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Abstract—The paper considers the design of robust AQM
for the congestion problem of a router. Using a state space
representation of a linearized fluid model of TCP, we provide
an AQM which stabilises the queue length of the buffer for any
delay less than a prescribed upper bound. Our results rely on
the use of recently developed Lyapunov-Krasovskii functional
and have been expressed in terms of Linear Matrix Inequalities
which can be solved easily. Finally, an example extracted from
the literature and simulations support our study.

I. I NTRODUCTION

Over a past few years, problems have arisen with regard to
Quality of Service (QoS) issues in Internet traffic congestion
control [1], [2], [3]. AQM mechanism, which supports the end-
to-end congestion control mechanism of Transmission Control
Protocol (TCP), has been actively studied by many researchers.
AQM mechanism controls the queue length of a router by
actively dropping packets. Various mechanisms have been
proposed in the literature such as Random Early Detection
(RED) [4], Random Early Marking (REM) [5], BLUE [6],
Adaptive Virtual Queue (AVQ) [7] and many others [8].
Their performances have been evaluated [9], [8] and empirical
studies have shown the effectiveness of these mechanisms
[10]. During the last few years, significant research have
been devoted to the use of control theory to develop more
efficient AQM. Using dynamical model developed by [11],
some P (Proportional), PI (Proportional Integral) [12], PID
(Proportional Integral Derivative) [13] have been designed as
well as robust control framework issued [14]. Nevertheless,
most of these papers do not take into account the delay and
ensure the stability in closed loop for all delays which could
be conservative.

The study of congestion problem with time delay systems
framework is not new and has been succesfully exploited.
In [15], [16], using Lyapunov-Krasovskii theory, the global
stability analysis of the non linear model of TCP is performed.
In [17], a delay dependent state feedback controller is provided
by compensation of the delay with a memory feedback control.
This latter methodology is interesting in theory but hardly
suitable in practice. In [18], [19], robust AQM are derived
using time delay system approach. The first one builds a state
feedback controller based on Lyapunov-Krasovskii theory.The
second one designs an output feedback in robust control
framework, especiallyH∞ control.

Based on recently developed Lyapunov functional for de-

layed systems, we construct two new AQM stabilizing the
TCP model. The first one is called IOD-AQM (Independent
Of Delay) and it deals with the control of TCP for all delays
in the loop. Because of the space limitation, this latter is not
presented and invite the reader to [20]. The second one, DD-
AQM (Delay Dependent) is devoted to the control of the TCP
dynamics when an upperbound of the delay is known. In order
to consider a more realistic case, extension to the robust case,
where the delay is uncertain is considered using quadratic
stabilization framework.

The paper is organized as follows. The second part dis-
cussed the uncertain mathematical model of a network sup-
porting TCP. Section III is dedicated to the design of an AQM
ensuring the robust stabilization of TCP as well as a certain
level of performances. Section IV presents application of the
exposed theory and simulation results using NS-2 [21]. Finally,
Section V concludes the paper.

Notations:For two symmetric matrices,A andB, A > (≥)
B means thatA−B is (semi-) positive definite.AT denotes the
transpose ofA. 1n and0m×n denote respectively the identity
matrix of sizen and null matrix of sizem×n. If the context
allows it, the dimensions of these matrices are often omitted.
For a given matrixA ∈ Rn×n, < A > stands forA + AT .

II. PROBLEM STATEMENT AND MODELISATION

A. The linearized fluid-flow model of TCP

The fluid flow model of TCP considered here was intro-
duced in [11], [12]. Based on this system, a new type of AQM
will be constructed, which takes into account delays into the
network.

Given the network parameters: number of TCP sessions,
link capacity and propagation delay (N , C and Tp respec-
tively), we define the set of operating points(W0, q0, p0) by
Ẇ = 0 and q̇ = 0:

{
Ẇ = 0 ⇒ W 2

0 p0 = 2

q̇ = 0 ⇒ W0 = R0C
N

, R0 = q0

C
+ Tp

(1)

whereW (t) is the congestion window,q(t) is the queue length
at the congested router andR(t) is the Round Trip Time (RTT)
which represents the delay in TCP dynamics.x0 denotes the
value of the variablex at the equilibrium point.

