
Introduction to Scilab
application to feedback control

Yassine Ariba

Brno University of Technology - April 2014

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 1 / 115

Sommaire

1 Introduction

2 Basics

3 Matrices

4 Plotting

5 Programming

6 For MATLAB users

7 Xcos

8 Application to feedback control

9 Classical control design

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 2 / 115

Introduction

Sommaire

1 Introduction

2 Basics

3 Matrices

4 Plotting

5 Programming

6 For MATLAB users

7 Xcos

8 Application to feedback control

9 Classical control design

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 3 / 115

Introduction What is Scilab ?

What is Scilab ?

Scilab is the contraction of Scientific Laboratory. Scilab is :

a numerical computing software,

an interpreted programming environment,

used for any scientific and engineering applications,

multi-platform : Windows, MacOS et Linux,

Created by researchers from
Inria in the 90’s, the software
is now developed by Scilab
Entreprises

www.scilab.org

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 4 / 115

Introduction What is Scilab ?

Scilab includes hundreds of functions for various applications

Mathematics and simulation

2D and 3D visualization

Optimization

Statistics

Control system design and analysis

Signal processing

Application development

More informations : www.scilab.org

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 5 / 115

Introduction License

License

Scilab is an open source software.

It is distributed under a GPL-compatible license.

It is a free open source alternative to MatlabR© 1.

Scilab can be downloaded from :

http://www.scilab.org/download/

The version used in this introduction is

version 5.4.1

1. Matlab is a registered trademark of The MathWorks, Inc.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 6 / 115

Introduction Getting started

Getting started

Firstly, Scilab can be used in an interactive way by typing instructions on
the console.

type scilab code on the prompt -->

type enter, to execute it.

Scilab return its answer on the console or in a new window for graphics.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 7 / 115

Introduction Getting started

A first simple example :

--> A = 2;

--> t = [0:0.01:10];

--> y = A*sin(3*t);

--> plot(t,y);

Line 1 : assign the value 2 to the variable A.

Line 2 : define a vector t that goes from 0 to 10 with a step of 0.01.

Line 3 : compute a vector y from some mathematical operations.

Line 4 : plot y with respect to t on a 2D graphic.

Note that “ ; ” prevents from printing the result of an instruction.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 8 / 115

Introduction Getting started

A first simple example :

--> A = 2;

--> t = [0:0.01:10];

--> y = A*sin(3*t);

--> plot(t,y);

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 8 / 115

Introduction Getting started

A second simple example :

Let consider a system of linear equations
2x1 + x2 = −5

4x1 − 3x2 + 2x3 = 0
x1 + 2x2 − x3 = 1

Let solve it with Scilab

--> A = [2 1 0 ; 4 -3 2 ; 1 2 -1];

--> b = [-5;0;1];

--> x = inv(A)*b

x =

1.75

- 8.5

- 16.25

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 9 / 115

Introduction Getting started

Scilab provides a graphical environment with several windows.

the console

command history

file browser

variable browser

and others : editor, graphics, help, ...

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 10 / 115

Basics

Sommaire

1 Introduction

2 Basics

3 Matrices

4 Plotting

5 Programming

6 For MATLAB users

7 Xcos

8 Application to feedback control

9 Classical control design

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 11 / 115

Basics Elementary operations

Elementary operations

Simple numerical calculations :

--> (1+3)*0.1

ans =

0.4

--> 4^2/2

ans =

8.

--> 2*(1+2* %i)

ans =

2. + 4.i

--> %i^2

ans =

- 1.

--> cos (3)^2 + sin (3)^2

ans =

1.

--> exp(5)

ans =

148.41316

--> abs(1+%i)

ans =

1.4142136

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 12 / 115

Basics Elementary operations

elementary operations

+ addition
- subtraction
* multiplication
/ right division
\ left division
ˆ exponents

elementary functions

sin cos tan cotg

asin acos atan sec

sinh cosh tanh csc

abs real imag conj

exp log log10 log2

sign modulo sqrt lcm

round floor ceil gcd

--> conj (3+2* %i)

ans =

3. - 2.i

--> log10 (10^4)

ans =

4.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 13 / 115

Basics Elementary operations

boolean operations

the boolean value true is written : %T.

the boolean value false is written : %F.

& logical and
| logical or
∼ logical not
== equal
∼= or <> different
< (<=) lower than (or equal)
> (>=) greater than (or equal)

--> %T & %F

ans =

F

--> 2 == 2

ans =

T

--> 2 < 3

ans =

T

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 14 / 115

Basics Variables

Variables

A variable can be directly defined via the assignment operator : “ = ”

--> a = 2.5;

--> b = 3;

--> c = a*b

c =

7.5

--> c+d

!--error 4

Undefined variable : d

Variable names may be defined with letters a → z, A → Z, numbers 0

→ 9 and few additional characters %, , !, #, ?, $.

Scilab is case sensitive.

Do not confused the assignment operator “ = ” with the mathematical
equal.

Variable declaration is implicit, whatever the type.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 15 / 115

Basics Variables

Pre-defined variables

%i imaginary number i =
√
−1

%e Euler’s number e
%pi constant π
%inf infinity ∞
%t ou %T boolean true
%f ou %F boolean false

--> cos(2*%pi)

ans =

1.

--> %i^2

ans =

- 1.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 16 / 115

Matrices

Sommaire

1 Introduction

2 Basics

3 Matrices

4 Plotting

5 Programming

6 For MATLAB users

7 Xcos

8 Application to feedback control

9 Classical control design

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 17 / 115

Matrices Defining and handling vectors

Defining and handling vectors

A vector is defined by a list of numbers between brackets :

--> u = [0 1 2 3]

u =

0. 1. 2. 3.

Automatic creation

--> v = [0:0.2:1]

v =

0. 0.2 0.4 0.6 0.8 1.

Syntax : start:step:end

Mathematical functions are applied element-wise

--> cos(v)

ans =

1. 0.980 0.921 0.825 0.696 0.540

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 18 / 115

Matrices Defining and handling vectors

column vectors can also be defined with semi colon separator “ ; ”

--> u = [1;2;3]

u =

1.

2.

3.

Some useful functions :

length return the length of the vector
max return the maximal component
min return the minimal component
mean return the mean value
sum return the sum of all components
prod return the product of all components

--> length(v)

ans =

6.

--> mean(v)

ans =

0.5

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 19 / 115

Matrices Defining and handling matrices

Defining and handling matrices

Matrices are defined row by row with the separator “;”

--> A = [1 2 3 ; 4 5 6 ; 7 8 9]

A =

1. 2. 3.

4. 5. 6.

