of edges, forming a grid are given an intermediate capacity, they
are coloured in green.



(a) road network (b) simulated wildfire (c) evacuation plan

Fig. 3: An example of generated instance

5.2 Simulating wildfire

The second step consists in determining safety due dates for every edge of the
evacuation tree, that is, a time after which the edge become unsafe. To this
purpose we use a relatively simple fire propagation model. We chose to use a
simple model based on two parameters: a constant intensity γ representing the
type of fuel material as well as the temperature, and a wind direction. Indeed,
the goal is not so much to accurately predict fire propagation, as it is to generate
safety due dates consistent with a wildfire. Of course, should the authorities use
this type of planning tools during a real event, then correctly predicting fire
propagation would be among the most important factor.

The landa area is discretized into squares of fixed size (we use another pa-
rameter to control this size) which can be in three states: untouched, burning
and burned. The fire starts as a single burning square, then at each iteration,
any untouched square adjacent of a burning square catches fire with probability:

γ(
π −A
π

)2

Where γ stands for the intensity of the fire, and A is the angle between the
wind an a vector going from the center of burning square to the center of the
untouched square. Moreover, any burning square that did not propagate stop
buring with probability γ2. Figure 3b illustrate the state of the simulated wildfire,
with burning squares in red and burned squares in black.

5.3 Generating evacuation plans

The third step consists in generating the actual evacuation plan, that is, an
embedded tree connecting a set of evacuation nodes E to a safe node r. Here
again, the goal is not to compute the best evacuation plans, however they must
be representative of what would be actual plans.



We first randomly pick a predefined number of evacuation nodes among the
nodes of the graph that are in the state burned or burning of the simulated fire.
Then we use the convention that the safe zone is the furthest corner from the
center of the fire. The evacuation tree is computed simply by using a shortest
paths algorithm, however with respect to an arc labeling taking into account
first the safety due date of the arc, and only then its length and its capacity.

At this point we have all the information we need to define a fire evacua-
tion problem as defined in Section 2. However, we use Observation 1 to remove
redundant arcs. For every evacuation path, we explore the arcs from the safe
node r to an evacuation node v. For any section of the path on which nodes
have single child, all the nodes of that section have the same set of descendant
leaves in the tree. Therefore the same set of evacuees will go through these nodes
with the same relative delay. Therefore, we conserve only the arc of minimum
capacity in that section, and only if this capacity is strictly smaller than that of
the previous section.

It follows that an instance with n evacuation tasks has at most O(n) “jam”
constraints. Moreover, the objective can be stated as the maximum of O(n)
expressions as shown in Section 2.

The tools we developed as well as the benchmarks instances we used in this
paper can be accessed here: tbd.

6 Experimental Results

We generated 240 benchmark instances following the protocol described in Sec-
tion 5. They are organized into three types of road networks: Dense, Medium and
Sparse where the density refers to the number of intersections (respectively 400,
800 and 1200) in the land area. Notice that the graph has always 4 edges per
node, so this corresponds to graph size. The impact on the instance is that gen-
erally, a larger graph allows for more choices for the shortest paths and therefore
longer independent paths. For every type of road network, we generated 4 classes
of instances, with respectively 10, 15, 20 and 25 evacuation nodes. Finally, for
every class we simulated 20 random wildfires and the subsequents evacuation
trees.

We used CPLEX to solve the flow formulation, which turned out to be ex-
tremely costly. Therefore we did not systematically called the propagator at each
node. Instead we implemented a heuristice method to decide whether we should
solve the flow using two criteria:

The first criterion we use is the total load Ω(r) of a resource r or capacity
qr on the tasks J :

Ω(r) =

∑
i∈J wi

qr(maxi∈J ei −mini∈J si)

We only call the flow when maxu∈T̃ Ω(u) ≥ 0.95, this value was empirically cho-
sen. Moreover, observe that when Ω(r) > 1 the constraint is trivially infeasible.
Therefore we can return an early failure in this case.



