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Abstract— This paper studies the robustness of the well
known Foschini-Miljanic power control algorithm with respect
to time-varying delays. Since delays are omnipresent in wireless
networks, this problem is of practical importance. It has been
proven in the past that no matter how large the delays are,
the Foschini-Miljanic algorithm still converges. However, this
was based on the assumption that the delays are constant over
time, which is hardly met in practice. Therefore, the problem
addressed in this paper is how the algorithm behaves under
the time-varying delays case. Firstly, we provide the conditions
under which the system is stable by means of a Linear Matrix
Inequality (LMI) and using a semi-definite optimization solver
we show the validity of our results through illustrative examples.

I. INTRODUCTION

In wireless networks where Quality of Service (QoS)
is affected by interference and wireless nodes are being
supplied by batteries with limited lifetime, power control
has become an attractive research area (e.g. [1], [2], [3],
[4], [5], [6], [7]). On one hand, the wireless channel is a
shared, interference-limited medium and transmission power
of nodes need to be adjusted so that it is high enough to
reach the intended receiver. On the other hand, the transmitter
is powered by a finite energy source and hence a power
control scheme which is energy-efficient is required that
causes minimal interference at other nodes.

The authors in [2] proposed a power control algorithm,
the now well known as the Foschini-Miljanic (FM) algo-
rithm, that provides for distributed on-line power controlof
wireless networks with user-specific Signal-to-Interference-
and-Noise-Ratio (SINR) requirements. Furthermore, this al-
gorithm yields the minimum transmitter powers that satisfy
these requirements. A vast number of publications have
extended this work to account for additional issues, such as
constrained power [3] and admission control [8]. However,
it was only recently that time-delays were taken into account
for this algorithm [9]. In [9], it is proven that if the Foschini-
Miljanic algorithm converges when there are no time-delays
present in the network then it is guaranteed to converge in
the presence of delays, as well. However, this work relies on
the assumption that the delays are constant over time, which
in not always met in practice.

But, why the study of time-varying delays in wireless
networks is so important? In wireless networks, especially
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ad hoc networks, distributed algorithms necessitate com-
munication among nodes for updating. Hence, delays are
inevitably introduced into the network for various reasons
(processing time (coding and decoding), propagation delays
and availability of the channel for transmission are the most
prominent), which by their nature are not constant throughout
the operation of the network. Therefore, time-varying delays
are omnipresent in such networks and stability analysis of
distributed algorithms for such realistic case is necessary.

In this work, we extend the work done in [9] by inves-
tigating the robustness of the Foschini-Miljanic algorithm
in the case where the network experiences time-varying
delays. At first, we derive the stability conditions for which
the system is stable by proposing a Lyapunov-Krasovskii
functional in the form of a Linear Matrix Inequality (LMI)
[10]. It is an effective and practical methodology providing
LMI conditions which can be solved efficiently with semi-
definite optimization solvers in a polynomial time and hence,
the validity of our result is indicated through numerical
examples, showing that the Foschini-Miljanic algorithm is
able to converge even in cases of time-varying delays,
when the nodes adjust their proportionality constants (ki)
accordingly.

The rest of the paper is organized as follows. In Section II,
the system model is described and some preliminary results
are presented, giving a brief review of the Foschini-Miljanic
algorithm and relevant results. In Section III the conditions
for stability of the Foschini-Miljanic algorithm with time-
varying delays are derived while in section IV numerical
examples supporting the theoretical results are presented. At
last, in Section V conclusions are drawn and directions for
future work are given.

II. N OTATIONS AND PRELIMINARIES

A. Notations

For two symmetric matricesA and B, A ≻ B means that
A− B is positive definite andA � B means thatA− B is
semi-positive definite.AT andA−1 denote the transpose and
inverse of matrixA respectively.|A| is the element-wise
absolute value of the matrix (i.e.|A| , [|Ai j|]), A ≤ B is
the element-wise inequality between matrices A and B and
A < B is the strict element-wise inequality between A and
B. A nonnegative matrix (i.e. a matrix whose elements are
nonnegative) is denoted byA ≥ 0 and a positive matrix is
denoted byA > 0. σ(A) denotes the spectrum of matrix
A, λ (A) denotes an element of the spectrum of matrix
A, and ρ(A) denotes its spectral radius.det(A) denotes
the determinant of matrixA and diag(xi) the matrix with



elementsx1, x2 , . . . on the leading diagonal and zeros
elsewhere.