7. 8. 9.

Particular matrices :

zeros(n,m) n×m matrix of zeros
ones(n,m) n×m matrix of ones
eye(n,n) identity matrix
rand(n,m) n×m matrix of random numbers (values ∈ [0, 1])

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 20 / 115

Matrices Defining and handling matrices

Accessing the elements of a matrix : A(select row(s),select column(s))

--> A(2,3)

ans =

6.

--> A(2,:)

ans =

4. 5. 6.

--> A(:,[1 3])

ans =

1. 3.

4. 6.

7. 9.

For vectors, one argument is enough v(3) (gives 0.4)

Elements may be modified

--> A(2,3) = 0;

--> A

A =

1. 2. 3.

4. 5. 0.

7. 8. 9.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 21 / 115

Matrices Defining and handling matrices

Some useful functions :

size return the dimensions of a matrix
det compute the determinant of a matrix
inv compute the inverse matrix
rank return the rank of a matrix
diag extract the diagonal of a matrix
triu extract the upper triangular part of a matrix
tril extract the lower triangular part of a matrix
spec return the eigenvalues of a matrix

--> B = [1 0 ; 2 2];

--> det(B)

ans =

2.

--> inv(B)

ans =

1. 0.

- 1. 0.5

--> triu(A)

ans =

1. 2. 3.

0. 5. 6.

0. 0. 9.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 22 / 115

Matrices Matrix operations

Matrix operations

Basic operations +, -, *, /, ˆ can be directly performed

Watch out for dimension compatibility !

transpose operator : “.’” , transpose and conjugate operator : “’”

--> C = [1 0 ; 3 1 ; 0 2];

--> D = [1 1 ; 4 0];

--> B + D

ans =

2. 1.

6. 2.

--> B * inv(B)

ans =

1. 0.

0. 1.

--> A * C

ans =

7. 8.

19. 17.

31. 26.

--> A + B

!--error 8

Inconsistent addition.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 23 / 115

Matrices Matrix operations

Elementary functions are applied element-wise

--> M = [0 %pi/2 ; -%pi/2 %pi];

--> sin(M)

ans =

0. 1.

- 1. 1.225D-16

--> t = [0:0.2:1];

--> exp(t)

ans =

1. 1.2214 1.4918 1.8221 2.2255 2.7182

There are specific versions of those functions for matrix operations

expm logm sqrtm

sinm cosm ˆ

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 24 / 115

Matrices Matrix operations

Element-wise operations

.* ./ .ˆ

--> A = [0 4 ; 1 2];

--> B = [1 2 ; 5 -3];

--> A * B

ans =

20. - 12.

11. - 4.

--> A .* B

ans =

0. 8.

5. - 6.

--> A.^2

ans =

0. 16.

1. 4.

--> exp(t)./(t+1)

ans =

1. 1.0178 1.0655 1.1388 1.2364 1.3591

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 25 / 115

Plotting

Sommaire

1 Introduction

2 Basics

3 Matrices

4 Plotting

5 Programming

6 For MATLAB users

7 Xcos

8 Application to feedback control

9 Classical control design

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 26 / 115

Plotting 2D graphics

2D graphics

To plot a curve in the x-y plan use function plot

--> x = [0:0.1:2* %pi];

--> y = cos(x);

--> plot(x,y,’*’)

plot traces a point for each
couple x(i)-y(i).

x and y must have the same size.

By default, a line is drawn
between points.

The third argument defines the
style of the plot.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 27 / 115

Plotting 2D graphics

2D graphics

To plot a curve in the x-y plan use function plot

--> x = [0:0.1:2* %pi];

--> y = cos(x);

--> plot(x,y,’*’)

plot traces a point for each
couple x(i)-y(i).

x and y must have the same size.

By default, a line is drawn
between points.

The third argument defines the
style of the plot.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 27 / 115

Plotting 2D graphics

--> x = [0:0.1:2* %pi];

--> y2 = cos(2*x);

--> y3 = cos(4*x);

--> y4 = cos(6*x);

--> plot(x,y1);

--> plot(x,y2,’r’);

--> plot(x,y3,’k:’);

--> plot(x,y4,’g--’);

Several graphics can be
displayed.

clf : clear the current graphic
figure.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 28 / 115

Plotting 2D graphics

--> x = [0:0.1:2* %pi];

--> y2 = cos(2*x);

--> y3 = cos(4*x);

--> y4 = cos(6*x);

--> plot(x,y1);

--> plot(x,y2,’r’);

--> plot(x,y3,’k:’);

--> plot(x,y4,’g--’);

Several graphics can be
displayed.

clf : clear the current graphic
figure.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 28 / 115

Plotting 3D graphics

3D graphics

To plot a parametric curve in 3D space use function : param3d

--> t = 0:0.01:10* %pi;

--> x = sin(t);

--> y = cos(t);

--> z = t;

--> param3d(x,y,z);

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 29 / 115

Plotting 3D graphics

3D graphics

To plot a parametric curve in 3D space use function : param3d

--> t = 0:0.01:10* %pi;

--> x = sin(t);

--> y = cos(t);

--> z = t;

--> param3d(x,y,z);

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 29 / 115

Plotting 3D graphics

To plot a surface in 3D space use function : surf

--> x = [-%pi :0.2: %pi];

--> y = [-%pi :0.2: %pi];

--> [X,Y] = meshgrid(x,y);

--> Z = cos(X).*sin(Y);

--> surf(X,Y,Z)

--> f=gcf ();

--> f.color_map = jetcolormap (32);

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 30 / 115

Plotting 3D graphics

To plot a surface in 3D space use function : surf

--> x = [-%pi :0.2: %pi];

--> y = [-%pi :0.2: %pi];

--> [X,Y] = meshgrid(x,y);

--> Z = cos(X).*sin(Y);

--> surf(X,Y,Z)

--> f=gcf ();

--> f.color_map = jetcolormap (32);

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 30 / 115

Plotting Overview

Overview

Scilab provides several graphical functions :

plot 2D graphic
contour level curves in x-y plan
surf 3D surface
pie “pie” plot
histplot histogram plot
hist3d 3D histogram plot
bar bar plot
polarplot polar coordinate plot

Some instructions allow to add features to the figure :

title add a title
xtitle add a title and labels on axis
legend add a legend

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 31 / 115

Plotting Overview

--> x = linspace (-20 ,20 ,1000);

--> y1 = x.*sin(x);

--> y2 = -x;

--> plot(x,y1,’b’,x,y2,’r’)

--> xtitle(’mon graphique ’,’label axe x’,’label axe y’);

--> legend(’y1=x*sin(x)’,’y2=-x’);

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 32 / 115

Plotting Overview

--> x = linspace (-20 ,20 ,1000);

--> y1 = x.*sin(x);

--> y2 = -x;

--> plot(x,y1,’b’,x,y2,’r’)

--> xtitle(’mon graphique ’,’label axe x’,’label axe y’);

--> legend(’y1=x*sin(x)’,’y2=-x’);

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 32 / 115

Programming

Sommaire

1 Introduction

2 Basics

3 Matrices

4 Plotting

5 Programming

6 For MATLAB users

7 Xcos

8 Application to feedback control

9 Classical control design

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 33 / 115

Programming Scripts

Scripts

A script is a set of instructions gathered in a file.

