# Introduction to Scilab APPLICATION TO FEEDBACK CONTROL 

Yassine Ariba

Brno University of Technology - April 2014

ICam

## Sommaire

(1) Introduction
(2) Basics
(3) Matrices
(4) Plotting
(5) Programming
(6) For MATLAB users
(7) $\mathrm{X} \cos$
(8) Application to feedback control
(9) Classical control design

## Sommaire

(1) Introduction
(2) Basics
(3) Matrices

- Plotting
(5) Programming
- For Matl AB users
(1) Xcos
(3) Application to feedback control
(9) Classical control design


## What is Scilab?

Scilab is the contraction of Scientific Laboratory. Scilab is :

- a numerical computing software,
- an interpreted programming environment,
- used for any scientific and engineering applications,
- multi-platform : Windows, MacOS et Linux,

Created by researchers from Inria in the 90's, the software is now developed by Scilab Entreprises
www.scilab.org


Scilab includes hundreds of functions for various applications

- Mathematics and simulation
- 2D and 3D visualization
- Optimization
- Statistics
- Control system design and analysis
- Signal processing
- Application development

More informations: www.scilab.org

## License

- Scilab is an open source software.
- It is distributed under a GPL-compatible license.
- It is a free open source alternative to Matlab ${ }^{\circledR 1}{ }^{1}$.
- Scilab can be downloaded from :
http://www.scilab.org/download/

The version used in this introduction is
version 5.4.1

1. Matlab is a registered trademark of The MathWorks, Inc.

## Getting started

Firstly, Scilab can be used in an interactive way by typing instructions on the console.

```
< Console Scilab
Eichier Édition Contrôle Applications ?
```



```
Console sulat
Initialisation :
    Chargement de l'environnement de travail
```

- type scilab code on the prompt -->
- type enter, to execute it.
- Scilab return its answer on the console or in a new window for graphics.

A first simple example :

```
--> A = 2;
--> t = [0:0.01:10];
--> y = A*sin(3*t);
--> plot(t,y);
```

- Line 1 : assign the value 2 to the variable $A$.
- Line 2: define a vector $t$ that goes from 0 to 10 with a step of 0.01 .
- Line 3 : compute a vector $y$ from some mathematical operations.
- Line 4 : plot $y$ with respect to $t$ on a 2 D graphic.

Note that "; "prevents from printing the result of an instruction.

A first simple example :

$$
\begin{aligned}
& -->A=2 ; \\
& -->\mathrm{t}=[0: 0.01: 10] \\
& -->\mathrm{y}=\mathrm{A} * \sin (3 * \mathrm{t}) \\
& -->\mathrm{plot}(\mathrm{t}, \mathrm{y})
\end{aligned}
$$



A second simple example :

Let consider a system of linear equations

$$
\left\{\begin{array}{rlc}
2 x_{1}+x_{2} & = & -5 \\
4 x_{1}-3 x_{2}+2 x_{3} & = & 0 \\
x_{1}+2 x_{2}-x_{3} & =1
\end{array}\right.
$$

Let solve it with Scilab

```
-->A}=[\begin{array}{lllllllllll}{2}&{1}&{0}&{;}&{4}&{-3}&{2}&{;}&{2}&{-1}\end{array}]
--> b = [-5;0;1];
--> x = inv(A)*b
    x =
        1.75
    - 8.5
    - 16.25
```

Scilab provides a graphical environment with several windows.


- the console
- command history
- file browser
- variable browser
- and others : editor, graphics, help, ...


## Sommaire

(1) Introduction
(2) Basics
(3) Matrices

4 Plotting
(5) Programming
(6) For MATLAB users
(7) $\mathrm{X} \cos$
(8) Application to feedback control
(9) Classical control design

## Elementary operations

Simple numerical calculations :

```
--> (1+3)*0.1
    ans=
        0.4
--> 4^2/2
    ans =
        8.
--> 2*(1+2*%i)
    ans=
        2. + 4.i
--> %i^2
    ans =
    - 1.
--> cos(3)^2 + sin(3)^2
    ans =
        1.
--> exp(5)
    ans =
        148.41316
--> abs(1+%i)
    ans=
        1.4142136
```

elementary operations

elementary functions

| sin | cos | tan | cotg |
| :---: | :---: | :---: | :---: |
| asin | acos | atan | sec |
| sinh | cosh | tanh | csc |
| abs | real | imag | conj |
| exp | log | log10 | log2 |
| sign | modulo | sqrt | lcm |
| round | floor | ceil | gcd |

```
--> conj(3+2*%i)
    ans=
        3. - 2.i
--> log10(10~4)
    ans =
        4.
```


## boolean operations

- the boolean value true is written : \%T.
- the boolean value false is written : \%F.

| $\&$ | logical and |
| :--- | :--- |
| I | logical or |
| $\sim$ | logical not |
| $==$ | equal |
| $\sim=$ or <> | different |
| $<(<=)$ | lower than (or equal) |
| $>(>=)$ | greater than (or equal) |

$$
\begin{gathered}
-->\% \mathrm{~T} \& \% \mathrm{~F} \\
\text { ans }= \\
\mathrm{F} \\
-->2==2 \\
\text { ans }= \\
\mathrm{T} \\
-->2<3 \\
\text { ans }= \\
\mathrm{T}
\end{gathered}
$$

## Variables

A variable can be directly defined via the assignment operator : " = "

```
--> a = 2.5;
--> b = 3;
--> c = a*b
    c =
    7.5
--> c+d
    !--error 4
Undefined variable : d
```

- Variable names may be defined with letters $\mathrm{a} \rightarrow \mathbf{z}, \mathrm{A} \rightarrow \mathrm{Z}$, numbers 0 $\rightarrow 9$ and few additional characters \%, , ! , \#, ?, \$.
- Scilab is case sensitive.
- Do not confused the assignment operator " = " with the mathematical equal.
- Variable declaration is implicit, whatever the type.

