INTRODUCTION TO SCILAB APPLICATION TO FEEDBACK CONTROL

Yassine Ariba

Brno University of Technology - April 2015

Y. ARIBA - IGAM, TOULOUSE. Brno University of Technology - April 2015 1 / 142

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 6 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

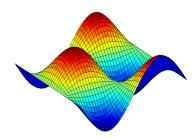
- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 5 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

What is Scilab?

Scilab is the contraction of *Scientific Laboratory*. Scilab is:

- a numerical computing software,
- an interpreted programming environment,
- used for any scientific and engineering applications,
- multi-platform: Windows, MacOS et Linux,

Created by researchers from Inria in the 90's, the software is now developed by Scilab Entreprises



www.scilab.org

Scilab includes hundreds of functions for various applications

- Mathematics and simulation
- 2D and 3D visualization
- Optimization
- Statistics
- Control system design and analysis
- Signal processing
- Application development

More informations : www.scilab.org

License

- Scilab is an open source software.
- It is distributed under a GPL-compatible license.
- It is a free open source alternative to Matlab[®] 1.
- Scilab can be downloaded from:

http://www.scilab.org/download/

The version used in this introduction is

version 5.4.1

^{1.} Matlab is a registered trademark of The MathWorks, Inc.

Getting started

Firstly, Scilab can be used in an interactive way by typing instructions on the console.

- type scilab code on the prompt -->
- type enter, to execute it.
- Scilab return its answer on the console or in a new window for graphics.

A first simple example:

```
--> A = 2;

--> t = [0:0.01:10];

--> y = A*sin(3*t);

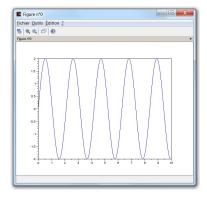
--> plot(t,y);
```

- Line 1 : assign the value 2 to the variable A.
- Line 2: define a vector t that goes from 0 to 10 with a step of 0.01.
- ullet Line 3 : compute a vector y from some mathematical operations.
- Line 4: plot y with respect to t on a 2D graphic.

Note that ";" prevents from printing the result of an instruction.

A first simple example:

```
--> t = [0:0.01:10];
--> y = A*sin(3*t);
--> plot(t,y);
```



A second simple example:

Let consider a system of linear equations

$$\begin{cases} 2x_1 + x_2 &= -5\\ 4x_1 - 3x_2 + 2x_3 &= 0\\ x_1 + 2x_2 - x_3 &= 1 \end{cases}$$

Let solve it with Scilab

```
--> A = [2 1 0; 4 -3 2; 1 2 -1];

--> b = [-5;0;1];

--> x = inv(A)*b

x =

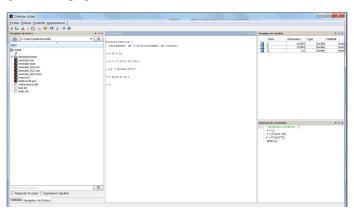
1.75

- 8.5

- 16.25
```

Introduction

Scilab provides a graphical environment with several windows.



- the console
- command history
- file browser
- variable browser
- and others : editor, graphics, help, ...

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 6 Classical control design
- Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Simple numerical calculations:

```
--> (1+3)*0.1
 ans =
    0.4
    8.
--> 2*(1+2*%i)
 ans =
    2. + 4.i
--> %i^2
 ans =
 - 1.
--> \cos(3)^2 + \sin(3)^2
 ans =
    1.
--> \exp(5)
    148.41316
--> abs(1+%i)
 ans =
    1.4142136
```

elementary operations

elementary functions

+	addition
-	subtraction
*	multiplication
/	right division
\	left division
^	exponents

```
sin
         cos
                 tan
                        cotg
asin
                atan
        acos
                        sec
sinh
        cosh
                tanh
                        csc
abs
        real
                imag
                        conj
        log
                log10
                       log2
exp
                        lcm
sign
       modulo
                sqrt
       floor
                ceil
round
                        gcd
```

```
--> conj(3+2*%i)
     3. - 2.i
--> log10(10<sup>4</sup>)
 ans
    4.
```

boolean operations

- the boolean value true is written: %T.
- the boolean value false is written : %F.

&	logical and
1	logical or
~	logical not
==	equal
~= or <>	different
< (<=)	lower than (or equal)
> (>=)	greater than (or equal)

Variables

A variable can be directly defined via the assignment operator: " = "

- Variable names may be defined with letters $a \to z$, $A \to Z$, numbers 0 \rightarrow 9 and few additional characters %, -, !, #,?, \$.
- Scilab is case sensitive.
- Do not confused the assignment operator " = " with the mathematical equal.
- Variable declaration is implicit, whatever the type.

Pre-defined variables

```
%i imaginary number i=\sqrt{-1} %e Euler's number e %pi constant \pi %inf infinity \infty %t ou %T boolean true %f ou %F boolean false
```

```
--> cos(2*%pi)
ans =
1.
--> %i^2
ans =
- 1.
```

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Defining and handling vectors

A vector is defined by a list of numbers between brackets:

Automatic creation

Syntax: start:step:end

Mathematical functions are applied element-wise

```
--> cos(v)
ans =
1. 0.980 0.921 0.825 0.696
                                              0.540
```

column vectors can also be defined with semi colon separator "; "

```
--> u = [1;2;3]
```

Some useful functions:

length	return the length of the vector
max	return the maximal component
min	return the minimal component
mean	return the mean value
sum	return the sum of all components
prod	return the product of all components

```
--> length(v)
    0.5
```

Defining and handling matrices

Matrices are defined row by row with the separator ";"

```
--> A = [1 2 3 ; 4 5 6 ; 7 8 9]
```

Particular matrices:

```
zeros(n,m)
               n \times m matrix of zeros
ones(n,m) n \times m matrix of ones
eye(n,n) identity matrix
rand(n,m)
               n \times m matrix of random numbers (values \in [0, 1])
```

Accessing the elements of a matrix : $A(select\ row(s), select\ column(s))$

```
--> A(2,3)
ans =
6.
--> A(2,:)
ans =
4. 5. 6.
--> A(:,[1 3])
ans =
1. 3.
4. 6.
7. 9.
```

For vectors, one argument is enough v(3) (gives 0.4)

Elements may be modified

```
--> A(2,3) = 0;

--> A

A =

1. 2. 3.

4. 5. 0.

7. 8. 9.
```

Some useful functions:

```
return the dimensions of a matrix
size
        compute the determinant of a matrix
det.
        compute the inverse matrix
inv
        return the rank of a matrix
rank
diag
        extract the diagonal of a matrix
        extract the upper triangular part of a matrix
triu
tril
        extract the lower triangular part of a matrix
         return the eigenvalues of a matrix
spec
```

```
--> B = [1 0 ; 2 2];
    2.
--> inv(B)
           0.
           0.5
--> triu(A)
                  3.
    0.
                  9.
```

Matrix operations

Basic operations +, -, *, /, $\hat{}$ can be directly performed

- Watch out for dimension compatibility!
- transpose operator: ".'", transpose and conjugate operator: "'"

```
--> C = [ 1 0 ; 3 1 ; 0 2];

--> D = [1 1 ; 4 0];

--> B + D

ans =

2. 1.

6. 2.
 Inconsistent addition.
```