Scilab provides a programming language (interpreted).

Scilab includes an editor, but any text editor may be used.

File extension should be “.sce” (but this is not mandatory).

Editor launched from “Applications > SciNotes” or by typing editor

on the console.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 34 / 115

Programming Scripts

Scripts

A script is a set of instructions gathered in a file.

Scilab provides a programming language (interpreted).

Scilab includes an editor, but any text editor may be used.

File extension should be “.sce” (but this is not mandatory).

Editor launched from “Applications > SciNotes” or by typing editor

on the console.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 34 / 115

Programming Scripts

Example of a script : myscript.sce

// radius of a sphere

r = 2;

// calculation of the area

A = 4*%pi*r^2;

// calculation of the volume

V = 4*%pi*r^3/3;

disp(A,’Area:’);

disp(V,’Volume:’);

Dans la console :

-->exec(’myscript.sce’, -1)

Area:

50.265482

Volume:

33.510322

The file must be located in the current directory

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 35 / 115

Programming Scripts

Comments : words following // are not interpreted.

The current directory can be modified in menu File of the console.

The path may be specified instead

exec(’C:\Users\yassine\scilab\myscript.sce’, -1)

Scripts may also be run from the shortcut in the toolbar.

Variables defined in the workspace (from the console) are visible and
can be modified in the script.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 36 / 115

Programming Scripts

Another example : myscript2.sce

x1 = -1; x2 = 1;

x = linspace(x1 ,x2,n);

y = exp(-2*x).*sin(3*x);

plot(x,y);

disp(’see plot on the figure ’);

On the console :

--> n = 50;

-->exec(’myscript2.sce’, -1)

see plot on the figure

Here the variable n must be defined beforehand.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 37 / 115

Programming Scripts

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 38 / 115

Programming Looping and branching

Looping and branching

Scilab language includes classical control structures

Conditional statements if

if boolean expression then

instructions 1

else

instructions 2

end

if (x>=0) then

disp("x is positive");

else

disp("x is negative");

end

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 39 / 115

Programming Looping and branching

Branching with respect to the value of a variable select

select variable

case value 1
instructions 1

case value 2
instructions 2

else

instructions 3

end

select i

case 1

disp("One");

case 2

disp("Two");

case 3

disp("Three");

else

disp("Other");

end

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 40 / 115

Programming Looping and branching

Loop control statements for

for variable = start: step: end

instructions

end

n = 10;

for k = 1:n

y(k) = exp(k);

end

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 41 / 115

Programming Looping and branching

Loop control based on a boolean expression while

while (boolean expression)

instructions

end

x = 16;

while (x > 1)

x = x/2;

end

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 42 / 115

Programming Looping and branching

And also :

instruction break interrupt and exit a loop.

instruction continue skip to the next iteration of a loop.

Note that as much as possible, use vector / matrix operations instead of
loops. The code may run 10 to 100 times faster. This feature of Scilab is
known as the vectorization.

tic

S = 0;

for k = 1:1000

S = S + k;

end

t = toc (); disp(t);

tic

N = [1:1000];

S = sum(N);

t = toc (); disp(t);

-->exec(’myscript.sce’, -1)

0.029

0.002

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 43 / 115

Programming Functions

Functions

A function is a command that makes computations from variables and
returns a result

outvar = afunction(invar)

afunction is the name of the function

invar is the input argument

outvar is the output argument, returned by the function

Examples :

--> y = sin (1.8)

y =

0.9738476

--> x =[0:0.1:1];

--> N = length(x)

N =

11.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 44 / 115

Programming Functions

User can define its own functions

function [out1,out2,...] = myfunction(in1,in2,...)

body of the function

endfunction

once the environment function...endfunction is executed myfunction

is defined and loaded in Scilab

after any change in the function, it must be reloaded to be taken into
account

files including functions generally have the extension “.sci”

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 45 / 115

Programming Functions

Example 1 : calculation of the roots of a quadratic equation.

Define and load the function

function [x1 ,x2] = roots_equ2d(a,b,c)

// roots of ax^2 + bx + c = 0

delta = b^2 - 4*a*c

x1 = (-b - sqrt(delta))/(2*a)

x2 = (-b + sqrt(delta))/(2*a)

endfunction

Then, you can use it as any other Scilab function

--> [r1 ,r2] = roots_equ2d (1,3,2)

r2 =

- 1.

r1 =

- 2.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 46 / 115

Programming Functions

Example 2 : functions are appropriate to define mathematical functions.

f(x) = (x+ 1) e−2x

function y = f(x)

y = (x+1).* exp(-2*x);

endfunction

--> y = f(4)

y =

0.0016773

--> y = f(2.5)

y =

0.0235828

--> t = [0:0.1:5];

--> plot(t,f)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 47 / 115

Programming Functions

Variables from workspace are known inside the function

but any change inside the function remain local.

function z=mytest(x)

z = x + a;

a = a +1;

endfunction

--> a = 2;

--> mytest (3)

ans =

5.

--> a

a =

2.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 48 / 115

For MATLAB users

Sommaire

1 Introduction

2 Basics

3 Matrices

4 Plotting

5 Programming

6 For MATLAB users

7 Xcos

8 Application to feedback control

9 Classical control design

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 49 / 115

For MATLAB users

For MATLAB users

Many instructions have the same syntax, but some others not...