Pre-defined variables

| $\% \mathrm{i}$ | imaginary number $i=\sqrt{-1}$ |
| :--- | :--- |
| $\%$ e | Euler's number $e$ |
| $\%$ pi | constant $\pi$ |
| $\%$ inf | infinity $\infty$ |
| $\%$ ou $\% \mathrm{~T}$ | boolean true |
| $\% \mathrm{f}$ ou $\% \mathrm{~F}$ | boolean false |

```
--> cos(2*%pi)
    1.
--> %i^2
    ans =
    - 1.
```


## Sommaire

(1) Introduction
(2) Basics
(3) Matrices
(4) Plotting
(5) Programming
(6) For MATLAB users
(7) $\mathrm{X} \cos$
(8) Application to feedback control
(9) Classical control design

## Defining and handling vectors

A vector is defined by a list of numbers between brackets :

```
-->u = [lllllll}
    u
0 1. 2 . 3 .
```

Automatic creation

```
--> v = [0:0.2:1]
    v =
    0. 0.2 0.4 0.4 0.6 0.8
```

Syntax : start:step:end

Mathematical functions are applied element-wise

```
--> cos(v)
    1. 0.980 0.921 0.825 0.696 0.540
```

column vectors can also be defined with semi colon separator "; "

```
--> u = [1;2;3]
    u =
    1.
    2.
    3.
```

Some useful functions :

$$
\begin{array}{ll}
\hline \text { length } & \text { return the length of the vector } \\
\text { max } & \text { return the maximal component } \\
\text { min } & \text { return the minimal component } \\
\text { mean } & \text { return the mean value } \\
\text { sum } & \text { return the sum of all components } \\
\text { prod } & \text { return the product of all components } \\
\hline
\end{array}
$$

```
--> length(v)
    ans=
    6.
--> mean(v)
    ans =
        0.5
```


## Defining and handling matrices

Matrices are defined row by row with the separator ";"

```
-- A =[[llllllllllll}
    A
        1. 2. 3
    4. 5. 6.
    7. 8. 9.
```

Particular matrices :

```
zeros(n,m) n m m matrix of zeros
ones(n,m) n m m matrix of ones
eye(n,n) identity matrix
rand(n,m) n}\quadn\timesm\mathrm{ matrix of random numbers (values }\in[0,1]
```

Accessing the elements of a matrix : A (select row(s), select column(s))

```
--> A (2,3)
    ans =
        6.
--> A (2,:)
    ans=
        4. 5.
        6.
--> A(:,[[1 3 3])
    ans =
        1. 3.
        4. 6.
        7. 9.
```

For vectors, one argument is enough v (3) (gives 0.4)

Elements may be modified

```
--> A (2,3) = 0;
--> A
    A =
        1. 2. 3.
        4. 5. 0.
        7. 8. 9.
```

Some useful functions :

| size | return the dimensions of a matrix |
| :--- | :--- |
| det | compute the determinant of a matrix |
| inv | compute the inverse matrix |
| rank | return the rank of a matrix |
| diag | extract the diagonal of a matrix |
| triu | extract the upper triangular part of a matrix |
| tril | extract the lower triangular part of a matrix |
| spec | return the eigenvalues of a matrix |

```
--> B = [1 0 ; 2 2];
--> det(B)
    ans=
        2.
--> inv(B)
    ans=
        1. 0.
    - 1. 0.5
--> triu(A)
    ans =
        1. 2. 3.
        0. 5. 6.
        0. 0. 9.
```


## Matrix operations

Basic operations +, -, *, /, ^ can be directly performed

- Watch out for dimension compatibility!
- transpose operator : ". " , transpose and conjugate operator : "'"

```
--> C=[ 1 0 ; 3 1 ; 0 2];
--> D = [11 1 ; 4 0}]
--> B + D
    ans =
    2. 1.
    6. 2.
--> B * inv(B)
    ans = 0.
        0. 1.
--> A * C
    ans =
        7. 8.
        19. 17.
        31. 26.
--> A + B
        !--error 8
Inconsistent addition.
```

Elementary functions are applied element-wise

```
--> M = [0 %pi/2 ; -%pi/2 %pi ];
--> sin(M)
    ans=
        0. 1.
    - 1. 1.225D-16
--> t = [0:0.2:1];
--> exp(t)
    ans_1. 1.2214 1.4918 1.8221 2.2255 2.7182
```

There are specific versions of those functions for matrix operations

| expm | logm | sqrtm |
| :--- | :--- | :--- |
| sinm | cosm |  |

## Element-wise operations




## Sommaire

Introduction(2) Basics
(3) Matrices
(4) Plotting
(5) Programming
(6) For MATLAB users
(7) $\mathrm{X} \cos$
(8) Application to feedback control
(9) Classical control design

## 2 D graphics

To plot a curve in the $\mathrm{x}-\mathrm{y}$ plan use function plot

$$
\begin{aligned}
& -->x=[0: 0.1: 2 * \% p i] ; \\
& -->y=\cos (x) ; \\
& -->\operatorname{plot}\left(x, y, *^{\prime}\right)
\end{aligned}
$$

2D graphics

To plot a curve in the $x-y$ plan use function plot

```
--> x = [0:0.1:2*%pi];
--> y = cos(x);
--> plot(x,y,'*')
```

- plot traces a point for each couple $x(i)-y(i)$.
- $x$ and $y$ must have the same size.
- By default, a line is drawn between points.
- The third argument defines the style of the plot.


```
--> x = [0:0.1:2*%pi];
--> y2 = cos(2*x);
--> y3 = cos(4*x);
--> y4 = cos(6*x);
--> plot(x,y1);
--> plot(x,y2,'r');
--> plot(x,y3,'k:');
--> plot(x,y4,'g--');
```

```
--> x = [0:0.1:2*%pi];
--> y2 = cos(2*x);
--> y3 = cos(4*x);
--> y4 = cos(6*x);
--> plot(x,y1);
--> plot(x,y2,'r');
--> plot(x,y3,'k:');
--> plot(x,y4,'g--');
```