Elementary functions are applied element-wise

```
--> M = [0 %pi/2; -%pi/2 %pi];

--> sin(M)

ans =

0. 1.

-1. 1.225D-16

--> t = [0:0.2:1];

--> exp(t)

ans =

1 1 2214 1 4918 1 822
           1. 1.2214 1.4918 1.8221
                                                                                 2.2255
                                                                                                     2.7182
```

There are specific versions of those functions for matrix operations

expm	logm	sqrtm
sinm	cosm	^

Element-wise operations


```
--> A = [0 4; 1 2];
--> B = [1 2 ; 5 -3]; --> A * B
   20. - 12.
  11. - 4.
ans =
         8.
--> A.^2
   0.
        16.
--> exp(t)./(t+1)
ans =
        1.0178 1.0655
                         1.1388 1.2364
                                           1.3591
```

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

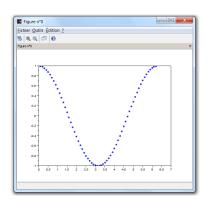
- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

To plot a curve in the x-y plan use function plot

To plot a curve in the x-y plan use function plot

```
--> x = [0:0.1:2*%pi];
--> y = cos(x);
--> plot(x,y,'*')
```

- plot traces a point for each couple x(i)-y(i).
- x and y must have the same size.
- By default, a line is drawn between points.
- The third argument defines the style of the plot.



```
--> x = [0:0.1:2*%pi];

--> y2 = cos(2*x);

--> y3 = cos(4*x);

--> y4 = cos(6*x);

--> plot(x,y1);

--> plot(x,y2,'r');

--> plot(x,y3,'k:');

--> plot(x,y4,'g--');
```

```
--> x = [0:0.1:2*%pi];

--> y2 = cos(2*x);

--> y3 = cos(4*x);

--> y4 = cos(6*x);

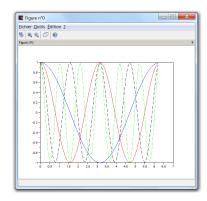
--> plot(x,y1);

--> plot(x,y2,'x');

--> plot(x,y3,'k:');

--> plot(x,y4,'g--');
```

- Several graphics can be displayed.
- clf: clear the current graphic figure.



To plot a parametric curve in 3D space use function: param3d

```
--> t = 0:0.01:10*%pi;

--> x = sin(t);

--> y = cos(t);

--> z = t;

--> param3d(x,y,z);
```

To plot a parametric curve in 3D space use function : ${\tt param3d}$

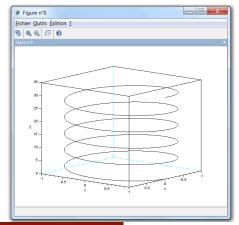
```
--> t = 0:0.01:10*%pi;

--> x = sin(t);

--> y = cos(t);

--> z = t;

--> param3d(x,y,z);
```



To plot a surface in 3D space use function: surf

```
--> x = [-%pi:0.2:%pi];

--> y = [-%pi:0.2:%pi];

--> [X,Y] = meshgrid(x,y);

--> Z = cos(X).*sin(Y);

--> surf(X,Y,Z)

--> f=gcf();

--> f.color_map = jetcolormap(32);
```

To plot a surface in 3D space use function: surf

```
--> x = [-%pi:0.2:%pi];

--> y = [-%pi:0.2:%pi];

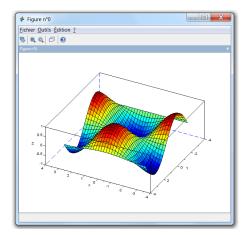
--> [X,Y] = meshgrid(x,y);

--> Z = cos(X).*sin(Y);

--> surf(X,Y,Z)

--> f=gcf();

--> f.color_map = jetcolormap(32);
```



Overview

Scilab provides several graphical functions :

plot	2D graphic
contour	level curves in x-y plan
surf	3D surface
pie	"pie" plot
histplot	histogram plot
hist3d	3D histogram plot
bar	bar plot
polarplot	polar coordinate plot

Some instructions allow to add features to the figure :

title	add a title
xtitle	add a title and labels on axis
legend	add a legend

```
--> x = linspace(-20,20,1000);
--> y1 = x.*sin(x);
--> y2 = -x;
--> plot(x,y1,'b',x,y2,'r')
--> xtitle('monugraphique','labeluaxeux','labeluaxeuy');
--> legend('y1=x*sin(x)','y2=-x');
```

```
--> x = linspace(-20,20,1000);

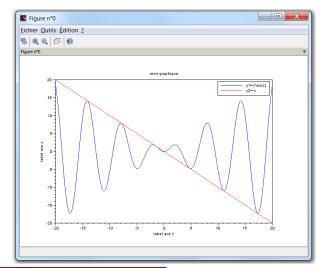
--> y1 = x.*sin(x);

--> y2 = -x;

--> plot(x,y1,'b',x,y2,'r')

--> xtitle('mon_graphique','label_axe_x','label_axe_y');

--> legend('y1=x*sin(x)','y2=-x');
```



Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Scripts

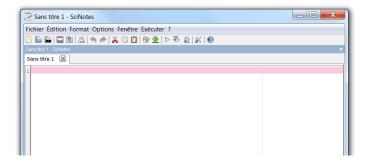
A script is a set of instructions gathered in a file.

- Scilab provides a programming language (interpreted).
- Scilab includes an editor, but any text editor may be used.
- File extension should be ".sce" (but this is not mandatory).
- Editor launched from "Applications > SciNotes" or by typing editor on the console.

Scripts

A script is a set of instructions gathered in a file.

- Scilab provides a programming language (interpreted).
- Scilab includes an editor, but any text editor may be used.
- File extension should be ".sce" (but this is not mandatory).
- Editor launched from "Applications > SciNotes" or by typing editor on the console.



Example of a script : myscript.sce

```
// radius of a sphere
r = 2:
// calculation of the area
A = 4*\%pi*r^2;
// calculation of the volume
V = 4*\%pi*r^3/3;
disp(A,'Area:');
disp(V,'Volume:');
```

On the console:

```
-->exec('myscript.sce', -1)
Area:
    50.265482
Volume:
    33.510322
```

The file must be located in the *current directory*

- Comments: words following // are not interpreted.
- The current directory can be modified in menu File of the console.
- The path may be specified instead

```
exec('C:\Users\yassine\scilab\myscript.sce', -1)
```

- Scripts may also be run from the shortcut in the toolbar.
- Variables defined in the workspace (from the console) are visible and can be modified in the script.

Another example: myscript2.sce

```
x1 = -1; x2 = 1;
x = linspace(x1,x2,n);
y = exp(-2*x).*sin(3*x);
plot(x,y);
disp('see_uplot_uon_uthe_ufigure');
```

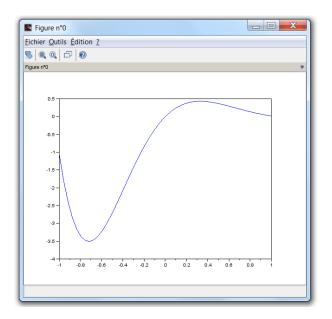
On the console:

```
--> n = 50;

-->exec('myscript2.sce', -1)

see plot on the figure
```

Here the variable n must be defined beforehand.