A dictionary gives a list of the main MATLAB functions with their Scilab
equivalents

http://help.scilab.org/docs/5.4.1/en_US/section_36184e52ee88ad558380be4e92d3de21.html

Some tools are provided to convert MATLAB files to Scilab
(e.g. mfile2sci)

http://help.scilab.org/docs/5.4.1/en_US/About_M2SCI_tools.html

A good note on Scilab for MATLAB users
Eike Rietsch, An Introduction to Scilab from a Matlab User’s Point of View, May

2010

http://www.scilab.org/en/resources/documentation/community

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 50 / 115

For MATLAB users

Somme differences about the syntax

In MATLAB

search with keywords lookfor

comments %

predefined constants i, pi, inf, true

special characters in name of variables

continuation of a statement ...

flow control switch case otherwise

last element of a vector x(end)

In Scilab

search with keywords apropos

comments //

predefined constants %i, %pi, %inf, %t

special characters in name of variables
, #, !, ?, $

continuation of a statement ..

flow control select case else

last element of a vector x($)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 51 / 115

For MATLAB users

Different responses for a same command

In MATLAB

length, the larger of the number of
rows and columns

after a first plot, a second one clears
the current figure

division by a vector
>> x = 1/[1 2 3]
Error using / Matrix dimensions must
agree.

operators == and ∼= compare elements
>> [1 2 3] == 1
ans =
1 0 0
>> [1 2 3] == [1 2]
Error using ==
Matrix dimensions must agree.
>> [1 2] == [’1’,’2’]
ans =
0 0

In Scilab

length, the product of the number of
rows and columns

after a first plot, a second one holds
the previous

division by a vector
--> x = 1/[1 2 3]
x =
0.0714286
0.1428571
0.2142857
x is solution of [1 2 3]*x = 1

operators == and ∼= compare objects
--> [1 2 3] == 1
ans =
T F F
--> [1 2 3] == [1 2]
ans =
F
--> [1 2] == [’1’,’2’]
ans =
F

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 52 / 115

For MATLAB users

Different responses for a same command

In MATLAB

for a matrix A=[1 2 4;4 8 2;6 0 9]
>> max(A)
ans =
7 8 9
>> sum(A)
ans =
12 10 18

disp must have a single argument
>> a=3;
>> disp([’the result is
’,int2str(a),’ ...bye!’])

the result is 3 ...bye!

In Scilab

for a matrix A=[1 2 4;4 8 2;6 0 9]
--> max(A)
ans =
9.
--> sum(A)
ans =
36.

disp may have several arguments
--> a = 3;
--> disp(a,’the result is ’ +
string(a),’hello!’)

hello!
the result is 3
3.

note that : prettyprint generates the
Latex code to represent a Scilab
object

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 53 / 115

For MATLAB users

Difference when running a script

In MATLAB

script is invoked by typing its name myscript

the m-file must be in a directory of the search path (or specify the path
in the call)

use a semi-colon to print or not the result of an instruction

In Scilab

script is invoked with the exec command

--> exec(’myscript.sce’)

the file must be the working directory (or specify the path in the call)

a second argument may be appended (mode) to specify what to print

it does not seem to do what the documentation says... not clear for me

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 54 / 115

For MATLAB users

a simple example, myscript.sce :

// a simple script: myscript

a = 1

b = a+3;

disp(’result is ’+string(b))

the second argument mode

Value Meaning

0 the default value
-1 print nothing
1 echo each command line
2 print prompt −− >
3 echo + prompt
4 stop before each prompt
7 stop + prompt + echo

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 55 / 115

For MATLAB users

--> exec(’myscript.sce’ ,0)

a =

1.

result is 4

(as Matlab works)

--> exec(’myscript.sce’,-1)

result is 4

(only output of disp is printed)

--> exec(’myscript.sce’ ,1)

-->// a simple script: myscript

-->a = 1

a =

1.

-->b = a+3;

-->disp(’result is ’+string(b))

result is 4

(everything is printed (instructions and outputs)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 56 / 115

For MATLAB users

Difference when using user defined functions

In MATLAB

a function is a file, they must have the same name

variables in the function are local variables

any other functions defined in the file are local functions

In Scilab

a function is a variable

variables in the function are local variables and variables from the
calling workspace are known

when defined (function ... endfunction), functions are not executed
bu loaded

any change in the function requires to reload it (executing the
environment)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 57 / 115

Xcos

Sommaire

1 Introduction

2 Basics

3 Matrices

4 Plotting

5 Programming

6 For MATLAB users

7 Xcos

8 Application to feedback control

9 Classical control design

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 58 / 115

Xcos

Xcos

Xcos is a graphical environment to simulate dynamic systems.

It is the SimulinkR© counterpart of Scilab.

It is launched in Application/Xcos or by typing xcos

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 59 / 115

Xcos

Xcos

Xcos is a graphical environment to simulate dynamic systems.

It is the SimulinkR© counterpart of Scilab.

It is launched in Application/Xcos or by typing xcos

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 59 / 115

Xcos

A simple example

block sub-palette
sinus Sources/GENSIN f
gain Math. Operations/GAINBLK f

scope Sinks/CSCOPE
clock Sources/CLOCK c

drag and drop blocks from the palette browser to the editing window

k is variable from the workspace (or from Simulation/Set context)

black lines are data flows and red lines are event flows

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 60 / 115

Xcos

A simple example

block sub-palette
sinus Sources/GENSIN f
gain Math. Operations/GAINBLK f

scope Sinks/CSCOPE
clock Sources/CLOCK c

drag and drop blocks from the palette browser to the editing window

k is variable from the workspace (or from Simulation/Set context)

black lines are data flows and red lines are event flows

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 60 / 115

Xcos

Settings : frequency = 2π/3, k = 2, final integral time = 12, Ymin= −3,
Ymax= 3, Refresh period = 12

Run simulation from Simulation/Start

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 61 / 115

Xcos

Let simulate a mass-spring-damper system

The system can be described by the equation of motion

mẍ(t) + fẋ(t) + kx(t) = 0

with the initial conditions : x(0) = 5 and ẋ(0) = 0

The acceleration of the mass is then given by

ẍ(t) = − 1

m

(
kx(t) + fẋ(t)

)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 62 / 115

Xcos

Let simulate a mass-spring-damper system

The system can be described by the equation of motion

mẍ(t) + fẋ(t) + kx(t) = 0

with the initial conditions : x(0) = 5 and ẋ(0) = 0

The acceleration of the mass is then given by

ẍ(t) = − 1

m

(
kx(t) + fẋ(t)

)
Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 62 / 115

Xcos

modeling and simulation with Xcos

block sub-palette
sum Math. Operations/BIGSOM f
gain Math. Operations/GAINBLK f

integral Cont. time systems/INTEGRAL m
scope Sinks/CSCOPE

x-y scope Sinks/CSCOPXY
clock Sources/CLOCK c

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 63 / 115

Xcos

parameters : m = 1, k = 2 and f = 0.2

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 64 / 115

Xcos

Let add an external force

Define a superblock : Edit/Region to superblock

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 65 / 115

Xcos

Let add an external force

Define a superblock : Edit/Region to superblock

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 65 / 115

Xcos

Example 3 : simulation of a PWM signal

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 66 / 115

Xcos

Example 3 : simulation of a PWM signal

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 66 / 115

Application to feedback control

Sommaire

1 Introduction

2 Basics

3 Matrices

4 Plotting

5 Programming

6 For MATLAB users

7 Xcos

8 Application to feedback control

9 Classical control design

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 67 / 115

Application to feedback control A brief review

A brief review

Objective : Design a controller to control a dynamical system.