- Several graphics can be displayed.
- clf : clear the current graphic figure.

```
* Figure no0
    ~回|
Eichier Qutils Édition ?
```



```
Fgue nol
```



## 3D graphics

To plot a parametric curve in 3D space use function : param3d

$$
\begin{aligned}
& -->t=0: 0.01: 10 * \% \mathrm{pi} ; \\
& --x=\sin (t) ; \\
& --y=\cos (t) ; \\
& --z=t ; \\
& --\operatorname{param} 3 d(x, y, z) ;
\end{aligned}
$$

## 3D graphics

To plot a parametric curve in 3D space use function : param3d

```
--> t = 0:0.01:10*%pi;
--> x = sin(t);
--> y = cos(t);
--> z = t;
--> param3d(x,y,z);
```



To plot a surface in 3D space use function : surf

```
--> x = [-%pi:0.2:%pi];
--> y = [-%pi:0.2:%pi];
--> [X,Y] = meshgrid(x,y);
--> Z = cos(X).*sin(Y);
--> surf(X,Y,Z)
--> f=gcf();
--> f.color_map = jetcolormap(32);
```

To plot a surface in 3D space use function : surf

```
--> x = [-%pi:0.2:%pi];
--> y = [-%pi:0.2:%pi];
--> [X,Y] = meshgrid(x,y);
--> Z = cos(X).*sin(Y);
--> surf(X,Y,Z)
--> f=gcf();
--> f.color_map = jetcolormap(32);
```



## Overview

Scilab provides several graphical functions :

| plot | 2D graphic |
| :--- | :--- |
| contour | level curves in x-y plan |
| surf | 3D surface |
| pie | "pie" plot |
| histplot | histogram plot |
| hist3d | 3D histogram plot |
| bar | bar plot |
| polarplot | polar coordinate plot |

Some instructions allow to add features to the figure :

$$
\begin{array}{ll}
\hline \text { title } & \text { add a title } \\
\text { xtitle } & \text { add a title and labels on axis } \\
\text { legend } & \text { add a legend } \\
\hline
\end{array}
$$

```
\(-->x=\) linspace \((-20,20,1000)\);
--> \(\mathrm{y} 1=\mathrm{x} . * \sin (\mathrm{x})\);
--> \(y 2=-x\);
\(->\mathrm{plot}\left(\mathrm{x}, \mathrm{y} 1, \mathrm{~b}, \mathrm{~b}, \mathrm{x} 2\right.\), 'r' \(\left.^{\prime}\right)\)
```



```
--> legend('y1=x*sin(x)','y2=-x');
```

```
--> x = linspace( -20, 20,1000);
--> y1 = x.*sin(x);
--> y2 = -x;
--> plot(x,y1,'b',x,y2,'r')
```



```
--> legend('y1=x*sin(x)','y2=-x');
```



## Sommaire

(1) Introduction
(2) Basics
(3) Matrices
(4) Plotting
(5) Programming
(6) For MATLAB users
(7) $\mathrm{X} \cos$
(8) Application to feedback control
(9) Classical control design

## Scripts

A script is a set of instructions gathered in a file.

- Scilab provides a programming language (interpreted).
- Scilab includes an editor, but any text editor may be used.
- File extension should be ".sce" (but this is not mandatory).
- Editor launched from "Applications > SciNotes" or by typing editor on the console.


## Scripts

A script is a set of instructions gathered in a file.

- Scilab provides a programming language (interpreted).
- Scilab includes an editor, but any text editor may be used.
- File extension should be ".sce" (but this is not mandatory).
- Editor launched from "Applications > SciNotes" or by typing editor on the console.


Example of a script : myscript.sce

```
// radius of a sphere
    r = 2;
    // calculation of the area
    A = 4*%pi*r^2;
    // calculation of the volume
    V = 4*%pi*r^3/3;
    disp(A,'Area:');
    disp(V,'Volume:');
```

Dans la console :

```
-->exec('myscript.sce', -1)
    Area:
        50.265482
    Volume:
        33.510322
```

The file must be located in the current directory

- Comments : words following // are not interpreted.
- The current directory can be modified in menu File of the console.
- The path may be specified instead
exec('C:\Users\yassine\scilab\myscript.sce', -1)
- Scripts may also be run from the shortcut in the toolbar.
- Variables defined in the workspace (from the console) are visible and can be modified in the script.

Another example : myscript2.sce

```
x1 = -1; x2 = 1;
x = linspace(x1,x2,n);
y = exp(-2*x).*sin (3*x);
plot(x,y);
disp('seeevplot
```

On the console :

```
--> n = 50;
-->exec('myscript2.sce', -1)
    see plot on the figure
```

Here the variable n must be defined beforehand.

## Figure $n^{\circ} 0$

| $\square$ | 目 | $x$ |
| :--- | :--- | :--- |

Fichier Qutils Édition ?

- © ©

Figure $n^{\circ} 0$


## Looping and branching

Scilab language includes classical control structures
Conditional statements if

```
    if boolean expression then
        instructions 1
    else
        instructions 2
    end
```

```
if (x>=0) then
    disp("x
else
    disp("x
end
```

Branching with respect to the value of a variable select

```
    select variable
    case value 1
    instructions 1
    case value 2
        instructions 2
    else
        instructions 3
    end
```

```
select i
case 1
    disp("One");
case 2
        disp("Two");
case 3
        disp("Three");
else
    disp("Other");
end
```

Loop control statements for

```
for variable = start: step: end
    instructions
end
```

```
n = 10;
for k = 1:n
    y(k) = exp(k);
end
```

Loop control based on a boolean expression while

```
while (boolean expression)
    instructions
end
```

$\mathrm{x}=16$;
while ( $x>1$ )
$\mathrm{x}=\mathrm{x} / 2$;
end

And also :

- instruction break interrupt and exit a loop.
- instruction continue skip to the next iteration of a loop.