B. System model

We consider a planar network where the links are assumed
to be unidirectional and each node is supported by an
omnidirectional antenna. This can be represented by a graph
G = (N ,L ), whereN is the set of all nodes andL is
the set of the active links in the network. Each node can
be a receiver or a transmitter only at each time instant
due to the half-duplex nature of the wireless transceiver.
Each transmitter aims to communicate with a single node
(receiver) only, which cannot receive from more than one
nodes simultaneously. We denote byT the set of transmitters
andR the set of receivers in the network.

The channel gain on the link between transmitteri and
receiver j is denoted bygi j and incorporates the mean
path-loss as a function of distance, shadowing and fading,
as well as cross-correlations between signature sequences.
All the gi j ’s are positive and can take values in the range
(0,1]. The power level chosen by transmitteri is denoted
by pi and the intended receiver is also indexed byi. ν
denotes the variance of thermal noise at the receiver, which
is assumed to be additive Gaussian noise. The link quality
is measured by the Signal-to-Interference-and-Noise-Ratio
(SINR). The interference power at theith receiver,Ii, includes
the interference from all the transmitters in the network (apart
from the communicating transmitter) and the thermal noise,
and is given by

Ii = ∑
j 6=i, j∈T

g ji p j +ν. (1)

Therefore, the SINR at the receiveri, Γi, is given by

Γi =
gii pi

∑ j 6=i, j∈T g ji p j +ν
. (2)

Due to the nature of the wireless channel, it is necessary
to ensure Quality of Service (QoS) at the wireless links
in terms of SINR in wireless networks. Independently of
nodal distribution and traffic pattern, a transmission from
transmitter i to its corresponding receiver is considered
successful if the SINR of the receiver is greater or equal
to γi (Γi ≥ γi), called thecapture ratio and is dependent on
the modulation and coding characteristics of the radio [11].
Therefore we require,

gii pi

∑ j 6=i, j∈T g ji p j +ν
≥ γi (3)

C. Preliminary results

Equation (3) after manipulation, is equivalent to the fol-
lowing

pi ≥ γi

(

∑
j 6=i, j∈T

g ji

gii
p j +

ν
gii

)

. (4)

In matrix form, for a network consisting ofn communication
pairs, this can be written as

p ≥ ΓGp+η (5)
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g22

g12

g21

Fig. 1. An example of a network consisting of two communication pairs
only. Each pairi consists of a transmitterSi and a receiverRi connected
with a solid line while the grey dotted arrows indicate the interference that
transmitters cause to the neighboring receivers.

where

Γ = diag(γi)

p =
(

p1 p2 . . . pn
)T

Gi j =

{

0 , if i = j,
g ji
gii

, if i 6= j.

ηi =
γiν
gii

Let,

C = ΓG (6)

so that (5) can be written as

(I −C)p ≥ η (7)

The matrixC has nonnegative elements and it is reasonable
to assume that is irreducible, since we are not considering
totally isolated groups of links that do not interact with each
other. By the Perron-Frobenius theorem [12], we have that
the spectral radius of the matrixC is a simple eigenvalue,
while the corresponding eigenvector is positive component-
wise. The necessary and sufficient condition for the existence
of a nonnegative solution to inequality (7) for every positive
vectorη is that(I−C)−1 exists and is nonnegative. However,
(I−C)−1 ≥ 0 if and only if ρ(C) < 1 [13] (Theorem 2.5.3),
[14] .

Therefore, the necessary and sufficient condition for (7)
to have a positive solutionp∗ for a positive vectorη is that
the Perron-Frobenius eigenvalue of the matrixC is less than
1. That is, there exists a set of powers such that all the
senders can transmit simultaneously and still meet their QoS
requirements (minimum SINR for successful reception).

The Foschini-Miljanic algorithm, [2], succeeds in attaining
the required SINRs for all nodes in the network if a solution
exists and fails if there does not exist a solution. The
following differential equation is defined in [2] in order to
model the continuous-time power dynamics:

d pi(t)
dt

= ki

(

−pi(t)+ γi

(

∑
j 6=i, j∈T

g ji

gii
p j(t)+

ν
gii

))

(8)

whereki ∈R, ki > 0, denotes the proportionality constant,g ji

denotes the channel gain on the link between transmitterj



and receiveri andγi denotes the desired SINR. It is assumed
that each transmitteri has knowledge of the interference at
its receiver only,Ii(t) = ∑ j 6=i, j∈T

g ji
gii

p j(t)+ ν
gii

.
In matrix form this is written as

ṗ(t) = −KHp(t)+Kη (9)

whereK = diag(ki) and

Hi j =

{

1 , if i = j,

−γi
g ji
gii

, if i 6= j.