AssumingN(t) ≡ N and R(t) ≡ R0 as constants, the
dynamic model of TCP can be approximated, at an equilibrium



point, by the linear time delay system [11]:




δẆ (t) = −
N

R2
0C

(
δW (t) + δW (t − h(t))

)

− 1
R2

0
C

(
δq(t) − δq(t − h(t))

)
− R0C2

2N2 δp(t − h(t))

δq̇(t) =
N

R0
δW (t) −

1

R0
δq(t)

(2)
whereδW

.
= W − W0, δq

.
= q − q0 andδp

.
= p − p0 are the

state variables and input perturbations around the operating
point. The model (2) is valid only if the variations of these
new variables are kept enough small.

Note that the input of the model (2) corresponds to the drop
probability of a packet, fixed by the AQM. This latter has for
objective to regulate the queue size of the buffer. The purpose
of this paper is to develop an AQM algorithm based on control
theory, especially time delay system theory.

For synthesis problem (see section III), we consider an
active queue management expressed as a state feedback

p(t) = p0 + k1δW (t) + k2δq(t). (3)

Remark 1 Using the second equation of (2), the perturbed
congestion window can be expressed asδW = 1

N
δq + R0

N
δq̇.

As it has been shown [17], the state feedback appears to be a
natural PD (Proportional Derivative) control law. In that case,
q̇ can be calculated aṡq = −C+y(t) wherey(t) = N

R0

W (t) is
the aggregate flow at the link. This last value can be measured
[17] [1].

Note that the model considered here [11] results from a
tradeoff between precision and simplicity. Indeed, this model
is known to be unprecise but its simplicity allows to develop
practical methods for control purpose. Remarks that there exist
extensions to better models e.g. see [22] or [3] and references
therein.

B. Time delay system approach

In this paper, we choose to model the dynamics of the queue
and the congestion window as a time delay system. Indeed,
the delay is an intrinsic phenomenon in networks. Taking into
account this characteristic, we expect to reflect as much as
possible the TCP behavior and provide with more relevant
analysis and synthesis methods.

The linearized TCP fluid model (2) can be rewritten as the
following time delay system:

{
ẋ(t) = Ax(t) + Adx(t − h) + Bu(t − h)
x0(θ) = φ(θ), with θ ∈ [−h, 0]

(4)

with

A=

[
−

N

R2

0
C

−

1

CR2

0
N

R0
−

1

R0

]
, Ad =

[
−

N

R2

0
C

1

R2

0
C

0 0

]
,B=

[
−

C
2
R0

2N2

0

]
.

(5)
where x(t) = [δWT (t) δqT (t)]T is the state vector and
u(t) = δp(t) the input.φ(θ) is the initial condition.

In the literature, there are mainly three methods to study
time delay system stability: analysis of the characteristic roots,

robust approach and Lyapunov theory. The latter will be con-
sidered because it is an effective and practical method which
providesLMI (Linear Matrix Inequalities [23]) criteria. To
analyze and control our system (4), the Lyapunov-Krasovskii
approach [24] is used which is an extension of the traditional
Lyapunov theory.

In the literature, few articles using time delay systems
approach to model TCP dynamic already appeared. In [18],
a delay dependent robust stability condition was proposed
and the design of a state feedback was derived. However, the
criterion used is quite obsolete and thus conservative. Then,
other papers design control laws based on predictor [25], [17].
The predictive approach is an interesting method theoretically
but not in practice, moreover the delay has to be known
exactly. [15], [16] and [19] use time delay system approach too
and propose global stability analysis of the non linear model.
However the synthesis of AQM is not considered.

In this paper, we aim at providing a method which allow
to control system (4) with different objectives: giving condi-
tions for the nominal or robust stabilization and improving
dynamical performances, ensuring thus a better QoS.