Note that as much as possible, use vector / matrix operations instead of loops. The code may run 10 to 100 times faster. This feature of Scilab is known as the vectorization.

```
tic
S = 0;
for k = 1:1000
    S = S + k;
end
t = toc(); disp(t);
tic
N = [1:1000];
S = sum(N);
t = toc(); disp(t);
```

-->exec('myscript.sce', -1)
0.029
0.002

## Functions

A function is a command that makes computations from variables and returns a result

```
outvar = afunction(invar)
```

- afunction is the name of the function
- invar is the input argument
- outvar is the output argument, returned by the function

Examples:

```
--> y = sin(1.8)
    y =
        0.9738476
--> x =[0:0.1:1];
--> N = length(x)
    N
    11.
```

User can define its own functions

```
function [out1,out2,...] = myfunction(in1,in2,...)
    body of the function
endfunction
```

- once the environment function...endfunction is executed myfunction is defined and loaded in Scilab
- after any change in the function, it must be reloaded to be taken into account
- files including functions generally have the extension ".sci"

Example 1: calculation of the roots of a quadratic equation.

Define and load the function

```
function [x1,x2] = roots_equ2d(a,b,c)
    // roots of ax^2 + bx + c = 0
    delta = b^2 - 4*a*c
    x1 = (-b - sqrt(delta))/(2*a)
    x2 = (-b + sqrt(delta))/(2*a)
endfunction
```

Then, you can use it as any other Scilab function

```
--> [r1,r2] = roots_equ2d(1,3,2)
    r2 =
    - 1.
    r1 =
    - 2.
```

Example 2 : functions are appropriate to define mathematical functions.

$$
f(x)=(x+1) e^{-2 x}
$$

```
function y = f(x)
    y = (x+1).*exp (-2*x);
endfunction
```

```
--> y = f(4)
    y =
        0.0016773
--> y = f(2.5)
    y =
        0.0235828
--> t = [0:0.1:5];
--> plot(t,f)
```

- Variables from workspace are known inside the function
- but any change inside the function remain local.

```
function z=mytest(x)
    z = x + a;
    a = a +1;
endfunction
```

```
--> a = 2;
--> mytest(3)
    ans=
        5.
--> a
    a
        2.
```


## Sommaire

(1) Introduction
(2) Basics
(3) Matrices

4 Plotting
(5) Programming
(6) For MATLAB users
(7) $\mathrm{X} \cos$
(8) Application to feedback control
(9) Classical control design

## For MATLAB users

Many instructions have the same syntax, but some others not...

A dictionary gives a list of the main MATLAB functions with their Scilab equivalents
http://help.scilab.org/docs/5.4.1/en_US/section_36184e52ee88ad558380be4e92d3de21.html

Some tools are provided to convert MATLAB files to Scilab (e.g. mfile2sci)
http://help.scilab.org/docs/5.4.1/en_US/About_M2SCI_tools.html

A good note on Scilab for MATLAB users
Eike Rietsch, An Introduction to Scilab from a Matlab User's Point of View, May 2010
http://www.scilab.org/en/resources/documentation/community

Somme differences about the syntax

## In MATLAB

- search with keywords lookfor
- comments \%
- predefined constants i, pi, inf, true
- special characters in name of variables -
- continuation of a statement . . .
- flow control switch case otherwise
- last element of a vector $x$ (end)


## In Scilab

- search with keywords apropos
- comments //
- predefined constants \%i, \%pi, \%inf, \%t
- special characters in name of variables _, \#, !, ?, \$
- continuation of a statement . .
- flow control select case else
- last element of a vector $x(\$)$

Different responses for a same command

## In MATLAB

- length, the larger of the number of rows and columns
- after a first plot, a second one clears the current figure
- division by a vector
>> $x=1 /\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
Error using / Matrix dimensions must agree.
- operators $==$ and $\sim=$ compare elements >> $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]==1$
ans =
100
>> $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]==\left[\begin{array}{ll}1 & 2\end{array}\right]$
Error using ==
Matrix dimensions must agree.
>> [1 2] == ['1','2']
ans $=$ 00

In Scilab

- length, the product of the number of rows and columns
- after a first plot, a second one holds the previous
- division by a vector
--> $x=1 /\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
$\mathrm{x}=$
0.0714286
0.1428571
0.2142857
x is solution of $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] * \mathrm{x}=1$
- operators $==$ and $\sim=$ compare objects --> $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]==1$
ans $=$
T F F
--> $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]==\left[\begin{array}{ll}1 & 2\end{array}\right]$
ans =
F
--> [1 2 ] == ['1','2']
ans $=$
F

Different responses for a same command

## In MATLAB

- for a matrix $A=\left[\begin{array}{llllll}1 & 2 & 4 ; 4 & 2 ; 6 & 0 & 9\end{array}\right]$ $\gg \max (A)$
ans =
789
>> sum(A)
ans $=$
121018
- disp must have a single argument >> $a=3$;
>> disp(['the result is
', int2str(a),' ...bye!'])
the result is 3 ...bye!


## In Scilab

- for a matrix $A=\left[\begin{array}{llllll}1 & 2 & 4 ; 4 & 2 ; 6 & 0 & 9\end{array}\right]$
--> $\max (A)$
ans $=$

9. 

--> $\operatorname{sum}(A)$
ans $=$
36.