For this differential equation, it is proved [2] that the system
will converge to the optimal set of solutions,p∗ > 0, for
any initial power vector,p(0) > 0. Therefore, the distributed
algorithm (8) for each communication pair, leads to global
stability of the system. It is proven in [9] that, if the system
is stable when there are no delays into the network, then it
is also stable for arbitrarily large time-delays,Ti > 0, and for
any proportionality constant,ki > 0.

III. M AIN RESULTS

Since the transmitter uses information (interference) pro-
vided by the receiver, unavoidably, there exists a time-delay
on the information used while updating the power. However,
this delay is rarely kept constant during the operation of the
network. Consequently, for a more realistic representation
of the algorithm we introduce time-varying delays (Ti(t))
to the Foschini-Miljanic algorithm and analyze the stability
conditions for the system. Therefore, the differential equation
(8) becomes

ṗi(t) = ki

(

−pi(t)+ γi

(

∑
j 6=i, j∈T

g ji

gii
p j(t −Ti(t))+

v
gii

))

. (10)

In matrix form, in the case ofN nodes, (10) can be written as

ṗ(t) = −Kp(t)+K

(

N

∑
k=1

Adk
p(t −Tk(t))+η

)

, (11)

where

p(t) =







p1(t)
...

pN(t)






, Adki j

=

{

0, if j = k or i 6= k,
−γk

g ji

gkk
, otherwise,

K = diag(ki), η =







γ1
v

g11

...
γN

v
gNN






.

(12)
Therefore, the stability of (11) is a equivalent and can be assessed
by the study of the following system:

ṗ(t) = −Kp(t)+K

(

N

∑
k=1

Adk
p(t −Tk(t))

)

. (13)

In the constant delay case, preliminary result [9] has guaranteed the
stability of the Foschini-Miljanic algorithm using the multi-variate
Nyquist criterion [?]. This latter study established conditions on
ki’s such that the algorithm is stable independently from delays,i.e.
whatever the values of delaysTi. However, this approach appears to
be unrealistic since the delays is practice are usually time-varying.
The aim of this work is the establishment of a stability condition
which takes into account that delays are time-varying and hence, it
comprises a more realistic representation of the Foschini-Miljanic
Algorithm. To this end, the Lyapunov-Krasovskii method (see for

example [15]) is utilized, which is an extension of the traditional
Lyapunov theory. It is an effective and practical methodology
providing LMI conditions which can be solved efficiently with
semi-definite optimization solvers in a polynomial time.

Assume that the delays (Ti(t) for all i ∈ T ) are continuously
differentiable, bounded (0≤ Ti(t) ≤ Tim , Tim > 0), and Ṫi(t) ≤ αi,
αi ≥ 0, ∀t and ∀i∈T . The following theorem states the conditions
for which the FM algorithm subjected to time-varying delays is
stable.

Theorem 1: Given scalarsTim > 0 and αi ≥ 0, ∀i ∈ T , the
system (13) is asymptotically stable for any time-varying delays
Ti(t) satisfying 0≤ Ti(t) ≤ Tim , and Ṫi(t) ≤ αi, ∀t and ∀i ∈ T , if
there existsN ×N matricesQk ≻ 0, Sk ≻ 0, Rk ≻ 0, k = {1, ...,N}
and N ×N diagonal matricesZ ≻ 0, X ≻ 0, Y ≻ 0 such that the
following LMI holds:

[

Θ11 Θ12
Θ21 Θ22

]

≺ 0 andZ � W, (14)

where

Θ11 =













T 1
T1m

R1 +XAd1 . . . 1
TNm

RN +XAdN
1

T1m
R1 +AT

d1
X U1 0 . . .

...
...

. . . 0
1

TNm
RN +AT

dN
X 0 . . . UN













,

Θ12 =















0 . . . 0 −Y

1
T1m

R1 0
... AT

d1Y
...

.. .
...

...
0 . . . 1

TNm
RN AT

dNZ















,

Θ21 =ΘT
12,

Θ22 =









V1 . . . 0 0

...
. . .

...
...

0 . . . VN 0

0 . . . 0 −Z









and

T =
N

∑
k=1

[

Qk +Sk −
1

Tkm

Rk

]

−2X ,

Uk = −(1−αk)Qk −
2

Tkm

Rk,

Vk = −Sk −
1

Tkm

Rk,

W =
N

∑
k=1

Tkm
Rk.

(15)
The stabilizing gainK = diag(ki) is given byK = Z−1Y .