Looping and branching

Scilab language includes classical control structures

Conditional statements if

```
if boolean expression then
    instructions 1
else
    instructions 2
end
```

```
if (x>=0) then
    disp("x<sub>\(\pi\)</sub>is<sub>\(\pi\)</sub>positive");
else
    disp("x<sub>\(\pi\)</sub>is<sub>\(\pi\)</sub>negative");
end
```

```
select variable
case value 1
    instructions 1
case value 2
    instructions 2
else
    instructions 3
end
```

```
select i
case 1
    disp("One");
case 2
    disp("Two");
case 3
    disp("Three");
else
    disp("Other");
end
```

Loop control statements for

```
for
     variable = start: step: end
    instructions
```

end

```
n = 10;
for k = 1:n
  y(k) = exp(k);
end
```

Loop control based on a boolean expression while

while (boolean expression)

instructions

end

```
x = 16;
while (x > 1)
x = x/2;
 end
```

And also:

- instruction break interrupt and exit a loop.
- instruction continue skip to the next iteration of a loop.

Note that as much as possible, use vector / matrix operations instead of loops. The code may run 10 to 100 times faster. This feature of Scilab is known as the vectorization.

```
tic
for k = 1:1000
    S = S + k;
t = toc(); disp(t);
 = [1:1000]:
S = sum(N);
t = toc(); disp(t);
```

```
-->exec('myscript.sce', -1)
    0.029
    0.002
```

Functions

A function is a command that makes computations from variables and returns a result

```
outvar = afunction(invar)
```

- afunction is the name of the function
- invar is the input argument
- outvar is the output argument, returned by the function

Examples:

```
--> y = sin(1.8)

y =

0.9738476

--> x =[0:0.1:1];

--> N = length(x)

N =
```

User can define its own functions

```
function [out1, out2, ...] = myfunction(in1, in2, ...)
    body of the function
endfunction
```

- once the environment function...endfunction is executed myfunction is defined and loaded in Scilab
- after any change in the function, it must be reloaded to be taken into account
- files including functions generally have the extension ".sci"

Example 1: calculation of the roots of a quadratic equation.

Define and load the function

```
function [x1,x2] = roots_equ2d(a,b,c)
    // roots of ax^2 + bx + c = 0

delta = b^2 - 4*a*c

x1 = (-b - sqrt(delta))/(2*a)

x2 = (-b + sqrt(delta))/(2*a)
endfunction
```

Then, you can use it as any other Scilab function

```
--> [r1,r2] = roots_equ2d(1,3,2)
r2 = - 1.
r1 =
```

Example 2: functions are appropriate to define mathematical functions.

$$f(x) = (x+1) e^{-2x}$$

```
function y = f(x)
      y = (x+1).*exp(-2*x);
endfunction
```

```
--> y = f(4)
  =
0.0016773
```

- Variables from workspace are known inside the function
- but any change inside the function remain local.

```
function z=mytest(x)
       a = a + 1;
endfunction
```

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 5 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

For MATLAB users

Many instructions have the same syntax, but some others not...

A dictionary gives a list of the main MATLAB functions with their Scilab equivalents

Some tools are provided to convert MATLAB files to Scilab (e.g. mfile2sci)

http://help.scilab.org/docs/5.4.1/en_US/About_M2SCI_tools.html

A good note on Scilab for MATLAB users

Eike Rietsch, An Introduction to Scilab from a Matlab User's Point of View, May 2010

http://www.scilab.org/en/resources/documentation/community

Somme differences about the syntax

In MATLAB

- search with keywords lookfor
- comments %
- predefined constants i, pi, inf, true
- special characters in name of variables
- continuation of a statement
- flow control switch case otherwise
- last element of a vector x(end)

In Scilab

- search with keywords apropos
- comments //
- predefined constants %i, %pi, %inf, %t
- special characters in name of variables _, #, !, ?, \$
- continuation of a statement . . .
- flow control select case else
- last element of a vector x(\$)

Different responses for a same command

In MATLAB

- length, the larger of the number of rows and columns
- after a first plot, a second one clears the current figure
- division by a vector $>> x = 1/[1 \ 2 \ 3]$ Error using / Matrix dimensions must agree.
- operators == and ~= compare elements >> [1 2 3] == 1 ans = 1 0 0 >> [1 2 3] == [1 2] Error using == Matrix dimensions must agree. >> [1 2] == ['1','2']

In Scilab

F

- length, the product of the number of rows and columns
- after a first plot, a second one holds the previous
- division by a vector $--> x = 1/[1 \ 2 \ 3]$ x = 0.0714286 0.1428571 0.2142857 x is solution of $[1 \ 2 \ 3]*x = 1$
- operators == and ~= compare objects --> [1 2 3] == 1 ans = TFF --> [1 2 3] == [1 2] ans = --> [1 2] == ['1','2'] ans =

ans =

0 0

Different responses for a same command

In MATLAB

```
for a matrix A=[1 2 4:4 8 2:6 0 9]
  >> max(A)
  ans =
  7 8 9
  >> sum(A)
  ans =
  12 10 18
```

 disp must have a single argument >> a=3;

```
>> disp(['the result is
',int2str(a),' ...bye!'])
```

the result is 3 ...bye!

In Scilab

```
for a matrix A=[1 2 4;4 8 2;6 0 9]
  --> max(A)
  ans =
  9.
  --> sum(A)
  ans =
  36.
```

 disp may have several arguments --> a = 3;

```
--> disp(a,'the result is ' +
string(a), 'hello!')
```

```
hello!
the result is 3
3.
```

note that : prettyprint generates the Latex code to represent a Scilab object

Difference when running a script

In MATLAB

- script is invoked by typing its name myscript
- the m-file must be in a directory of the search path (or specify the path in the call)
- use a semi-colon to print or not the result of an instruction

In Scilab

script is invoked with the exec command

- the file must be the working directory (or specify the path in the call)
- a second argument may be appended (mode) to specify what to print
- it does not seem to do what the documentation says... not clear for me

a simple example, myscript.sce:

```
// a simple script: myscript
a = 1
b = a+3;
disp('resultuisu'+string(b))
```

the second argument mode

Value	Meaning
0	the default value
-1	print nothing
1	echo each command line
2	print prompt $>$
3	echo + prompt
4	stop before each prompt
7	stop + prompt + echo

```
--> exec('myscript.sce',0)
result is 4
```

(as Matlab works)

```
--> exec('myscript.sce',-1)
```

(only output of disp is printed)

```
--> exec('myscript.sce',1)
-->// a simple script: myscript
-->a = 1
1.
-->b = a+3;
-->disp('resultuisu'+string(b))
 result is 4
```

(everything is printed (instructions and outputs)

Difference when using user defined functions

In MATLAB

- a function is a file, they must have the same name
- variables in the function are local variables
- any other functions defined in the file are local functions

In Scilab

- a function is a variable
- variables in the function are local variables and variables from the calling workspace are known
- when defined (function ... endfunction), functions are not executed but loaded
- any change in the function requires to reload it (executing the environment)

A function may be defined directly in the console:

```
-->function [y] = addition(u1,u2)
-->endfunction
--> addition(2,3)
   5.
```

or in a file anyscript.sce, and the file must be executed:

```
--> addition(2,3)
               !--error 4
Variable non définie : addition
--> exec('anyscript.sce', -1)
--> addition(2,3)
    5.
```

Any change needs to redefine (reload) the function to be taken into account.