- disp may have several arguments --> a = 3 ;
--> disp(a,'the result is ' + string(a),'hello!')
hello! the result is 3 3.
- note that : prettyprint generates the Latex code to represent a Scilab object

Difference when running a script

## In MATLAB

- script is invoked by typing its name myscript
- the m-file must be in a directory of the search path (or specify the path in the call)
- use a semi-colon to print or not the result of an instruction


## In Scilab

- script is invoked with the exec command
--> exec('myscript.sce')
- the file must be the working directory (or specify the path in the call)
- a second argument may be appended (mode) to specify what to print
- it does not seem to do what the documentation says... not clear for me
a simple example, myscript.sce :

```
// a simple script: myscript
a = 1
b = a+3;
disp('resultuisu'+string(b))
```

the second argument mode

| Value | Meaning |
| :---: | :--- |
| 0 | the default value |
| -1 | print nothing |
| 1 | echo each command line |
| 2 | print prompt $-->$ |
| 3 | echo + prompt |
| 4 | stop before each prompt |
| 7 | stop + prompt + echo |

```
--> exec('myscript.sce',0)
a
        1.
    result is 4
```

(as Matlab works)

```
--> exec('myscript.sce',-1)
    result is 4
```

(only output of disp is printed)

```
--> exec('myscript.sce',1)
-->// a simple script: myscript
-->a = 1
    a =
        1.
-->b = a+3;
-->disp('resulttisu'+string(b))
    result is 4
```

(everything is printed (instructions and outputs)

Difference when using user defined functions

In MATLAB

- a function is a file, they must have the same name
- variables in the function are local variables
- any other functions defined in the file are local functions


## In Scilab

- a function is a variable
- variables in the function are local variables and variables from the calling workspace are known
- when defined (function ... endfunction), functions are not executed bu loaded
- any change in the function requires to reload it (executing the environment)


## Sommaire

(1) Introduction
(2) Basics
(3) Matrices
(d) Plotting
(5) Programming
(6) For MATLAB users
(7) Xcos
(8) Application to feedback control
(9) Classical control design

Xcos is a graphical environment to simulate dynamic systems.
It is the Simulink ${ }^{\circledR}$ counterpart of Scilab.
It is launched in Application/Xcos or by typing xcos

Xcos is a graphical environment to simulate dynamic systems.
It is the Simulink ${ }^{\circledR}$ counterpart of Scilab.
It is launched in Application/Xcos or by typing xcos


A simple example


A simple example


| block | sub-palette |
| ---: | :--- |
| sinus | Sources/GENSIN_f |
| gain | Math. Operations/GAINBLK_f |
| scope | Sinks/CSCOPE |
| clock | Sources/CLOCK_c |

- drag and drop blocks from the palette browser to the editing window
- $k$ is variable from the workspace (or from Simulation/Set context)
- black lines are data flows and red lines are event flows

Settings : frequency $=2 \pi / 3, k=2$, final integral time $=12$, $\mathrm{Ymin}=-3$, Ymax $=3$, Refresh period $=12$

Run simulation from Simulation/Start


Let simulate a mass-spring-damper system


The system can be described by the equation of motion

$$
m \ddot{x}(t)+f \dot{x}(t)+k x(t)=0
$$

with the initial conditions : $x(0)=5$ and $\dot{x}(0)=0$

Let simulate a mass-spring-damper system


The system can be described by the equation of motion

$$
m \ddot{x}(t)+f \dot{x}(t)+k x(t)=0
$$

with the initial conditions : $x(0)=5$ and $\dot{x}(0)=0$

The acceleration of the mass is then given by

$$
\ddot{x}(t)=-\frac{1}{m}(k x(t)+f \dot{x}(t))
$$

modeling and simulation with Xcos


| block | sub-palette |
| ---: | :--- |
| sum | Math. Operations/BIGSOM_f |
| gain | Math. Operations/GAINBLK_f |
| integral | Cont. time systems/INTEGRAL_m |
| scope | Sinks/CSCOPE |
| x-y scope | Sinks/CSCOPXY |
| clock | Sources/CLOCK_c |


parameters : $m=1, k=2$ and $f=0.2$

Let add an external force


Let add an external force


Define a superblock: Edit/Region to superblock


Example 3 : simulation of a PWM signal


Example 3: simulation of a PWM signal

(1) Introduction
(2) Basics
(3) Matrices
(4) Plotting
(5) Programming
(6) For MATLAB users
(7) $\mathrm{X} \cos$
(8) Application to feedback control
(9) Classical control design

## A brief review

Objective : Design a controller to control a dynamical system.


The output to be controlled is measured and taken into account by the controller.

$$
\Rightarrow \text { feedback control }
$$

Example : angular position control of a robotic arm.


Example : angular position control of a robotic arm.


- $u(t)$ is the control voltage of the DC motor (actuator)
- $\theta(t)$ is the angular position of the arm (measured with a sensor)

The input-output relationship is given by :

$$
\ddot{\theta}(t)+\dot{\theta}(t)=u(t)
$$

The corresponding transfer function is

$$
G(s)=\frac{\hat{\theta}(s)}{\hat{u}(s)}=\frac{1}{(s+1) s}
$$

It has 2 poles : -1 and $0 \Rightarrow$ system is unstable

The corresponding transfer function is

$$
G(s)=\frac{\hat{\theta}(s)}{\hat{u}(s)}=\frac{1}{(s+1) s}
$$

It has 2 poles : -1 and $0 \Rightarrow$ system is unstable

Its step response is divergent


The asymptotic bode diagram :


Closed-loop control with a proportional gain $k$


Closed-loop control with a proportional gain $k$


The closed-loop transfer function is

$$
F(s)=\frac{k}{s^{2}+s+k}
$$

The Routh criterion shows that $F(s)$ is stable $\forall k>0$.