The output to be controlled is measured and taken into account by the
controller.

⇒ feedback control

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 68 / 115

Application to feedback control A brief review

Example : angular position control of a robotic arm.

u(t) is the control voltage of the DC motor (actuator)

θ(t) is the angular position of the arm (measured with a sensor)

The input-output relationship is given by :

θ̈(t) + θ̇(t) = u(t)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 69 / 115

Application to feedback control A brief review

Example : angular position control of a robotic arm.

u(t) is the control voltage of the DC motor (actuator)

θ(t) is the angular position of the arm (measured with a sensor)

The input-output relationship is given by :

θ̈(t) + θ̇(t) = u(t)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 69 / 115

Application to feedback control A brief review

The corresponding transfer function is

G(s) =
θ̂(s)

û(s)
=

1

(s+ 1)s

It has 2 poles : −1 and 0 ⇒ system is unstable

Its step response is divergent

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
Step Response

Time (sec)

A
m

pl
itu

de

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 70 / 115

Application to feedback control A brief review

The corresponding transfer function is

G(s) =
θ̂(s)

û(s)
=

1

(s+ 1)s

It has 2 poles : −1 and 0 ⇒ system is unstable

Its step response is divergent

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
Step Response

Time (sec)

A
m

pl
itu

de

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 70 / 115

Application to feedback control A brief review

The asymptotic bode diagram :

10−1 100 101

−40

−20

0

20

G
ai

n
(d

B
)

10−1 100 101

−180

−135

−90

−45

0

P
ha

se
 (

de
gr

e)

pulsation ω

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 71 / 115

Application to feedback control A brief review

Closed-loop control with a proportional gain k

The closed-loop transfer function is

F (s) =
k

s2 + s+ k

The Routh criterion shows that F (s) is stable ∀k > 0.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 72 / 115

Application to feedback control A brief review

Closed-loop control with a proportional gain k

The closed-loop transfer function is

F (s) =
k

s2 + s+ k

The Routh criterion shows that F (s) is stable ∀k > 0.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 72 / 115

Application to feedback control A brief review

Response of θ(t) for a step reference r(t) = π
2

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

Step Response

Time (sec)

A
m

pl
itu

de

k=1

k=2
k=5

k=0.5

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 73 / 115

Application to feedback control A brief review

Quick analysis of the feedback system

The tracking error is given by : ε(t) = r(t)− θ(t)

ε̂(s) =
s2 + s

s2 + s+ k
r̂(s)

the static error is zero : εs = lim
s→0

s ε̂(s) = 0 (with r̂(s) = π/2
s

)

Using the standard form of 2nd order systems :

F (s) =
Kω2

n

s2 + 2ζωns+ ω2
n

⇒


K = 1,

ωn =
√
k

ζ = 1/2
√
k

we can conclude that

when k ↗, damping ζ ↘ and oscillations ↗
settling time t5% ≈ 3

ζωn
= 6s.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 74 / 115

Application to feedback control A brief review

Quick analysis of the feedback system

The tracking error is given by : ε(t) = r(t)− θ(t)

ε̂(s) =
s2 + s

s2 + s+ k
r̂(s)

the static error is zero : εs = lim
s→0

s ε̂(s) = 0 (with r̂(s) = π/2
s

)

Using the standard form of 2nd order systems :

F (s) =
Kω2

n

s2 + 2ζωns+ ω2
n

⇒


K = 1,

ωn =
√
k

ζ = 1/2
√
k

we can conclude that

when k ↗, damping ζ ↘ and oscillations ↗
settling time t5% ≈ 3

ζωn
= 6s.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 74 / 115

Application to feedback control System analysis in Scilab

System analysis in Scilab

Definition of a transfer function

--> num = 1;

--> den = %s^2+%s;

--> G = syslin(’c’,num ,den)

G =

1

2

s + s

--> roots(den)

ans =

- 1.

0

The argument c stands for continuous-time system (d for discrete)

The instruction roots is useful to calculate the poles of a transfer
function

The instruction plzr plots the pole-zero map in the complex plane

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 75 / 115

Application to feedback control System analysis in Scilab

Computation of the time response

--> t = [0:0.02:3];

--> theta = csim(’step’,t,G);

--> plot(t,theta)

The string argument step is the control, it can be impuls, a vector or
a function.

To define the time vector, you may also use the linspace instruction.

For frequency analysis, different instructions are provided : repfreq,
bode, nyquist, black.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 76 / 115

Application to feedback control System analysis in Scilab

Systems connection

+

-
+

+

The mathematical operators can handle syslin type

Example

G1(s) =
1

s+ 2
and G2(s) =

4

s

--> G1 = syslin(’c’,1,%s+2);

--> G2 = syslin(’c’,4,%s);

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 77 / 115

Application to feedback control System analysis in Scilab

--> G1 * G2 // series connection

ans =

4

2

2s + s

--> G1 + G2 // parallel connection

ans =

8 + 5s

2

2s + s

--> G1 /. G2 // feedback connection

ans =

s

2

4 + 2s + s

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 78 / 115

Application to feedback control System analysis in Scilab

Back to our case study

Let simulate the closed-loop control with a proportional gain

--> k = 2;

--> F = (G*k) /. 1

F =

2

2

2 + s + s

--> routh_t(%s^2+%s+2)

ans =

1. 2.

1. 0.

2. 0.

--> [wn , zeta] = damp(F)

zeta =

0.3535534

0.3535534

wn =

1.4142136

1.4142136

--> t = linspace (0 ,12 ,200);

--> theta = csim(’step’,t,F)*%pi/2;

--> plot(t,theta)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 79 / 115

Application to feedback control Bode plot

Bode plot

Introductory example : RC circuit

Sinusoidal steady state : e(t) = em cos(ωt+ φe)

v(t) = vm cos(ωt+ φv)
⇒

 e = eme
jφe

v = vme
jφv

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 80 / 115

Application to feedback control Bode plot

Bode plot

Introductory example : RC circuit

Sinusoidal steady state : e(t) = em cos(ωt+ φe)

v(t) = vm cos(ωt+ φv)
⇒

 e = eme
jφe

v = vme
jφv

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 80 / 115

Application to feedback control Bode plot

For R = 1kΩ and C = 200µF , let apply a voltage e(t) = cos(8t).