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- Classical control design
- Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Exercices

Exercice 1

Calculate the sum of the first 100 integers squared,

$$1 + 2^2 + 3^2 + 4^2 + \ldots + 100^2$$

in 3 different ways:

- with instruction for,
- with instruction while,
- with instruction sum.

Exercice 2

Let us consider a monotonic increasing function f over an interval [a,b] such that

$$f(a) < 0 \qquad \text{and} \qquad f(b) > 0$$

Write an algorithm, based on a dichotomic search, to find the root x_0 such that $f(x_0) = 0$.

•
$$f_1(x) = 2x^4 + 2.3x^3 - 16x^2 - 8x - 17.5$$
 with $x \in [0, 100]$,

•
$$f_2(x) = \tan(x^2) - x$$
 with $x \in [0.5, \pi/3]$.

Exercice 3

The Fourier expansion of a square wave f with a period T and an amplitude A is of the form :

$$f(t) = \sum_{n=1}^{+\infty} a_n \cos(n\omega t)$$
 with $a_n = \frac{2A}{n\pi} \sin\left(n\frac{\pi}{2}\right)$ and $\omega = \frac{2\pi}{T}$.

Plot the Fourier expansion for different numbers of harmonics.

numerical values : A = 2, T = 0.5s, $t \in [0, 2]$.

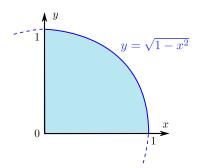
Exercice 4

Numerical integration for estimating π

 $\pi = \text{surface of a unit disc}$

$$x^2 + y^2 = 1$$

Compute the area of a quarter of the disc with the rectangle method.



Sommaire

- 1 What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 5 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 5 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Xcos

Xcos is a graphical environment to simulate dynamic systems.

It is the Simulink $^{\circledR}$ counterpart of Scilab.

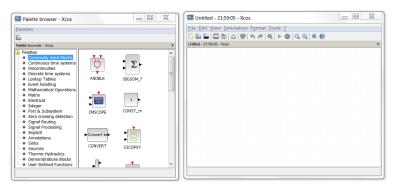
It is launched in Application/Xcos or by typing xcos

Xcos

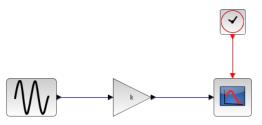
Xcos is a graphical environment to simulate dynamic systems.

It is the Simulink[®] counterpart of Scilab.

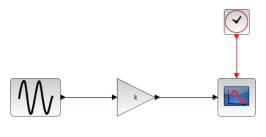
It is launched in Application/Xcos or by typing xcos



A simple example



A simple example

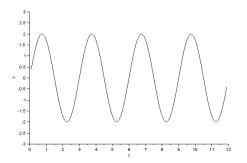


block	sub-palette
sinus	Sources/GENSIN_f
gain	Math. Operations/GAINBLK_f
scope	Sinks/CSCOPE
clock	Sources/CLOCK_c

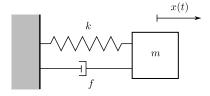
- drag and drop blocks from the palette browser to the editing window
- k is variable from the workspace (or from Simulation/Set context)
- black lines are data flows and red lines are event flows

Settings : frequency = $2\pi/3$, k=2, final integral time = 12, Ymin= -3, Ymax= 3, Refresh period = 12

Run simulation from Simulation/Start



Let simulate a mass-spring-damper system

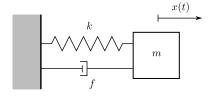


The system can be described by the equation of motion

$$m\ddot{x}(t) + f\dot{x}(t) + kx(t) = 0$$

with the initial conditions : x(0) = 5 and $\dot{x}(0) = 0$

Let simulate a mass-spring-damper system



The system can be described by the equation of motion

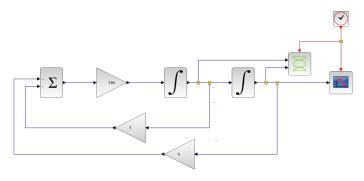
$$m\ddot{x}(t) + f\dot{x}(t) + kx(t) = 0$$

with the initial conditions : x(0) = 5 and $\dot{x}(0) = 0$

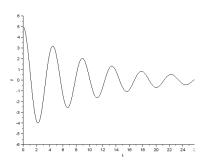
The acceleration of the mass is then given by

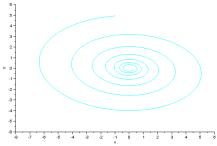
$$\ddot{x}(t) = -\frac{1}{m} \Big(kx(t) + f\dot{x}(t) \Big)$$

modeling and simulation with Xcos

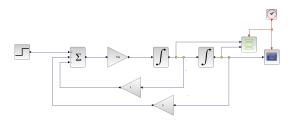


block	sub-palette
sum	Math. Operations/BIGSOM_f
gain	Math. Operations/GAINBLK_f
integral	Cont. time systems/INTEGRAL_m
scope	Sinks/CSCOPE
x-y scope	Sinks/CSCOPXY
clock	Sources/CLOCK_c

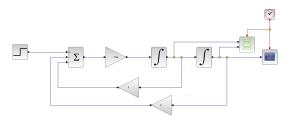




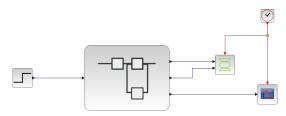
parameters : m = 1, k = 2 and f = 0.2



Let add an external force



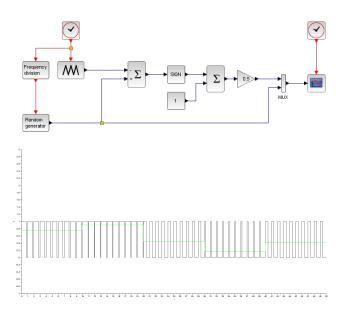
Define a superblock : $Edit/Region\ to\ superblock$



Example 3: simulation of a PWM signal



Example 3: simulation of a PWM signal



Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 5 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Physical modeling

Xcos includes, as a module extension, Modelica blocks.

It provides a physical approach for modeling

Physical modeling

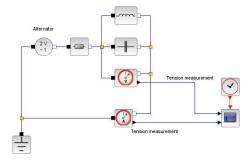
Xcos includes, as a module extension, Modelica blocks.