Response of $\theta(t)$ for a step reference $r(t)=\frac{\pi}{2}$


## Quick analysis of the feedback system

The tracking error is given by : $\varepsilon(t)=r(t)-\theta(t)$

$$
\hat{\varepsilon}(s)=\frac{s^{2}+s}{s^{2}+s+k} \hat{r}(s)
$$

the static error is zero : $\varepsilon_{s}=\lim _{s \rightarrow 0} s \hat{\varepsilon}(s)=0$ (with $\hat{r}(s)=\frac{\pi / 2}{s}$ )

Quick analysis of the feedback system

The tracking error is given by : $\varepsilon(t)=r(t)-\theta(t)$

$$
\hat{\varepsilon}(s)=\frac{s^{2}+s}{s^{2}+s+k} \hat{r}(s)
$$

the static error is zero : $\varepsilon_{s}=\lim _{s \rightarrow 0} s \hat{\varepsilon}(s)=0\left(\right.$ with $\hat{r}(s)=\frac{\pi / 2}{s}$ )

Using the standard form of $2^{\text {nd }}$ order systems :

$$
F(s)=\frac{K \omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \quad \Rightarrow \quad\left\{\begin{aligned}
K & =1 \\
\omega_{n} & =\sqrt{k} \\
\zeta & =1 / 2 \sqrt{k}
\end{aligned}\right.
$$

we can conclude that

- when $k \nearrow$, damping $\zeta \searrow$ and oscillations $\nearrow$
- settling time $t_{5 \%} \approx \frac{3}{\zeta \omega_{n}}=6 \mathrm{~s}$.


## System analysis in Scilab

Definition of a transfer function

```
--> num = 1;
--> den = %s^2+%s;
--> G = syslin('c', num, den)
    G=
        1
    -----
    s}+\textrm{s
--> roots(den)
    ans=
    - 1.
        0
```

- The argument c stands for continuous-time system (d for discrete)
- The instruction roots is useful to calculate the poles of a transfer function
- The instruction plzr plots the pole-zero map in the complex plane

Computation of the time response

```
--> t = [0:0.02:3];
--> theta = csim('step',t,G);
--> plot(t,theta)
```

- The string argument step is the control, it can be impuls, a vector or a function.
- To define the time vector, you may also use the linspace instruction.
- For frequency analysis, different instructions are provided : repfreq, bode, nyquist, black.


## Systems connection



The mathematical operators can handle syslin type
Example

$$
G_{1}(s)=\frac{1}{s+2} \quad \text { and } \quad G_{2}(s)=\frac{4}{s}
$$

$$
\begin{aligned}
& --\mathrm{G} 1=\operatorname{syslin}\left('^{\prime} c^{\prime}, 1, \% s+2\right) ; \\
& --\mathrm{G} 2=\operatorname{syslin}\left(\mathrm{c}^{\prime}, 4, \% \mathrm{~s}\right) ;
\end{aligned}
$$

```
--> G1 * G2 // series connection
    ans =
        4
        -----
            2
        2s+s
--> G1 + G2 // parallel connection
    ans =
        8+5s
        2
        2s+s
--> G1 /. G2 // feedback connection
    ans=
        s
        ---------
            2
        4+2s+s
```

Back to our case study

Let simulate the closed-loop control with a proportional gain

```
--> k = 2;
--> F=(G*k) /. 1
    F =
        2
        ---------
            2
            2+s+s
--> routh_t(%s^2+%s+2)
    ans =
        1. 2.
        1. 0.
        2. 0.
--> [wn, zeta] = damp(F)
    zeta =
        0.3535534
        0.3535534
    wn =
        1.4142136
        1.4142136
--> t = linspace (0,12, 200);
--> theta = csim('step',t,F)*%pi/2;
--> plot(t,theta)
```


## Bode plot

Introductory example : RC circuit


## Bode plot

Introductory example : RC circuit


Sinusoidal steady state :

$$
\left\{\begin{array} { l } 
{ e ( t ) = e _ { m } \operatorname { c o s } ( \omega t + \phi _ { e } ) } \\
{ v ( t ) = v _ { m } \operatorname { c o s } ( \omega t + \phi _ { v } ) }
\end{array} \quad \Rightarrow \quad \left\{\begin{array}{l}
\underline{e}=e_{m} e^{j \phi_{e}} \\
\underline{v}=v_{m} e^{j \phi_{v}}
\end{array}\right.\right.
$$

For $R=1 k \Omega$ and $C=200 \mu F$, let apply a voltage $e(t)=\cos (8 t)$.


Ohm's law : $\underline{u}=\underline{Z i}$

$$
\underline{Z}_{R}=R \quad \text { and } \quad \underline{Z}_{C}=\frac{1}{j \omega C}
$$

Ohm's law : $\underline{u}=\underline{Z i}$

$$
\underline{Z}_{R}=R \quad \text { and } \quad \underline{Z}_{C}=\frac{1}{j \omega C}
$$

Applying the voltage divider formula :

$$
\underline{v}=\frac{\underline{Z}_{C}}{\underline{Z}_{C}+\underline{Z}_{R}} \underline{e}
$$

Ohm's law : $\underline{u}=\underline{Z i}$

$$
\underline{Z}_{R}=R \quad \text { and } \quad \underline{Z}_{C}=\frac{1}{j \omega C}
$$

Applying the voltage divider formula :

$$
\underline{v}=\frac{\underline{Z}_{C}}{\underline{Z}_{C}+\underline{Z}_{R}} \underline{e}
$$

Hence, the transfer function from $e(t)$ to $v(t)$ is :

$$
\underline{T}=\frac{\frac{1}{j \omega C}}{\frac{1}{j \omega C}+R}=\frac{1}{j \omega R C+1} .
$$

## Bode diagram of the transfer function



Bode diagram of the transfer function


Responses of the circuit with $\omega=\{0.8,4,8,40\}$


Responses of the circuit with $\omega=\{0.8,4,8,40\}$



Responses of the circuit with $\omega=\{0.8,4,8,40\}$




Responses of the circuit with $\omega=\{0.8,4,8,40\}$






Frequency analysis consists in studying the response of a LTI system with sine inputs


Frequency analysis consists in studying the response of a LTI system with sine inputs



The output signal is also a sine with the same frequency, but with a different magnitude and a different phase angle.