1 1.5 2 2.5 3 3.5 4 4.5 5

−1

−0.5

0

0.5

1

temps (s)

e(t)
v(t)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 81 / 115

Application to feedback control Bode plot

Ohm’s law : u = Zi

ZR = R and ZC =
1

jωC

Applying the voltage divider formula :

v =
ZC

ZC + ZR
e

Hence, the transfer function from e(t) to v(t) is :

T =

1
jωC

1
jωC

+R
=

1

jωRC + 1
.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 82 / 115

Application to feedback control Bode plot

Ohm’s law : u = Zi

ZR = R and ZC =
1

jωC

Applying the voltage divider formula :

v =
ZC

ZC + ZR
e

Hence, the transfer function from e(t) to v(t) is :

T =

1
jωC

1
jωC

+R
=

1

jωRC + 1
.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 82 / 115

Application to feedback control Bode plot

Ohm’s law : u = Zi

ZR = R and ZC =
1

jωC

Applying the voltage divider formula :

v =
ZC

ZC + ZR
e

Hence, the transfer function from e(t) to v(t) is :

T =

1
jωC

1
jωC

+R
=

1

jωRC + 1
.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 82 / 115

Application to feedback control Bode plot

Bode diagram of the transfer function

−30

−25

−20

−15

−10

−5

0

5
M

ag
ni

tu
de

 (
dB

)

10−1 100 101 102
−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 83 / 115

Application to feedback control Bode plot

Bode diagram of the transfer function

−30

−25

−20

−15

−10

−5

0

5
M

ag
ni

tu
de

 (
dB

)

10−1 100 101 102
−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

ω = 8

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 83 / 115

Application to feedback control Bode plot

Responses of the circuit with ω = {0.8, 4, 8, 40}

10 15 20 25 30 35 40 45

−1

−0.5

0

0.5

1

temps (s)

e(t) (ω=0.8)
v(t)

2 3 4 5 6 7 8 9 10

−1

−0.5

0

0.5

1

temps (s)

e(t) (ω=4)
v(t)

3 3.5 4 4.5 5 5.5 6 6.5 7

−1

−0.5

0

0.5

1

temps (s)

e(t) (ω=8)
v(t)

10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8

−1

−0.5

0

0.5

1

e(t) (ω=40)
v(t)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 84 / 115

Application to feedback control Bode plot

Responses of the circuit with ω = {0.8, 4, 8, 40}

10 15 20 25 30 35 40 45

−1

−0.5

0

0.5

1

temps (s)

e(t) (ω=0.8)
v(t)

2 3 4 5 6 7 8 9 10

−1

−0.5

0

0.5

1

temps (s)

e(t) (ω=4)
v(t)

3 3.5 4 4.5 5 5.5 6 6.5 7

−1

−0.5

0

0.5

1

temps (s)

e(t) (ω=8)
v(t)

10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8

−1

−0.5

0

0.5

1

e(t) (ω=40)
v(t)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 84 / 115

Application to feedback control Bode plot

Responses of the circuit with ω = {0.8, 4, 8, 40}

10 15 20 25 30 35 40 45

−1

−0.5

0

0.5

1

temps (s)

e(t) (ω=0.8)
v(t)

2 3 4 5 6 7 8 9 10

−1

−0.5

0

0.5

1

temps (s)

e(t) (ω=4)
v(t)

3 3.5 4 4.5 5 5.5 6 6.5 7

−1

−0.5

0

0.5

1

temps (s)

e(t) (ω=8)
v(t)

10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8

−1

−0.5

0

0.5

1

e(t) (ω=40)
v(t)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 84 / 115

Application to feedback control Bode plot

Responses of the circuit with ω = {0.8, 4, 8, 40}

10 15 20 25 30 35 40 45

−1

−0.5

0

0.5

1

temps (s)

e(t) (ω=0.8)
v(t)

2 3 4 5 6 7 8 9 10

−1

−0.5

0

0.5

1

temps (s)

e(t) (ω=4)
v(t)

3 3.5 4 4.5 5 5.5 6 6.5 7

−1

−0.5

0

0.5

1

temps (s)

e(t) (ω=8)
v(t)

10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8

−1

−0.5

0

0.5

1

e(t) (ω=40)
v(t)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 84 / 115

Application to feedback control Bode plot

−25

−20

−15

−10

−5

0

5
M

ag
ni

tu
de

 (
dB

)

10
−1

10
0

10
1

10
2

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

ω=8
ω=4ω=0.8

ω=40

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 85 / 115

Application to feedback control Bode plot

Frequency analysis consists in studying the response of a LTI system with sine
inputs

F(s) Y(s)U(s)

u(t) = u0 sin(ωt) u(t) = u0 sin(ωt) y(t) = y0 sin(ωt+φ) y(t) = y0 sin(ωt+φ)

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

1.5

u
0

y
0

y(t)

u(t)T

T

∆ t

The output signal is also a sine with the same frequency, but with a different

magnitude and a different phase angle.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 86 / 115

Application to feedback control Bode plot

Frequency analysis consists in studying the response of a LTI system with sine
inputs

F(s) Y(s)U(s)

u(t) = u0 sin(ωt) u(t) = u0 sin(ωt) y(t) = y0 sin(ωt+φ) y(t) = y0 sin(ωt+φ)

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

1.5

u
0

y
0

y(t)

u(t)T

T

∆ t

The output signal is also a sine with the same frequency, but with a different

magnitude and a different phase angle.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 86 / 115

Application to feedback control Bode plot

A system can then be characterized by its

gain :
y0
u0

phase shift : ±360
∆t

T

The magnitude and the phase depend on the frequency ω

It can be shown that :

gain = |F (jω)|,

phase shift = argF (jω).

F (jω) is the transfer function of the system where the Laplace variable s
has been replaced by jω.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 87 / 115

Application to feedback control Bode plot

A system can then be characterized by its

gain :
y0
u0

phase shift : ±360
∆t

T

The magnitude and the phase depend on the frequency ω

It can be shown that :

gain = |F (jω)|,

phase shift = argF (jω).