Proof: Consider the following Lyapunov-Krasovskii func-
tional [15], extended for the multiple time-varying delays case:

V (t,pt) = pT (t)Pp(t)+
N

∑
k=1

t
∫

t−Tk(t)

pT (θ)Qkp(θ)dθ

+
N

∑
k=1

t
∫

t−Tkm

pT (θ)Skp(θ)dθ +
N

∑
k=1

t
∫

t−Tkm

t
∫

θ

ṗT (u)Rkṗ(u)dudθ .

(16)
Given that Qk, Sk, Rk for k ∈ T are positive-definite

matrices andP is a diagonal positive matrix, we can conclude
that for someε > 0, the Lyapunov-Krasovskii functional
conditionV (pt) ≥ ε

∥

∥pt(0)
∥

∥ is satisfied [15]. The derivative



along the trajectories of (13) leads to

V̇ (t,pt) = 2pT (t)Pṗ(t)

+
N

∑
k=1

[

pT (t)Qkp(t)

−(1− Ṫk(t))p
T (t −Tk)Qkp(t −Tk)

]

+
N

∑
k=1

[

pT (t)Skp(t)−pT (t −Tkm)Skp(t −Tkm)
]

+
N

∑
k=1






Tkm ṗT (t)Rkṗ(t)−

t
∫

t−Tkm

ṗT (θ)Rkṗ(θ)dθ






.

(17)
Consider the integral term:

t
∫

t−Tkm

ṗT (θ)Rkṗ(θ)dθ =

t−Tk(t)
∫

t−Tkm

ṗT (θ)Rkṗ(θ)dθ

+

t
∫

t−Tk(t)

ṗT (θ)Rkṗ(θ)dθ ,

and applying the Jensen’s inequality [15] to both terms, we
have

−

t
∫

t−Tk(t)

ṗT (θ)Rkṗ(θ)dθ ≤−v′k(t)Rkvk(t),

−

t−Tk(t)
∫

t−Tkm

ṗT (θ)Rkṗ(θ)dθ ≤−w′
k(t)Rkwk(t),

(18)

where vk(t) = (p(t) − p(t − Tk(t))) and wk(t) = (p(t −
Tk(t))−p(t −Tkm). Combining (17) and (18), we obtain:

V̇ (t,pt) ≤ ξ T (t)Γξ (t)+ ṗT (t)W ṗ(t),

where

Γ =



































T 1
T1m

R1 +PKAd1 . . . 1
TNm

RN +PKAdN

1
T1m

R1 +Ad1KP U1 0
...

...
...

. . . 0
1

TNm
RN +AT

dNP 0 . . . UN

0
1

T1m
R1 0

...
... . . .

. . . 0

0 . . . 0
1

TNm
RN

0 . . . 0

1
T1m

R1 0
...

...
.. .

...
0 . . . 1

TNm
RN

V1 . . . 0

...
.. .

...
0 . . . VN





























, ξ (t) =























p(t)
p(t −T1(t))

...
p(t −TN(t))
p(t −T1m)

...
p(t −TNm)























(19)

and T = ∑N
k=1

[

Qk +Sk −
1

Tkm
Rk

]

− KP − PK, Uk = −(1−

αk)Qk−
2

Tkm
Rk, Vk =−Sk−

1
Tkm

Rk andW = ∑N
k=1 TkmRk. αk is

the upper bound oṅTk(t). If we introduce a diagonal positive
definite matrixZ (as decision variable) such thatZ �W , the
following condition impliesV̇ (p) ≤ 0:

ξ T (t)Γξ (t)+ ṗT (t)Zṗ(t) < 0. (20)

The condition can be re-written as

ξ T (t)Γξ (t)+ξ T (t)NT ZNξ (t) < 0 (21)

which is equivalent to

Γ+NT ZN ≺ 0 andZ � W

⇔

[

Γ NT Z
ZN −Z

]

≺ 0 andZ−W � 0,
(22)

with N =
[

−K KAd1 . . . KAdN 0 . . . 0
]

. Then,
we perform the change of variable:Y = ZK and X = PK.
Since P and Z are diagonal positive definite matrices and
K is also a diagonal matrix with positive components (that
is, the proportionality constantski are positive – a necessary
condition as introduced in [2]) thenY andX are required to
be diagonal positive matrices. This latter additional condition
on X is necessary to ensure the existence of a diagonal pos-
itive matrix P = XK−1. Thus the condition (22) is expressed
as condition (14).