A system can then be characterized by its

- gain : $\frac{y_{0}}{u_{0}}$
- phase shift $: \pm 360 \frac{\Delta t}{T}$

The magnitude and the phase depend on the frequency $\omega$

A system can then be characterized by its

- gain : $\frac{y_{0}}{u_{0}}$
- phase shift : $\pm 360 \frac{\Delta t}{T}$

The magnitude and the phase depend on the frequency $\omega$

It can be shown that :

- gain $=|F(j \omega)|$,
- phase shift $=\arg F(j \omega)$.
$F(j \omega)$ is the transfer function of the system where the Laplace variable $s$ has been replaced by $j \omega$.

Example : let consider system

$$
F(s)=\frac{1 / 2}{s+1}
$$

What are the responses to these inputs?

$$
\begin{aligned}
& u_{1}=\sin (0.05 t) \\
& u_{2}=\sin (1.5 t) \\
& u_{3}=\sin (10 t)
\end{aligned}
$$

Example : let consider system

$$
F(s)=\frac{1 / 2}{s+1}
$$

What are the responses to these inputs?

$$
\begin{aligned}
& u_{1}=\sin (0.05 t) \\
& u_{2}=\sin (1.5 t) \\
& u_{3}=\sin (10 t)
\end{aligned}
$$

we express $F(j \omega)=\frac{1 / 2}{j \omega+1}$

- for $\omega=0.05 \mathrm{rad} / \mathrm{s}$ :

$$
|F(j 0.05)|=0.5
$$

and
$\arg F(j 0.05)=-2.86^{\circ}$.

- for $\omega=1.5 \mathrm{rad} / \mathrm{s}$ :

$$
|F(j 1.5)|=0.277
$$

$$
\text { and } \quad \arg F(j 1.5)=-56.3^{\circ}
$$

- for $\omega=10 \mathrm{rad} / \mathrm{s}$ :
$|F(j 10)|=0.05$ and $\arg F(j 10)=-84.3^{\circ}$.



Ariba - ICam, Toulouse


Bode diagram : it plots the gain and the phase shift w.r.t. the frequency $\omega$

- the gain is expressed as decibels : gain $\mathrm{dB}=20 \log \frac{y_{0}}{u_{0}}$
- property : the Bode diagram of $F(s) G(s)$ is the sum of the one of $F(s)$ and the one of $G(s)$.
- in Scilab, the instruction bode(F) plots the Bode diagram of $F(s)$.

Bode diagram : it plots the gain and the phase shift w.r.t. the frequency $\omega$

- the gain is expressed as decibels : gain $\mathrm{dB}=20 \log \frac{y_{0}}{u_{0}}$
- property : the Bode diagram of $F(s) G(s)$ is the sum of the one of $F(s)$ and the one of $G(s)$.
- in Scilab, the instruction bode (F) plots the Bode diagram of $F(s)$.



## Simulation with Xcos

Let simulate the closed-loop control with a proportional gain


## Simulation with Xcos

Let simulate the closed-loop control with a proportional gain


| block | sub-palette |
| ---: | :--- |
| step | Sources/STEP_FUNCTION |
| sum | Math. Operations/BIGSOM_f |
| gain | Math. Operations/GAINBLK_f |
| transfert function | Cont. time systems/CLR <br> scope <br> clock |
| Sinks/CSCOPE <br> Sources/CLOCK_c |  |

settings : final value (step) $=\% p i / 2$, final integral time $=12, \mathrm{Ymin}=0$,
$\mathrm{Ymax}=2.5$, Refresh period $=12$

## Sommaire

(1) Introduction
(2) Basics
(3) Matrices
(4) Plotting
(5) Programming
(6) For MATLAB users
(7) $\mathrm{X} \cos$
(8) Application to feedback control
(9) Classical control design

## Classical control design

Control design aims at designing a controller $C(s)$ in order to assign desired performances to the closed loop system


- Classical control is a frequency domain approach and is essentially based on Bode plot
- Main controllers, or compensators, are phase lag, phase lead, PID (proportional integral derivative)


## Loopshaping

Let express the tracking error

$$
\hat{e}(s)=\frac{1}{1+G(s) C(s)} \hat{r}(s)
$$

So, a high open-loop gain results in a good tracking

- it leads to better accuracy and faster response (depending on the bandwidth)
- but it leads to a more aggressive control input ( $u$ )
- but it reduces stability margins

Let define the open-loop transfer function $L=G C$ Closed-loop performances can be assessed from the Bode plot of $L$


- PM and GM are phase and gain margins
- noise disturbances are a high frequency signals

Loopshaping consists in designing the controller $C(s)$ so as to "shape" the frequency response of $L(s)$
we recall that

$$
|L|_{d b}=|G C|_{d b}=|G|_{d b}+|C|_{d b}
$$

The desired "shape" depends on performance requirements for the closed-loop system

A simple example with a proportional controller


The open-loop transfer function is

$$
L(s)=\frac{4 k}{s^{2}+3 s+3}
$$

Bode plot of $L(s)$ for $k=\{0.5,1,5,10\}$


Bode plot of $L(s)$ for $k=\{0.5,1,5,10\}$

when $k$ increases, the phase margin decreases

Step response of the closed-loop system (unit step) for $k=\{0.5,1,5,10\}$


- the static error decreases as $k$ increases
- oscillations increase as $k$ increases


## Phase lag controller

The transfer function of the phase lag controller is of the form

$$
C(s)=\frac{1+\tau s}{1+a \tau s}, \quad \text { with } a>1
$$

## Phase lag controller

The transfer function of the phase lag controller is of the form

$$
C(s)=\frac{1+\tau s}{1+a \tau s}, \quad \text { with } a>1
$$

- $a$ and $\tau$ are tuning parameters
- It allows a higher gain in low frequencies
- But the phase lag must not reduce the phase margin



## Example

$$
G(s)=\frac{4}{s^{2}+3 s+3}
$$

What value for the proportional gain $k$ to have a static error of $10 \%$ ?