The second criterion is the size of the remaining search space. Indeed solving
the flow migh not be worthwhile even it is infeasible, if brute-force search would
have been faster. Here we empirically chose 250 as minimal search space, defined
as the product of the ranges of all start time and heigh variables. That is, we
solve the flow only when:∑

i∈E
log |D(si)|+ log |D(hi)| ≥ 50

However, even with this approach, using the global flow constraint made CP
Optimizer about one order of magnitude slower.

Table 2: Depth first search: upper bound and optimality ratio

DFS DFSh DFS+ DFSh+ DFSf DFShf

#s ub #s ub #s ub #s ub #s ub #s ub

dense 10 (20) 1.00 33478 1.00 28862 1.00 22286 1.00 27836 1.00 23787 1.00 33700
dense 15 (20) 1.00 179099 1.00 179570 1.00 201867 1.00 199987 1.00 211582 1.00 212471
dense 20 (20) 1.00 365596 1.00 367030 1.00 406828 1.00 407116 1.00 490221 1.00 448120
dense 25 (20) 0.95 697661 1.00 663314 0.85 1093784 1.00 759437 0.85 1201755 1.00 881680
medium 10 (20) 1.00 49294 1.00 48159 1.00 48446 1.00 48446 1.00 49567 1.00 49567
medium 15 (20) 1.00 166737 1.00 156084 1.00 166498 1.00 156432 1.00 190724 1.00 195434
medium 20 (20) 0.95 339103 1.00 339370 1.00 376395 1.00 384381 1.00 555311 1.00 428312
medium 25 (20) 0.90 1291811 1.00 659269 0.80 1461162 1.00 722167 0.75 1292794 1.00 791500
sparse 10 (20) 1.00 4474 1.00 4759 1.00 4464 1.00 5951 1.00 4464 1.00 5951
sparse 15 (20) 1.00 131229 1.00 129276 1.00 135192 1.00 134420 1.00 147785 1.00 147071
sparse 20 (20) 0.90 293930 1.00 312834 1.00 320080 1.00 323449 1.00 439340 1.00 364677
sparse 25 (20) 0.95 598501 1.00 574534 0.80 593962 1.00 732975 0.80 685214 1.00 768972

avg (240) 0.97 340545 1.00 292308 0.95 381291 1.00 329444 0.95 418918 1.00 366166

Table 3: Default search: upper bound and optimality ratio

CPO CPOh CPO+ CPOh+ CPOf CPOhf

ub opt ub opt ub opt ub opt ub opt ub opt

dense 10 (20) 23294 0.95 23567 0.80 23354 0.95 23681 0.85 23503 0.90 23807 0.80
dense 15 (20) 161100 0.70 161700 0.75 162856 0.60 162751 0.55 164524 0.45 165025 0.45
dense 20 (20) 311676 0.45 312501 0.45 312697 0.15 313114 0.15 317035 0.10 316524 0.00
dense 25 (20) 531016 0.00 529889 0.00 530749 0.00 530975 0.00 539076 0.00 564775 0.00
medium 10 (20) 48591 1.00 48591 0.80 48591 0.95 48591 0.75 48776 0.90 48979 0.70
medium 15 (20) 124921 0.70 125195 0.50 125559 0.60 125110 0.60 126011 0.40 127421 0.40
medium 20 (20) 276101 0.25 276094 0.25 277545 0.10 277485 0.10 279654 0.05 278840 0.10
medium 25 (20) 488282 0.10 488555 0.10 491794 0.00 491423 0.00 493616 0.00 505519 0.00
sparse 10 (20) 3747 1.00 3880 0.90 3747 1.00 3880 0.90 3946 0.85 3880 0.85
sparse 15 (20) 120173 0.65 120151 0.65 120162 0.60 119803 0.55 121083 0.55 120576 0.55
sparse 20 (20) 235771 0.35 253807 0.35 237503 0.15 236920 0.20 238300 0.20 240393 0.15
sparse 25 (20) 437618 0.00 437219 0.05 439699 0.00 438160 0.00 441659 0.00 448979 0.00

avg (240) 230191 0.51 231762 0.47 231188 0.42 230991 0.39 233098 0.37 237060 0.33



7 Conclusion

pjs: We can make use of dual network flow to propagate bounds on start and
end times and rates (Algorithm from nnote.tex). pjs: We could make the flow
network construction incremental.
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