Theorem 1 provides a practical and systematic condition
that provideski’s ensuring the stability of the FM algorithm.
Once these gains are embedded in each node (via broad-
casting or by communication with a central controller), each
power pi(t) used by the transmitteri will converge towards
its corresponding equilibrium pointpi0 according to (11) in a

distributed manner, wherepi0 = γi

(

∑ j 6=i, j∈T

g ji
gii

p j0 + v
gii

)

is
the minimal power required to satisfy the SINR constraints.

IV. N UMERICAL EXAMPLES

This section aims to elucidate the proposed methodology
via illustrative examples. Firstly, consider an ad-hoc network
consisting of 4 communicating pairs,i.e. 8 mobile devices
in total. For this example we set the SINR threshold and the
thermal noise for each node toγi = 3 andv = 0.04 Watts,
respectively. The initial powerpi(0) for all transmitters is set
to 1 Watt. The network is described by matrixC1 – which
is obtained by (6) – and it is schematically shown in Figure
2.

C1 =









0 0.0163 0.0108 0.0212
0.0250 0 1.5124 0.2566
0.0213 0.2146 0 0.3564
0.0771 0.0111 0.1224 0









(23)

Applying Theorem 1 to this representative example, a
stabilizing gain matrix (K1) is obtained,

K1 = diag(0.1280,0.0608,0.0859,0.0919).

The power adjustment by each transmitter is simulated and
the results are depicted in Figure 3.
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Fig. 2. Example of a wireless ad-hoc network ofn = 8 nodes, consisting of
four communication pairs{Si → Ri}. The grey dotted arrows are included
to indicatively show the interference caused to the receivers by S1.
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Fig. 3. Simulation of the network represented in Figure 2 Power levels
converge to the desired SINR and to the optimal power vector.

The communication time-varying delays between the dif-
ferent pairs have been simulated with different signal gen-
erators (sine and sawtooth with different frequencies) such
that Ṫk ≤ αk = 1. The maximal values of each delays are
Tm = {2,3,4,2} where eachTkm is expressed ins (seconds).

Consider a second example of a wireless network with 6
communicating pairs (see Figure 4) characterized by matrix
(24).

C2 =















0 0.0414 0.2074 0.2925 0.3998 0.1345
0.0159 0 0.0506 0.0043 0.0422 1.164
0.7335 0.0626 0 0.0364 0.0477 0.4231
0.6359 0.0222 0.0644 0 0.3283 0.0447
0.0227 0.0536 0.0155 0.0215 0 0.0407
0.0228 0.1114 0.2458 0.0030 0.011 0















(24)

Settingγi andv as previously and considering time-varying
delays such thaṫTk ≤αk = 1 andTm = {4,2,8,4,2,3} (s), the
stability condition (14) provides a stabilizing gain matrix K2

K2 = diag(0.0300,0.0435,0.0401,0.0427,0.0538,0.0391).

Then simulation has been performed and the evolution of
the power used by each transmitter is shown in Figure 5.

The significance of the result can be appreciated especially
in cases where a central controller/base station is able to
obtain an estimate on the upper bounds of the maximum
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Fig. 4. Example of a wireless ad-hoc network ofn = 12 nodes, consisting
of six communication pairs{Si → Ri}. Interference caused is not depicted
in the figure.
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Fig. 5. Simulation of the network represented in Figure 4 Power levels
converge to the desired SINR and to the minimal power vector

delays that transmitters may experience, calculate appropriate
gains that guarantee global stability of the system and
disseminate the information required to the corresponding
users. Then, the system will operate in a distributed fashion.

V. CONCLUSIONS ANDFUTURE WORK

A. Conclusions

In this paper, the delay-dependent stability analysis of
the time-varying delay Foschini-Miljanic algorithm has been
studied by means of a Lyapunov-Krasovskii functional. A
LMI is derived which provides a practical and systematic
condition for stability of the Foschini-Miljanic algorithm.
The LMI condition is centrally solved with the aid of semi-
definite LMI solvers in polynomial time and the propor-
tionality constantski are fed back to the transmitters. Once
the corresponding gains are embedded to each transmitter,
the network operates in a distributed manner and it is
asymptotically stable.

B. Future Work

Extension to this work is the derivation of upper bounds
on the proportionality constantski if necessary, such that



the the algorithm operates in a distributed way without the
need for any information dissemination by a central station
or controller to the rest of the nodes in the network.

It would also be interesting to investigate in an analytical
way and obtain the relationship between the convergence rate
of the algorithm with the magnitude of the time delay. If the
convergence time grows much faster than the communication
delays, then the algorithm will not operate well in practice
under the presence of time delays.
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Birkhäuser Boston, 2003, control engineering.