## Example

$$
G(s)=\frac{4}{s^{2}+3 s+3}
$$

What value for the proportional gain $k$ to have a static error of $10 \%$ ?

$$
\text { static error }=\frac{1}{1+\frac{4}{3} k}=0.1 \quad \Rightarrow \quad k=6.75
$$

close-loop system response


## Precision ok, but too much oscillations



Precision ok, but too much oscillations


Phase margin : before $=111^{\circ}($ at $1.24 \mathrm{rd} / \mathrm{s}) ;$ after $=34^{\circ}($ at $5.04 \mathrm{rd} / \mathrm{s})$

## Phase lag controller

$$
C(s)=\frac{1+\tau s}{1+a \tau s}
$$

with $a>1$


Phase lag controller

$$
C(s)=\frac{1+\tau s}{1+a \tau s}
$$

with $a>1$


- We want a high gain only at low frequencies
- Phase lag must occur before the crossover frequency

$$
\frac{1}{\tau}<\omega_{0}=1.24 \quad \Rightarrow \quad \tau=1
$$

- Then, we want to recover a gain of 1

$$
a=6.75
$$




Phase margin : now, with the proportional gain and the phase lag controller $=70^{\circ}($ at $1.56 \mathrm{rd} / \mathrm{s})$


close-loop system response


## Phase lead controller

The transfer function of the phase lead controller is of the form

$$
C(s)=\frac{1+a \tau s}{1+\tau s}, \quad \text { with } a>1
$$

## Phase lead controller

The transfer function of the phase lead controller is of the form

$$
C(s)=\frac{1+a \tau s}{1+\tau s}, \quad \text { with } a>1
$$

- $a$ and $\tau$ are tuning parameters
- It provides a phase lead in a frequency range
- But the gain may shift the crossover frequency


The phase lead compensator is used to increase the phase margin
Procedure:

- firstly, adjust a proportional gain $k$ to reach a tradeoff between speed/accuracy and overshoot.
- measure the current phase margin and subtract to the desired margin

$$
\varphi_{m}=P M_{\text {desired }}-P M_{\mathrm{current}}
$$

- compute $a$

$$
a=\frac{1+\sin \varphi_{m}}{1-\sin \varphi_{m}}
$$

- at the maximum phase lead $\varphi_{m}$, the magnitude is $20 \log \sqrt{a}$. Find the frequency $\omega_{m}$ for which the magnitude of $k G(s)$ is $-20 \log \sqrt{a}$
- compute $\tau$

$$
\tau=\frac{1}{\omega_{m} \sqrt{a}}
$$

Example

$$
G(s)=\frac{4}{s(2 s+1)}
$$

## Example

$$
G(s)=\frac{4}{s(2 s+1)}
$$

close-loop system response


Phase margin : $20^{\circ}$ at $1.37 \mathrm{rd} / \mathrm{s}$

Design of a phase lead compensator

- current phase margin is $20^{\circ}$, and the desired margin is, say, $60^{\circ}$

$$
\varphi_{m}=40^{\circ}=0.70 r d
$$

- compute $a$

$$
a=\frac{1+\sin \varphi_{m}}{1-\sin \varphi_{m}}=4.62
$$

- at the maximum phase lead $\varphi_{m}$, the magnitude is 6.65 db . At the frequency $\sim 2 \mathrm{rd} / \mathrm{s}$ the magnitude of $G(\mathrm{~s})$ is -6.65 db
- compute $\tau$

$$
\tau=\frac{1}{\omega_{m} \sqrt{a}}=0.23
$$

Design of a phase lead compensator

- current phase margin is $20^{\circ}$, and the desired margin is, say, $60^{\circ}$

$$
\varphi_{m}=40^{\circ}=0.70 r d
$$

- compute $a$

$$
a=\frac{1+\sin \varphi_{m}}{1-\sin \varphi_{m}}=4.62
$$

- at the maximum phase lead $\varphi_{m}$, the magnitude is 6.65 db . At the frequency $\sim 2 \mathrm{rd} / \mathrm{s}$ the magnitude of $G(\mathrm{~s})$ is -6.65 db
- compute $\tau$

$$
\tau=\frac{1}{\omega_{m} \sqrt{a}}=0.23
$$

Hence, the controller is of the form

$$
C(s)=\frac{1+1.07 s}{1+0.23 s}
$$

## Example


close-loop system response

open-loop bode diagram


## Example


close-loop system response

open-loop bode diagram


New phase margin : $53.7^{\circ}$ at $2 \mathrm{rd} / \mathrm{s}$

## PID controller

A PID controller consists in 3 control actions
$\Rightarrow$ proportional, integral and derivative

Transfer function of the form :

$$
\begin{aligned}
C(s) & =k_{p}+k_{i} \frac{1}{s}+k_{d} s \\
& =k_{p}\left(1+\frac{1}{\tau_{i} s}\right)\left(1+\tau_{d} s\right)
\end{aligned}
$$

The phase lag controller is an approximation of the PI controller

Phase lag controller

$$
C(s)=\frac{1+\tau s}{1+a \tau s}
$$

with $a>1$

PI controller

$$
C(s)=\frac{1+\tau_{i} s}{\tau_{i} s}
$$




The phase lead controller is an approximation of the PD controller

Phase lead controller

$$
C(s)=\frac{1+a \tau s}{1+\tau s}
$$

with $a>1$


PD controller

$$
C(s)=1+\tau_{d} s
$$



A PID controller is a combination of phase lag and phase lead controllers

$$
C(s)=k\left(\frac{1+\tau_{1} s}{1+a_{1} \tau_{1} s}\right)\left(\frac{1+a_{2} \tau_{2} s}{1+\tau_{2} s}\right)
$$

with $a_{1}>1$ and $a_{2}>1$.

Transfer function of the form :

- the phase lag part is designed to improve accuracy and responsiveness
- the phase lead part is designed to improve stability margins
- an extra low-pass filter may be added to reduce noise

$$
C_{1}(s)=\frac{1}{1+\tau_{3} s}
$$

with $\tau_{3} \ll \tau_{2}$