It provides a physical approach for modeling

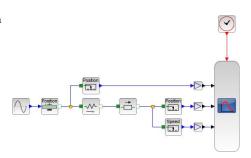
 $\begin{array}{ccc} \text{physical modeling} & \text{causal modeling} \\ \text{or} & \neq & \text{with} \\ \text{acausal modeling} & \text{input/output relations} \end{array}$

Modelica blocks in Xcos require a C compiler

Electrical system



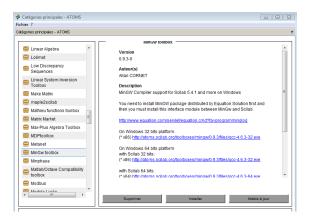
Mechanical system



Installation requirements:

- install a gcc compiler (in the OS),
- install MinGW toolbox (in Scilab),
- install Coselica Toolbox for more Modelica blocks (in Scilab, optional)

- install a gcc compiler (in the OS),
- install MinGW toolbox (in Scilab),
- install Coselica Toolbox for more Modelica blocks (in Scilab, optional)



Sommaire

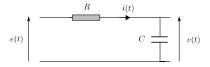
- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 5 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Exercices

Exercice 1

Let us consider a RC circuit



The system can be described by the linear differential equation

$$RC\dot{v}(t) + v(t) = e(t)$$

with the initial condition : v(0) = 0.

Simulate the response v(t) to a step input e(t) = 5V.

Let us consider the predator-prey model based on Lotka-Volterra equations

$$\begin{cases} \dot{x}(t) &= x(t) \left(a - by(t) \right) \\ \dot{y}(t) &= y(t) \left(-c + dx(t) \right) \end{cases}$$

where

- x(t) is the number of prey
- y(t) is the number of predator
- ullet a and d are parameters describing the growth of the prey population and the predator population
- ullet b and c are parameters describing the death rate of the prey population and the predator population

Simulate ² the evolution of populations with initial conditions x(0) = 4 and y(0) = 2.

^{2.} numerical values : a = 3, b = 1, c = 2, d = 1

Sommaire

- 1 What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 5 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

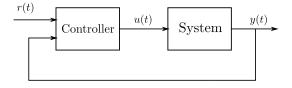
Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 6 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

A brief review

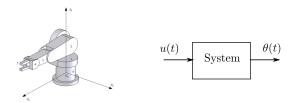
Objective: Design a controller to control a dynamical system.



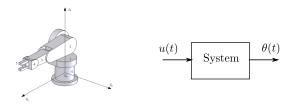
The output to be controlled is measured and taken into account by the controller.

⇒ feedback control

Example: angular position control of a robotic arm.



Example: angular position control of a robotic arm.



- u(t) is the control voltage of the DC motor (actuator)
- $\theta(t)$ is the angular position of the arm (measured with a sensor)

The input-output relationship is given by:

$$\ddot{\theta}(t) + \dot{\theta}(t) = u(t)$$

The corresponding transfer function is

$$G(s) = \frac{\hat{\theta}(s)}{\hat{u}(s)} = \frac{1}{(s+1)s}$$

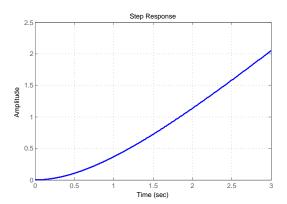
It has 2 poles : -1 and $0 \Rightarrow$ system is unstable

The corresponding transfer function is

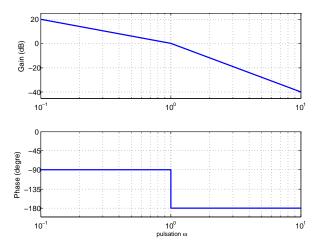
$$G(s) = \frac{\hat{\theta}(s)}{\hat{u}(s)} = \frac{1}{(s+1)s}$$

It has 2 poles : -1 and $0 \Rightarrow$ system is unstable

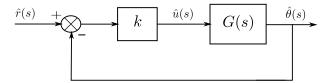
Its step response is divergent



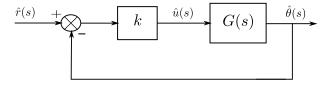
The asymptotic bode diagram :



Closed-loop control with a proportional gain k



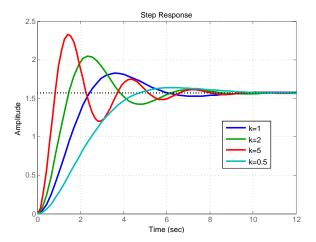
Closed-loop control with a proportional gain k



The closed-loop transfer function is

$$F(s) = \frac{k}{s^2 + s + k}$$

The Routh criterion shows that F(s) is stable $\forall k > 0$.



Quick analysis of the feedback system

The tracking error is given by : $\varepsilon(t) = r(t) - \theta(t)$

$$\hat{\varepsilon}(s) = \frac{s^2 + s}{s^2 + s + k}\hat{r}(s)$$

the static error is zero : $\varepsilon_s = \lim_{s \to 0} s \,\hat{\varepsilon}(s) = 0$ (with $\hat{r}(s) = \frac{\pi/2}{s}$)

Quick analysis of the feedback system

The tracking error is given by : $\varepsilon(t) = r(t) - \theta(t)$

$$\hat{\varepsilon}(s) = \frac{s^2 + s}{s^2 + s + k}\hat{r}(s)$$

the static error is zero : $\varepsilon_s = \lim_{s \to 0} s \,\hat{\varepsilon}(s) = 0$ (with $\hat{r}(s) = \frac{\pi/2}{s}$)

Using the standard form of 2^{nd} order systems:

$$F(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \qquad \Rightarrow \qquad \left\{ \begin{array}{rcl} K & = & 1, \\ \omega_n & = & \sqrt{k} \\ \zeta & = & 1/2\sqrt{k} \end{array} \right.$$

we can conclude that

- when $k \nearrow$, damping $\zeta \searrow$ and oscillations \nearrow
- settling time $t_{5\%} \approx \frac{3}{6m\pi} = 6s$.

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 5 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Definition of a transfer function

```
--> den = %s^2+%s;
--> G = syslin('c',num,den)
```

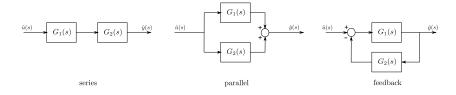
- The argument c stands for continuous-time system (d for discrete)
- The instruction roots is useful to calculate the poles of a transfer function
- The instruction plzr plots the pole-zero map in the complex plane

Computation of the time response

```
--> t = [0:0.02:3];
--> theta = csim('step',t,G);
--> plot(t,theta)
```

- The string argument step is the control, it can be impuls, a vector or a function.
- To define the time vector, you may also use the linspace instruction.
- For frequency analysis, different instructions are provided: repfreq, bode, nyquist, black.