F (jω) is the transfer function of the system where the Laplace variable s
has been replaced by jω.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 87 / 115

Application to feedback control Bode plot

Example : let consider system

F (s) =
1/2

s+ 1

What are the responses to these inputs ?

u1 = sin(0.05 t)

u2 = sin(1.5 t)

u3 = sin(10 t)

we express F (jω) =
1/2

jω + 1

for ω = 0.05 rad/s : |F (j0.05)| = 0.5 and argF (j0.05) = −2.86◦.

for ω = 1.5 rad/s : |F (j1.5)| = 0.277 and argF (j1.5) = −56.3◦.

for ω = 10 rad/s : |F (j10)| = 0.05 and argF (j10) = −84.3◦.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 88 / 115

Application to feedback control Bode plot

Example : let consider system

F (s) =
1/2

s+ 1

What are the responses to these inputs ?

u1 = sin(0.05 t)

u2 = sin(1.5 t)

u3 = sin(10 t)

we express F (jω) =
1/2

jω + 1

for ω = 0.05 rad/s : |F (j0.05)| = 0.5 and argF (j0.05) = −2.86◦.

for ω = 1.5 rad/s : |F (j1.5)| = 0.277 and argF (j1.5) = −56.3◦.

for ω = 10 rad/s : |F (j10)| = 0.05 and argF (j10) = −84.3◦.

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 88 / 115

Application to feedback control Bode plot

0 50 100 150 200 250 300 350 400 450 500

−1

−0.5

0

0.5

1

u1(t)

y1(t)

0 2 4 6 8 10 12 14 16

−1

−0.5

0

0.5

1 u2(t)

y2(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

−0.5

0

0.5

1 u3(t)

y3(t)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 89 / 115

Application to feedback control Bode plot

Bode diagram : it plots the gain and the phase shift w.r.t. the frequency ω

the gain is expressed as decibels : gain dB = 20 log y0
u0

property : the Bode diagram of F (s)G(s) is the sum of the one of F (s) and
the one of G(s).

in Scilab, the instruction bode(F) plots the Bode diagram of F (s).

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 90 / 115

Application to feedback control Bode plot

Bode diagram : it plots the gain and the phase shift w.r.t. the frequency ω

the gain is expressed as decibels : gain dB = 20 log y0
u0

property : the Bode diagram of F (s)G(s) is the sum of the one of F (s) and
the one of G(s).

in Scilab, the instruction bode(F) plots the Bode diagram of F (s).

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 90 / 115

Application to feedback control Simulation with Xcos

Simulation with Xcos

Let simulate the closed-loop control with a proportional gain

block sub-palette
step Sources/STEP FUNCTION
sum Math. Operations/BIGSOM f
gain Math. Operations/GAINBLK f

transfert function Cont. time systems/CLR
scope Sinks/CSCOPE
clock Sources/CLOCK c

settings : final value (step) = %pi/2, final integral time = 12, Ymin= 0,
Ymax= 2.5, Refresh period = 12

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 91 / 115

Application to feedback control Simulation with Xcos

Simulation with Xcos

Let simulate the closed-loop control with a proportional gain

block sub-palette
step Sources/STEP FUNCTION
sum Math. Operations/BIGSOM f
gain Math. Operations/GAINBLK f

transfert function Cont. time systems/CLR
scope Sinks/CSCOPE
clock Sources/CLOCK c

settings : final value (step) = %pi/2, final integral time = 12, Ymin= 0,
Ymax= 2.5, Refresh period = 12

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 91 / 115

Classical control design

Sommaire

1 Introduction

2 Basics

3 Matrices

4 Plotting

5 Programming

6 For MATLAB users

7 Xcos

8 Application to feedback control

9 Classical control design

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 92 / 115

Classical control design

Classical control design

Control design aims at designing a controller C(s) in order to assign desired
performances to the closed loop system

Classical control is a frequency domain approach and is essentially
based on Bode plot

Main controllers, or compensators, are phase lag, phase lead, PID
(proportional integral derivative)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 93 / 115

Classical control design Loopshaping

Loopshaping

Let express the tracking error

ê(s) =
1

1 +G(s)C(s)
r̂(s)

So, a high open-loop gain results in a good tracking

it leads to better accuracy and faster response (depending on the
bandwidth)

but it leads to a more aggressive control input (u)

but it reduces stability margins

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 94 / 115

Classical control design Loopshaping

Let define the open-loop transfer function L = GC
Closed-loop performances can be assessed from the Bode plot of L

PM and GM are phase and gain margins

noise disturbances are a high frequency signals

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 95 / 115

Classical control design Loopshaping

Loopshaping consists in designing the controller C(s) so as to “shape” the
frequency response of L(s)

we recall that

|L|db = |GC|db = |G|db + |C|db

The desired “shape” depends on performance requirements for the
closed-loop system

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 96 / 115

Classical control design Loopshaping

A simple example with a proportional controller

The open-loop transfer function is

L(s) =
4k

s2 + 3s+ 3

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 97 / 115

Classical control design Loopshaping

Bode plot of L(s) for k = {0.5, 1, 5, 10}

when k increases, the phase margin decreases

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 98 / 115

Classical control design Loopshaping

Bode plot of L(s) for k = {0.5, 1, 5, 10}

when k increases, the phase margin decreases

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 98 / 115

Classical control design Loopshaping

Step response of the closed-loop system (unit step) for k = {0.5, 1, 5, 10}

the static error decreases as k increases

oscillations increase as k increases

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 99 / 115

Classical control design Phase lag controller

Phase lag controller

The transfer function of the phase lag controller is of the form

C(s) =
1 + τs

1 + aτs
, with a > 1

a and τ are tuning parameters

It allows a higher gain in low
frequencies

But the phase lag must not
reduce the phase margin

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 100 / 115

Classical control design Phase lag controller

Phase lag controller

The transfer function of the phase lag controller is of the form

C(s) =
1 + τs

1 + aτs
, with a > 1

a and τ are tuning parameters

It allows a higher gain in low
frequencies

But the phase lag must not
reduce the phase margin

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 100 / 115

Classical control design Phase lag controller

Example

G(s) =
4

s2 + 3s+ 3

What value for the proportional gain k to have a static error of 10% ?

static error =
1

1 + 4
3
k

= 0.1 ⇒ k = 6.75

close-loop system response

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 101 / 115

Classical control design Phase lag controller

Example

G(s) =
4

s2 + 3s+ 3

What value for the proportional gain k to have a static error of 10% ?

static error =
1

1 + 4
3
k

= 0.1 ⇒ k = 6.75

close-loop system response

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 101 / 115

Classical control design Phase lag controller

Precision ok, but too much oscillations

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

10−2 10−1 100 101 102
−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/s)

Phase margin : before = 111◦ (at 1.24 rd/s) ; after = 34◦ (at 5.04 rd/s)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 102 / 115

Classical control design Phase lag controller

Precision ok, but too much oscillations

10−2 10−1 100 101 102
−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/s)

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

Phase margin : before = 111◦ (at 1.24 rd/s) ; after = 34◦ (at 5.04 rd/s)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 102 / 115