C. Polytopic uncertain model

The state space representation shows that the matricesA, Ad

andB depend on network parameters. Especially, it depends
on the RTTR0, a significant parameter, which is quite difficult
to estimate in practice. For a more rigorous study, it could be
interesting to take into account some uncertainty on the delay
R0. Let then rewrite system (4) as following

ẋ(t) = A(R0)x(t) + Ad(R0)x(t − h) + B(R0)u(t− h). (6)

With the polytopic approach, the idea is to insure the stabil-
ity for a set of systems. Let suppose thatR0 ∈ [R0min

, R0max
],

then the matricesA, Ad andB belong to a certain set

Ω = {[A, Ad, B] | R0 ∈ [R0min
, R0max

]}

and we aim at looking for an AQM (expressed in term of
state feedback) which stabilizes system (6) for all matrices
belonging toΩ. However, the parameterR0 doesn’t appear
linearly in the matricesA, Ad andB. So that, the setΩ defined
by the uncertainty is non convex.

A common idea in robust control theory is to look for a
polytopic setP which includes the setΩ. Using convexity
property, it is much more easy to test the stability in closed
loop for the overall polytop. If the stability ofP is proved,
then the stability ofΩ is insured.

In order to create the polytopP , we poseρ1 = 1
R0

, ρ2 = 1
R2

0

andρ3 = R0. Since there are three uncertain parameters, the
polytop will havenω = 8 vertices. For a bounded valueR0,
the new uncertain parametersρi, ∀i = {1, 2, 3} are bounded.



So, the matrices of the uncertain system (6) are defined as

A = ρ1

[
0 0
N −1

]
+ ρ2

[
−N

C
− 1

C

0 0

]
= ρ1A0 + ρ2A1,

Ad = ρ2

[
−N

C
1
C

0 0

]
= ρ2Ad0

,

B = ρ3

[
−C2

2N

0

]
= ρ3B0.

(7)
The setΩ is contained inP ,

Ω ⊂ co{ω(i), i = 1, 2, ..., 8}. (8)

where theω(i) are the vertices ofP .

III. STABILIZATION USING TIME DELAY SYSTEM

APPROACH: Delay dependentAQM DESIGN

We have designed an uncertain model of TCP/AQM dy-
namics and this Section will be devoted to the construction of
a robust AQM stabilizing a such model. We describe a delay
dependent (DD) method which takes into account the size of
the delay. Using an information on the delay, we expect a
reduction of conservatism and an improvement of results.

The delay-dependent case starts from a system stable with-
out delay and looks for the maximal delay that preserves
stability. Generally, all methods involve a Lyapunov functional,
and more or less tight techniques to bound some cross terms
[26][24]. These choices of specific Lyapunov functionals and
bounding techniques are the origin of conservatism. In the
present paper, we choose a recent Lyapunov-Krasovskii func-
tional (9) [27].

V (xt) = xT (t)Px(t) +

t∫

t−h

r

t∫

θ

ẋT (s)Rẋ(s)dsdθ

+

∫ t

t−h

r




x(s)
x(s − 1

r
h)

...
x(s − r−1

r
h)




T

Q




x(s)
x(s − 1

r
h)

...
x(s − r−1

r
h)


 ds

(9)
whereP ∈ S

n is a positive definite matrix,Q ∈ S
rn andR ∈

Sn are two semi-positive definite matrices.r ≥ 1 an integer
corresponding to the discretization step. Using this functional,
we propose the following.

Theorem 1 If there exist symmetric positive definite matrices
P , R ∈ Rn×n, Q ∈ Rrn×rn, a matrix X ∈ R(r+2)n×n, a scalar
hm > 0, an integerr ≥ 1 and a matrixK ∈ Rm×n such that

Γ + XS + STXT ≺ 0 (10)

where

Γ =




hm

r
R P 0 . . . 0

P −

r

hm
R r

hm
R

...

0
r

hm
R −

r

hm
R

...
...