Systems connection



The mathematical operators can handle syslin type

Example

$$G_1(s) = \frac{1}{s+2}$$
 and $G_2(s) = \frac{4}{s}$

```
--> G1 * G2 // series connection
ans =
  2s + s
--> G1 + G2 // parallel connection
ans =
   8 + 5s
  2s + s
--> G1 /. G2 // feedback connection
ans =
   4 + 2s + s
```

Let simulate the closed-loop control with a proportional gain

```
--> F = (G*k) /. 1
--> routh_t(%s^2+%s+2)
 ans =
--> [wn, zeta] = damp(F)
    0.3535534
    0.3535534
    1.4142136
   1.4142136
--> t = linspace(0,12,200);
--> theta = csim('step',t,F)*%pi/2;
--> plot(t,theta)
```

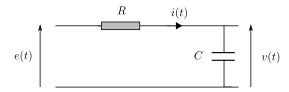
Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

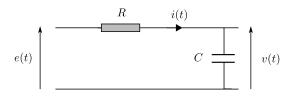
Bode plot

Introductory example : RC circuit



Bode plot

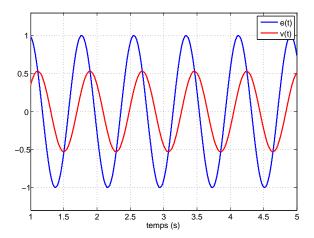
Introductory example: RC circuit

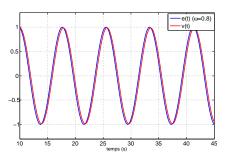


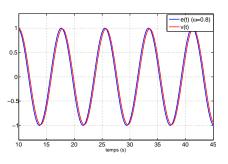
Sinusoidal steady state:

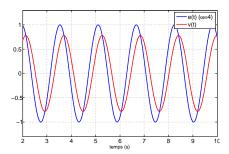
$$\begin{cases} e(t) = e_m \cos(\omega t + \phi_e) \\ v(t) = v_m \cos(\omega t + \phi_v) \end{cases} \Rightarrow \begin{cases} \underline{e} = e_m e^{j\phi_e} \\ \underline{v} = v_m e^{j\phi_v} \end{cases}$$

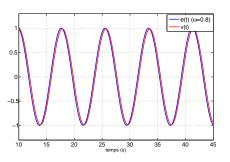
For $R = 1k\Omega$ and $C = 200\mu F$, let apply a voltage $e(t) = \cos(8t)$.

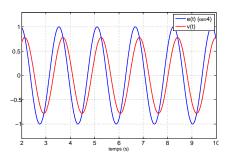


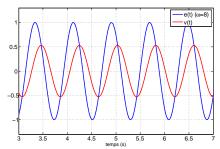


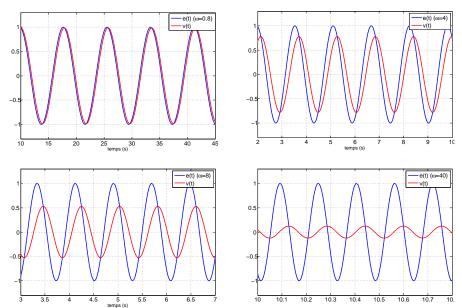




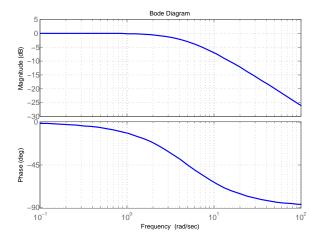




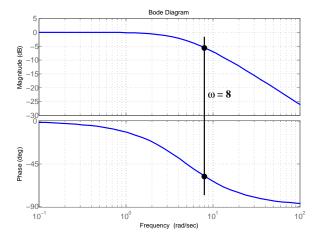


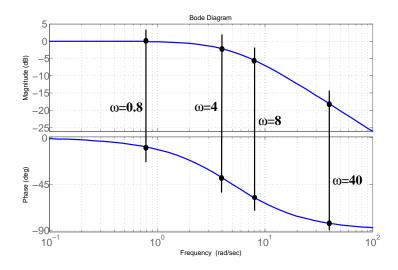


Bode diagram of the transfer function



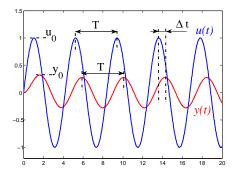
Bode diagram of the transfer function





Frequency analysis consists in studying the response of a LTI system with sine inputs

Frequency analysis consists in studying the response of a LTI system with sine inputs



The output signal is also a sine with the same frequency, but with a different magnitude and a different phase angle.

A system can then be characterized by its

• gain :
$$\frac{y_0}{u_0}$$

• phase shift :
$$\pm 360 \frac{\Delta t}{T}$$

The magnitude and the phase depend on the frequency ω

A system can then be characterized by its

- gain : $\frac{y_0}{u_0}$
- phase shift: $\pm 360 \frac{\Delta t}{T}$

The magnitude and the phase depend on the frequency ω

It can be shown that:

- gain = $|F(j\omega)|$,
- phase shift = $\arg F(j\omega)$.

 $F(j\omega)$ is the transfer function of the system where the Laplace variable s has been replaced by $j\omega$.

Example: let consider system

$$F(s) = \frac{1/2}{s+1}$$

What are the responses to these inputs?

$$u_1 = \sin(0.05\,t)$$

$$u_2 = \sin(1.5\,t)$$

$$u_3 = \sin(10\,t)$$

Example: let consider system

$$F(s) = \frac{1/2}{s+1}$$

What are the responses to these inputs?

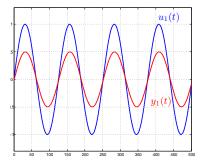
$$u_1 = \sin(0.05 t)$$
$$u_2 = \sin(1.5 t)$$
$$u_3 = \sin(10 t)$$

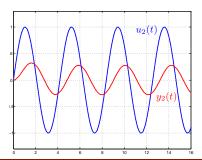
we express
$$F(j\omega) = \frac{1/2}{j\omega + 1}$$

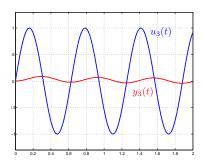
• for
$$\omega = 0.05 \; rad/s$$
 : $|F(j0.05)| = 0.5$ and $\arg F(j0.05) = -2.86^{\circ}$.

• for
$$\omega = 1.5 \ rad/s$$
: $|F(j1.5)| = 0.277$ and $\arg F(j1.5) = -56.3^{\circ}$.

• for
$$\omega = 10 \ rad/s$$
: $|F(j10)| = 0.05$ and $\arg F(j10) = -84.3^{\circ}$.

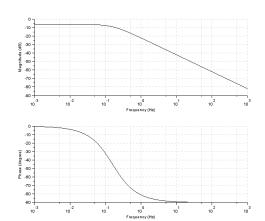






- the gain is expressed as decibels: gain $dB = 20 \log \frac{y_0}{y_0}$
- property: the Bode diagram of F(s)G(s) is the sum of the one of F(s) and the one of G(s).
- in Scilab, the instruction bode (F) plots the Bode diagram of F(s).

- the gain is expressed as decibels: gain $dB = 20 \log \frac{y_0}{y_0}$
- property: the Bode diagram of F(s)G(s) is the sum of the one of F(s) and the one of G(s).
- in Scilab, the instruction bode (F) plots the Bode diagram of F(s).



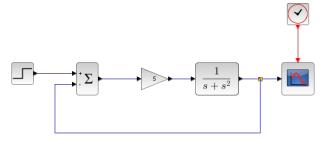
Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 5 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

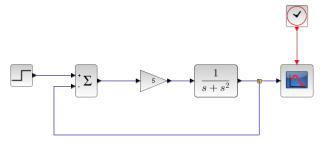
Simulation with Xcos

Let simulate the closed-loop control with a proportional gain



Simulation with Xcos

Let simulate the closed-loop control with a proportional gain



block	sub-palette
step	Sources/STEP_FUNCTION
sum	Math. Operations/BIGSOM_f
gain	Math. Operations/GAINBLK_f
transfert function	Cont. time systems/CLR
scope	Sinks/CSCOPE
clock	Sources/CLOCK_c

settings : final value (step) = %pi/2, final integral time = 12, Ymin= 0, Ymax= 2.5, Refresh period = 12

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 6 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Exercices

Let us consider a system modeled by

$$G(s) = \frac{4}{4s^2 + 4s + 5}$$

- Calculate poles. Is the system stable?
- Calculate the closed-lopp transfer function (with a proportional gain k).
- Calculate the minimal value of k to have a static error $\geq 10\%$.
- Calculate the maximal value of k to have an overshoot $\leq 30\%$.
- Simulate all these cases with Xcos.