Classical control design Phase lag controller

Phase lag controller

C(s) =
1 + τs

1 + aτs

with a > 1

We want a high gain only at low frequencies

Phase lag must occur before the crossover frequency

1

τ
< ω0 = 1.24 ⇒ τ = 1

Then, we want to recover a gain of 1

a = 6.75

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 103 / 115

Classical control design Phase lag controller

Phase lag controller

C(s) =
1 + τs

1 + aτs

with a > 1

We want a high gain only at low frequencies

Phase lag must occur before the crossover frequency

1

τ
< ω0 = 1.24 ⇒ τ = 1

Then, we want to recover a gain of 1

a = 6.75

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 103 / 115

Classical control design Phase lag controller

10−2 10−1 100 101 102
−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/s)

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

Phase margin : now, with the proportional gain and the phase lag controller
= 70◦ (at 1.56 rd/s)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 104 / 115

Classical control design Phase lag controller

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

10−3 10−2 10−1 100 101 102
−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/s)

G(s)
kG(s)
kC(s)G(s)

Phase margin : now, with the proportional gain and the phase lag controller
= 70◦ (at 1.56 rd/s)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 104 / 115

Classical control design Phase lag controller

close-loop system response

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (seconds)

A
m

pl
itu

de

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 105 / 115

Classical control design Phase lag controller

close-loop system response

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (seconds)

A
m

pl
itu

de

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 105 / 115

Classical control design Phase lead controller

Phase lead controller

The transfer function of the phase lead controller is of the form

C(s) =
1 + aτs

1 + τs
, with a > 1

a and τ are tuning parameters

It provides a phase lead in a
frequency range

But the gain may shift the
crossover frequency

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 106 / 115

Classical control design Phase lead controller

Phase lead controller

The transfer function of the phase lead controller is of the form

C(s) =
1 + aτs

1 + τs
, with a > 1

a and τ are tuning parameters

It provides a phase lead in a
frequency range

But the gain may shift the
crossover frequency

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 106 / 115

Classical control design Phase lead controller

The phase lead compensator is used to increase the phase margin

Procedure :

firstly, adjust a proportional gain k to reach a tradeoff between
speed/accuracy and overshoot.

measure the current phase margin and subtract to the desired margin

ϕm = PMdesired − PMcurrent

compute a

a =
1 + sinϕm
1− sinϕm

at the maximum phase lead ϕm, the magnitude is 20 log
√
a. Find the

frequency ωm for which the magnitude of kG(s) is −20 log
√
a

compute τ

τ =
1

ωm
√
a

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 107 / 115

Classical control design Phase lead controller

Example

G(s) =
4

s(2s+ 1)

close-loop system response

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Step Response

Time (seconds)

A
m

pl
itu

de

open-loop bode diagram

−40

−20

0

20

40

60

M
ag

ni
tu

de
 (

dB
)

10−2 10−1 100 101
−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/s)

Phase margin : 20◦ at 1.37 rd/s

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 108 / 115

Classical control design Phase lead controller

Example

G(s) =
4

s(2s+ 1)

close-loop system response

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Step Response

Time (seconds)

A
m

pl
itu

de

open-loop bode diagram

−40

−20

0

20

40

60

M
ag

ni
tu

de
 (

dB
)

10−2 10−1 100 101
−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/s)

Phase margin : 20◦ at 1.37 rd/s

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 108 / 115

Classical control design Phase lead controller

Design of a phase lead compensator

current phase margin is 20◦, and the desired margin is, say, 60◦

ϕm = 40◦ = 0.70 rd

compute a

a =
1 + sinϕm
1− sinϕm

= 4.62

at the maximum phase lead ϕm, the magnitude is 6.65 db. At the
frequency ∼ 2 rd/s the magnitude of G(s) is −6.65 db

compute τ

τ =
1

ωm
√
a

= 0.23

Hence, the controller is of the form

C(s) =
1 + 1.07s

1 + 0.23s

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 109 / 115

Classical control design Phase lead controller

Design of a phase lead compensator

current phase margin is 20◦, and the desired margin is, say, 60◦

ϕm = 40◦ = 0.70 rd

compute a

a =
1 + sinϕm
1− sinϕm

= 4.62

at the maximum phase lead ϕm, the magnitude is 6.65 db. At the
frequency ∼ 2 rd/s the magnitude of G(s) is −6.65 db

compute τ

τ =
1

ωm
√
a

= 0.23

Hence, the controller is of the form

C(s) =
1 + 1.07s

1 + 0.23s

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 109 / 115

Classical control design Phase lead controller

Example

close-loop system response

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Step Response

Time (seconds)

A
m

pl
itu

de

open-loop bode diagram

−40

−20

0

20

40

60

M
ag

ni
tu

de
 (

dB
)

10−2 10−1 100 101
−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/s)

New phase margin : 53.7◦ at 2 rd/s

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 110 / 115

Classical control design Phase lead controller

Example

close-loop system response

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Step Response

Time (seconds)

A
m

pl
itu

de

open-loop bode diagram

−100

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

10−2 10−1 100 101 102
−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/s)

New phase margin : 53.7◦ at 2 rd/s

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 110 / 115

Classical control design PID controller

PID controller

A PID controller consists in 3 control actions

⇒ proportional, integral and derivative

Transfer function of the form :

C(s) = kp + ki
1
s

+ kds

= kp(1 + 1
τis

)(1 + τds)

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 111 / 115

Classical control design PID controller

The phase lag controller is an approximation of the PI controller

Phase lag controller

C(s) =
1 + τs

1 + aτs

with a > 1

PI controller

C(s) =
1 + τis

τis

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 112 / 115

Classical control design PID controller

The phase lead controller is an approximation of the PD controller

Phase lead controller

C(s) =
1 + aτs

1 + τs

with a > 1

PD controller

C(s) = 1 + τds

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 113 / 115

Classical control design PID controller

A PID controller is a combination of phase lag and phase lead controllers

C(s) = k
(1 + τ1s

1 + a1τ1s

)(1 + a2τ2s

1 + τ2s

)
with a1 > 1 and a2 > 1.

Transfer function of the form :

the phase lag part is designed to improve accuracy and responsiveness

the phase lead part is designed to improve stability margins

an extra low-pass filter may be added to reduce noise

C1(s) =
1

1 + τ3s

with τ3 � τ2

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 114 / 115

Classical control design PID controller

Y. Ariba - Icam, Toulouse. Brno University of Technology - April 2014 115 / 115

	Introduction
	Basics
	Matrices
	Plotting
	Programming
	For MATLAB users
	Xcos
	Application to feedback control
	Classical control design