. . .
...

0 . . . . . . . . . 0



+




0 . . . 0

... Q
...

0 . . . 0


+




0 . . .

0 . . .

... Q




(11)

and S =
[
−1 A 0n×(r−1)n Ãd

]

then, system (4) can be stabilized for allh ≤ hm by the state
feedbacku(t) = Kx(t). Applying this control law to (4), we
get closed-loop system

{
ẋ(t) = Ax(t) + Ãdx(t − h)
x0(θ) = φ(θ), with θ ∈ [−h, 0]

(12)

with Ãd = Ad + BK.

Proof: It is always possible to rewrite (12) asSξ = 0

where

ξ =




ẋ(t)
x(t)

x(t − 1
r
h)

...
x(t − r−1

r
h)

x(t − h)




∈ R(r+2)n

andS =
[
−1 A 0n×(r−1)n Ãd

]

(13)

Using the extended variableξ(t) (13), the derivative ofV
along the trajectories of system (12) leads to:





V̇ (xt) = ξT




h
r
R P 0 . . . 0

P − r
h
R r

h
R

...

0
r
h
R − r

h
R

...
...

. . .
...

0 . . . . . . . . . 0




ξ

+ξT




0 . . . 0

... Q
...

0 . . . 0


 ξ − ξT




0 . . .

0 . . .
... Q


 ξ ≺ 0

such that
[
−1 A 0 · · · 0 Ãd

]
ξ = 0

(14)

⇔





V̇ (xt) = ξT Γξ ≺ 0

such that
[
−1 A 0 · · · 0 Ãd

]
ξ = 0

(15)

whereΓ ∈ S(r+2)n depends onP , R, Q and the delayh.
Using projection lemma [28], there existsX ∈ R(r+2)n×n

such that (15) is equivalent to (10).

Remark 2 In term of analysis, it is shown in [29] that for
r = 1, this proposed function (9) is equivalent to the main
classical results of the literature. Moreover, in the same paper
it is proved that forr > 1 the results are less conservative.



Nevertheless, applying a state feedback, we haveÃd =
Ad + BK with controller gainK appearing as a decision
variable. Then, the condition becomes a BMI. Indeed, the
optimization problem of Theorem 1 could not be solved
efficiently. In this case solutions could not be global and reso-
lutions are not efficient. That’s why in this paper, we propose
a relaxation algorithm. The algorithm principle consists to
alternate analysis and synthesis steps.

Let first define thesynthesisLMI:

Γ+ < X [ −1 A 0 · · · 0 Ad+BK ] > ≺0 (16)

whereK ∈ Rm×n andX is the slack variable which has been
fixed.

By the same way, we define theanalysisLMI:

Γ+ < X [ −1 A 0 · · · 0 Ad+BK ] > ≺0 (17)

whereK is fixed. Then, we propose the following algorithm.

Algorithm :
• Slack variable initialization,X = X0

1) We solve thesynthesisoptimization
{

hs
maxi

= max
P,Q,R,Ki

{hm}

s.t. LMI (16)

A matrix gain calledKi is derived.
2) We solve theanalysisoptimization withK = Ki.

{
ha

maxi
= max

P,Q,R,Xi

{hm}

s.t. LMI (17)

The new slack variable is derivedXi.

• We test ifha
maxi

= hs
maxi

.

• if true, there is no improvement on the maximal size of
the allowable delay: end of the algorithm

• if false, the process is reiterated to step (1) with a new
slack variable and upperbound of the delay.

Remark 3 At any step, one always hasha
maxi

≥ hs
maxi

.
Consequently, throughout the progression of the algorithmthe
upperboundhm can not regress.

Notes that the main problem, which is common in relax-
ation methods, remains the initialization of slack variables (or
K).

For a performance purpose, in time delay system case, it
is quite difficult to insure a certain level of performances.
Since, time delay systems have an infinity of poles, one
way to improve performances is theα-stability, i.e. such that
Re(poles)≤ −α. Thus, let us consider a new system:

z(t) = eαtx(t), (18)

with α a positive scalar andx(t) the state vector of our initial
system (4). If the stability of the new system (18) is proved
then the initial system (4) isα-stable.