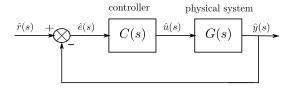
Sommaire

- 1 What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 6 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Classical control design

Control design aims at designing a controller C(s) in order to assign desired performances to the closed loop system



- Classical control is a frequency domain approach and is essentially based on Bode plot
- Main controllers, or compensators, are phase lag, phase lead, PID (proportional integral derivative)

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 6 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Loopshaping

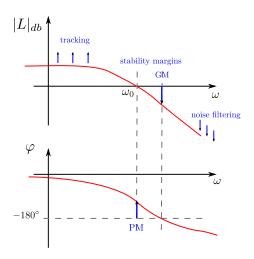
Let express the tracking error

$$\hat{e}(s) = \frac{1}{1 + G(s)C(s)}\hat{r}(s)$$

So, a high open-loop gain results in a good tracking

- it leads to better accuracy and faster response (depending on the bandwidth)
- but it leads to a more aggressive control input (u)
- but it reduces stability margins

Let define the open-loop transfer function L = GCClosed-loop performances can be assessed from the Bode plot of L



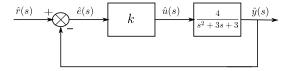
- PM and GM are phase and gain margins
- noise disturbances are a high frequency signals

Loopshaping consists in designing the controller C(s) so as to "shape" the frequency response of L(s)

we recall that

$$|L|_{db} = |GC|_{db} = |G|_{db} + |C|_{db}$$

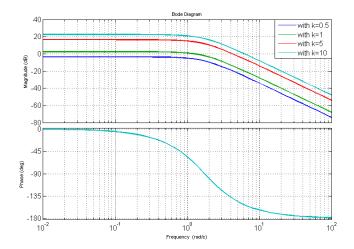
The desired "shape" depends on performance requirements for the closed-loop system



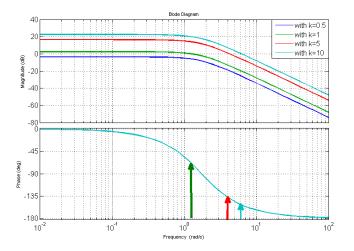
The open-loop transfer function is

$$L(s) = \frac{4k}{s^2 + 3s + 3}$$

Bode plot of L(s) for $k = \{0.5, 1, 5, 10\}$

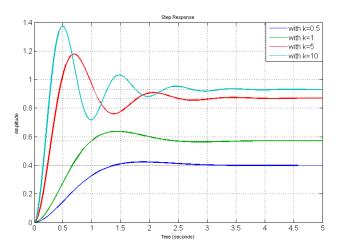


Bode plot of L(s) for $k = \{0.5, 1, 5, 10\}$



when k increases, the phase margin decreases

Step response of the closed-loop system (unit step) for $k = \{0.5, 1, 5, 10\}$



- \bullet the static error decreases as k increases
- \bullet oscillations increase as k increases

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Phase lag controller

The transfer function of the phase lag controller is of the form

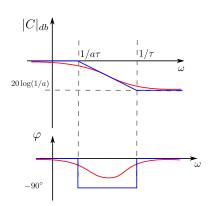
$$C(s) = \frac{1 + \tau s}{1 + a\tau s}, \quad \text{with } a > 1$$

Phase lag controller

The transfer function of the phase lag controller is of the form

$$C(s) = \frac{1 + \tau s}{1 + a\tau s}, \quad \text{with } a > 1$$

- a and τ are tuning parameters
- It allows a higher gain in low frequencies
- But the phase lag must not reduce the phase margin



$$G(s) = \frac{4}{s^2 + 3s + 3}$$

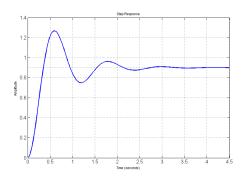
What value for the proportional gain k to have a static error of 10%?

$$G(s) = \frac{4}{s^2 + 3s + 3}$$

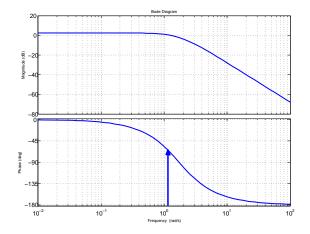
What value for the proportional gain k to have a static error of 10%?

static error
$$=\frac{1}{1+\frac{4}{2}k}=0.1$$
 \Rightarrow $k=6.75$

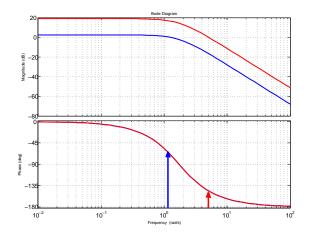
close-loop system response



Precision ok, but too much oscillations



Precision ok, but too much oscillations

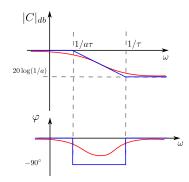


Phase margin : before = 111° (at 1.24 rd/s); after = 34° (at 5.04 rd/s)

Phase lag controller

$$C(s) = \frac{1 + \tau s}{1 + a\tau s}$$

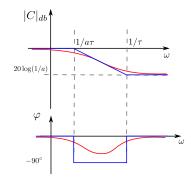
with a > 1



Phase lag controller

$$C(s) = \frac{1 + \tau s}{1 + a\tau s}$$

with a > 1

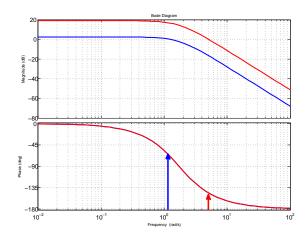


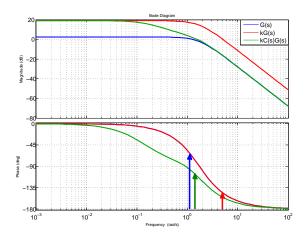
- We want a high gain only at low frequencies
- Phase lag must occur before the crossover frequency

$$\frac{1}{\tau} < \omega_0 = 1.24$$
 \Rightarrow $\tau = 1$

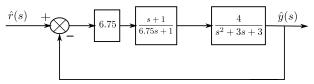
• Then, we want to recover a gain of 1

$$a = 6.75$$

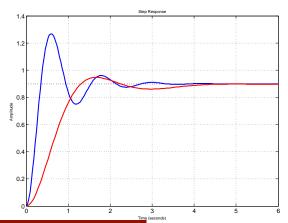




Phase margin: now, with the proportional gain and the phase lag controller $=70^{\circ} \text{ (at } 1.56 \ rd/s)$



close-loop system response



Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller.
 - PID controller
 - Exercices