IV. A PPLICATION TO TCP/AQM DYNAMICS AND

VALIDATION THROUGH NS-2

In this section, we are going first to consider the nominal
system in order to expose the control principle. Then, we will
extend our methods to the robust case. Finally, we will try
also to improve dynamic performances by placing poles of
the closed loop in a certain region.

A. Numerical example

Considering a widely used numerical illustration extracted
from [12], where the desired queue size isq0 = 175 packets
with Tp = 0.2 second andC = 3750 packets/s (corresponds
to a 15 Mb/s link with an average packet size of500 bytes).
Then, for a load ofN = 60 TCP sessions, we haveW0 = 15
packets,p0 = 0.008, R0 = 0.246 seconds. The following open
loop system is obtained.
[

δẆ (t)
δq̇(t)

]
=

[
−0.2644 −0.0044
243.9024 −4.0650

] [
δW (t)
δq(t)

]

+

[
−0.2644 0.0044

0 0

] [
δW (t − h(t))
δq(t − h(t))

]

(19)
In a general way, for various network parameters, it appears
that the open loop system (4) isIOD stable [20]. However,
in order to avoid congestion and to regulate queue size at a
desired level in spite of uncertainty on delay, an AQM has to
be implanted.

B. DD Synthesis

Using the relaxation algorithm previously exposed, we get
the following results table I for the robust delay dependentcase
where a common Lyapunov-Krasovskii functional is found for
each vertice of the polytop (8). Considering quadratic stability
framework [23], condition (10) has to be verified on each
vertice with the same matricesP , Q, R, X and K. It is
shown that an IOD stabilizing state feedbackK can always be
found (for nominal case) [20]. This latter gain can constitute a
starting point for the algorithm. Although this method may not
provides a global optimum it affords a systematic technique
for the algorithm initialization.

r [R0min
,R0max

] Gain K hm

1 [0.1, 0.45] 10−3[−0.589 0.0244] 0.56
1 [0.1, 0.5] 10−3[−0.321 0.0204] 0.48
2 [0.1, 0.45] 10−3[−0.575 0.0240] 0.62
2 [0.1, 0.5] 10−3[−0.272 0.0193] 0.52

Table I
DD STATE FEEDBACK GAINS TO STABILIZE A POLYTOP

Remark 4 • If R0max
> hm, then system (6) is stable

only for R0 ∈ [R0min
, hm] since R0 is the RTT and

corresponds also to the delay.
• As expected, we obtain better results forr = 2, since

hmax is larger.

Our results can be compared with results from [18] where
a robust delay dependent stabilisation is designed. In [18],



the system in closed loop is shown to be robustly stable for
R0 ∈ [0, 0.216] while the proposed criterion of Theorem 1
robustly stabilizes the system forR0 ∈ [0.1, 0.5].

C. Performances

We choose in this part to place the poles of the closed loop
system in a convex region using theα-stability principle. In
order to improve the system performances (4), we apply our
algorithm replacing matricesA, Ad andB by (α1+A), eαhAd

and eαhB respectively. However, that substitution introduces
some terms including the delayh, we can not thus insure the
criterion validity ∀h ≤ hmax.

The idea is to use the polytopic approach once again in
order to insure the performances on a set of delays. Let give
δ = eαh, and forh ∈ [hmin, hmax] we haveδ ∈ [δmin, δmax].
The method consists to solve the algorithm on two vertices
(there will be one additionalLMI at each analysis and
synthesis steps). Considering example (19), the algorithm
provides results of table II.

α [hmin, hmax] Gain K

1 [0.1, 0.9] 10−3[0.355 0.0084]
2 [0.1, 0.36] 10−3[2.34 0.0054]
3 [0.1, 0.22] 10−3[4.23 0.0041]

Table II
DD STATE FEEDBACK GAINS FORα-STABILITY

Note that depending on the network topology, it is not
necessary to have a lower boundδmin too small (since a
minimal propagation delay is unavoidable).