Phase lead controller

The transfer function of the phase lead controller is of the form

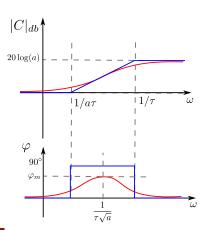
$$C(s) = \frac{1 + a\tau s}{1 + \tau s}, \quad \text{with } a > 1$$

Phase lead controller

The transfer function of the phase lead controller is of the form

$$C(s) = \frac{1 + a\tau s}{1 + \tau s},$$
 with $a > 1$

- a and τ are tuning parameters
- It provides a phase lead in a frequency range
- But the gain may shift the crossover frequency



The phase lead compensator is used to increase the phase margin

Procedure:

- firstly, adjust a proportional gain k to reach a tradeoff between speed/accuracy and overshoot.
- measure the current phase margin and subtract to the desired margin

$$\varphi_m = PM_{\text{desired}} - PM_{\text{current}}$$

 \bullet compute a

$$a = \frac{1 + \sin \varphi_m}{1 - \sin \varphi_m}$$

- at the maximum phase lead φ_m , the magnitude is $20 \log \sqrt{a}$. Find the frequency ω_m for which the magnitude of kG(s) is $-20\log\sqrt{a}$
- \bullet compute τ

$$\tau = \frac{1}{\omega_m \sqrt{a}}$$

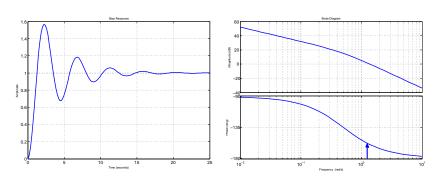
$$G(s) = \frac{4}{s(2s+1)}$$

Example

$$G(s) = \frac{4}{s(2s+1)}$$

close-loop system response

open-loop bode diagram



Phase margin : 20° at $1.37 \ rd/s$

Design of a phase lead compensator

• current phase margin is 20°, and the desired margin is, say, 60°

$$\varphi_m = 40^\circ = 0.70 \ rd$$

 \bullet compute a

$$a = \frac{1 + \sin \varphi_m}{1 - \sin \varphi_m} = 4.62$$

- at the maximum phase lead φ_m , the magnitude is 6.65 db. At the frequency $\sim 2 \ rd/s$ the magnitude of G(s) is $-6.65 \ db$
- \bullet compute τ

$$\tau = \frac{1}{\omega_m \sqrt{a}} = 0.23$$

Design of a phase lead compensator

• current phase margin is 20°, and the desired margin is, say, 60°

$$\varphi_m = 40^\circ = 0.70 \ rd$$

 \bullet compute a

$$a = \frac{1 + \sin \varphi_m}{1 - \sin \varphi_m} = 4.62$$

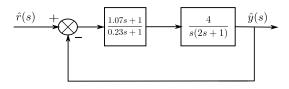
- at the maximum phase lead φ_m , the magnitude is 6.65 db. At the frequency $\sim 2 \ rd/s$ the magnitude of G(s) is $-6.65 \ db$
- \bullet compute τ

$$\tau = \frac{1}{\omega_m \sqrt{a}} = 0.23$$

Hence, the controller is of the form

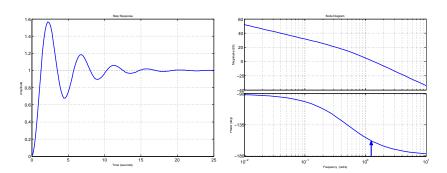
$$C(s) = \frac{1 + 1.07s}{1 + 0.23s}$$

Example

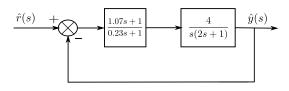


close-loop system response

open-loop bode diagram

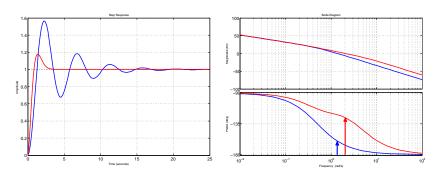


Example



close-loop system response

open-loop bode diagram



New phase margin : 53.7° at $2 \ rd/s$

Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- 6 Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

PID controller

A PID controller consists in 3 control actions

⇒ proportional, integral and derivative

Transfer function of the form:

$$C(s) = k_p + k_i \frac{1}{s} + k_d s$$

= $k_p (1 + \frac{1}{\tau_i s}) (1 + \tau_d s)$

The phase lag controller is an approximation of the PI controller

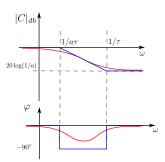
Phase lag controller

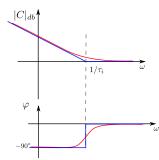
$$C(s) = \frac{1 + \tau s}{1 + a\tau s}$$

with a > 1

PI controller

$$C(s) = \frac{1 + \tau_i s}{\tau_i s}$$





The phase lead controller is an approximation of the PD controller

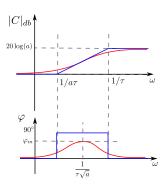
Phase lead controller

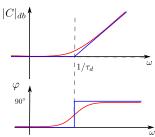
$$C(s) = \frac{1 + a\tau s}{1 + \tau s}$$

with a > 1

PD controller

$$C(s) = 1 + \tau_d s$$





A PID controller is a combination of phase lag and phase lead controllers

$$C(s) = k \left(\frac{1 + \tau_1 s}{1 + a_1 \tau_1 s} \right) \left(\frac{1 + a_2 \tau_2 s}{1 + \tau_2 s} \right)$$

with $a_1 > 1$ and $a_2 > 1$.

Transfer function of the form:

- the phase lag part is designed to improve accuracy and responsiveness
- the phase lead part is designed to improve stability margins
- an extra low-pass filter may be added to reduce noise

$$C_1(s) = \frac{1}{1 + \tau_3 s}$$

with $\tau_3 \ll \tau_2$



Sommaire

- What is Scilab?
 - Introduction
 - Basics
 - Matrices
 - Plotting
 - Programming
- 2 For MATLAB users
 - MATLAB vs Scilab
 - Exercices
- 3 Xcos
 - Basics
 - Physical modeling
 - Exercices

- 4 Application to feedback control
 - A brief review
 - System analysis in Scilab
 - Bode plot
 - Simulation with Xcos
 - Exercices
- Classical control design
 - Loopshaping
 - Phase lag controller
 - Phase lead controller
 - PID controller
 - Exercices

Exercices

Exercice 1

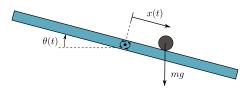
Let us consider a system modeled by

$$\ddot{y}(t) + 4\dot{y}(t) + 2y(t) = 3u(t)$$

- Calculate the closed-lopp transfer function (with a proportional gain k).
- What is the static error for k=1?
- Calculate the value of k to have a static error = 5%. How much is the overshoot for that value?
- Design a phase lag controller.
- Simulate all these cases with Xcos.

Exercice 2

We now consider a ball and beam system



A simple model is given by

$$m\ddot{x}(t) = mg\sin(\theta(t))$$
 \Rightarrow linearizing : $\ddot{x}(t) = g\theta(t)$

- Is the open-loop system stable?
- Is the closed-loop system stable?
- Design a phase lead controller.
- Simulate all these cases with Xcos.