Remark 5 For α = 3, the maximal allowable delayhmax is
lower than the nominal delayR0 (delay at the equilibrium
point). Consequently, the corresponding gainK is not valid.

It is also possible to improve performances for a set of
systems, such that the polytopP defined in Section II-C. As
previously, theα-stability condition must be tested on each
vertice of the polytop. The objective is to obtain the desired
dynamic on a whole set. Considering the same example than
previously, results (withr = 1) of table III are obtained.

α [R0min
, R0max

] Gain K hm

1 [0.2, 0.3] 10−3[1.144 0.0069] 0.70
2 [0.2, 0.3] 10−3[3.003 0.0045] 0.25

Table III
DD STATE FEEDBACK GAINS FOR ROBUSTα-STABILITY

One remarks that forα = 2 the maximal allowable delay is
only 0.25 (sincehmax = 0.25 < Romax

).
So, we are able to provide a constant matrix gain which

allows to stabilize the queue length at a target value despite
of some uncertainty on the delay RTT and with a certain level
of performance.

D. Simulations

We aim at proving the effectiveness of our method using
NS-2 [21], a network simulator widely used in the communi-
cation community. Taking values from the previous numerical

example, we apply our AQM based on a state feedback. The
target queue lengthq0 is 175 packets while buffer size is800.
The average packet length is500 Kbytes. The default transport
protocol is TCP-New Reno without ECN marking.

For the convenience of comparison, we adopt the same
values and network configuration than [12] which design a
PI controller (Proportional-Integral). This PI is configured as
follow, the coefficientsa and b are fixed at1.822e − 5 and
1.816e− 5 respectively, the sampling frequency is160Hz.

In the figure 1, we apply the gainK from the table III which
ensuresDD robust stability and performances withα = 1. We
compare our result with PI AQM provided by [12] (see figure
1). It appears that our proposed AQM regulates faster than
the PI-AQM which presents larger oscillations and a more
important peak phenomenon.
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Figure 1. Time evolution of the queue length: comparison between PI and
state feedback Gain K (α = 1).

The table IV shows different characteristics concerning the
response of the closed loop system with the PI-AQM and the
state feedback AQM. We observe that theK controller keeps
the queue size closed to the desired length whereas the PI
allows a larger distribution around the equilibrium point.

Settling time Mean Standard deviation
PI ≈ 6 s 186.68 pkts 78.86 pkts

Gain K ≈ 3 s 175.54 pkts 44.95 pkts

Table IV
RESPONSES OF CLOSED LOOP SYSTEM WITHPI AND K CONTROLLERS

We also test the gainK from the table II which ensuresDD
stability and improves performances withα = 2 (see figure 2).
However, we observe that the response is quite similar. This
can be explained by the fact that our results are conservative
and we don’t know exactly where poles are located. Moreover,
our criteria have been developed for linear system whereas
TCP/AQM behaviour is non linear. Simulation of perturbed
system is reported in figure 3. In this case, the propagation
delay has been increased by20 ms and the queue size is still
stable without degradation of performance.

For more important pertubations (on the delayR0), the
system is still stable but the steady state changes since we
converge to a new equilibrium point.
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Figure 2. Time evolution of the queue length for gainK calculated from
DD nominal stabilization and performances (α = 2).
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Figure 3. Time evolution of the queue length for gainK calculated from
DD robust stabilization and performances (α = 1) with a perturbation on
the delay.

V. CONCLUSION AND FUTURE WORKS

In this preliminary work, we have proposed the construction
of a robust AQM for the congestion problem in communica-
tions networks. The developed AQM have been established by
using Lyapunov Krasovskii theory and semi definite program-
ming to solve the Linear Matrix Inequalities. Note that the
proposed methods have been extended to the robust case where
the delay in the loop is uncertain. Finally, this methodology
has been validated using NS simulator.
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