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Abstract— This paper studies the robustness of the well ad hoc networks, distributed algorithms necessitate com-
known Foschini-Miljanic power control algorithm with respect  munication among nodes for updating. Hence, delays are
to time-varying delays. Since delays are omnipresent in Wireless jneyitaply introduced into the network for various reasons
e e o o mpornce, 155 227 (processing tme (coing and decoding). propagation dlay
{Jhe Foschini_Mﬂjanic a|go|'ithm still Convergges_ Howeveyr‘ this’ and aVa”a.bl“ty of the channel for transmission are thetmos
was based on the assumption that the delays are constant over prominent), which by their nature are not constant througho
time, which is hardly met in practice. Therefore, the problem  the operation of the network. Therefore, time-varying gela
addressed in this paper is how the algorithm behaves under 5.0 omnipresent in such networks and stability analysis of

the time-varying delays case. Firstly, we provide the conditions distributed alaorith f h listi .
under which the system is stable by means of a Linear Matrix IStributed algorithms for such realistic case 1S necgssar

Inequality (LMI) and using a semi-definite optimization solver In this work, we extend the work done in [9] by inves-
we show the validity of our results through illustrative examples.  tigating the robustness of the Foschini-Miljanic algamith

in the case where the network experiences time-varying
|. INTRODUCTION delays. At first, we derive the stability conditions for whic

irel ks wh i ¢ . the system is stable by proposing a Lyapunov-Krasovskii
In wireless networks where Quality of Service (Qos_)functional in the form of a Linear Matrix Inequality (LMI)

is afffacted by inte_rfereljce .ar?d Wirelgss nodes are be'TQO]. It is an effective and practical methodology proviglin
supplied by batteries VYIth limited lifetime, power control MI conditions which can be solved efficiently with semi-
has become an attractlveh rezeaLch a_re'Tl (e.g.h [11, [IZ]', [ efinite optimization solvers in a polynomial time and hence
[4], [S], .[6]’ [7). On one han ’_t € WIreless channel 1S g validity of our result is indicated through numerical
shared, mterference-llmltgd medium anq tr_ansrms&onepowexample& showing that the Foschini-Miljanic algorithm is
of nodes need to be adjusted so that it is high enough Ble to converge even in cases of time-varying delays,

reach the intended 're.ceiver. On the other hand, the tralnnsmitwhr_}n the nodes adjust their proportionality constaits (
is powered by a finite energy source and hence a pOWSEcordineg

control scheme which is energy-efficient is required that The rest of the paper is organized as follows. In Section II,

causes minimal interference at other nodes. the system model is described and some preliminary results

hThe autho”rskin [2] propr?sed a EPWer_IFor_‘"O' algorlithmare presented, giving a brief review of the Foschini-Miigan
the now well known as the Foschini-Miljanic (FM) algo- algorithm and relevant results. In Section Il the condito

rithm, that provides for distributed on-line power contodl ¢, stability of the Foschini-Miljanic algorithm with time

wireless networks with user-specific Signal-to-Interfer varying delays are derived while in section IV numerical

and-Noise-Ratio (SINR) requirements. Furthermore, this 8., 5165 supporting the theoretical results are preseated

gorithm yields the minimum transmitter powers that SatiSfYast, in Section V conclusions are drawn and directions for
these requirements. A vast number of publications ha

MBiture work are given.
extended this work to account for additional issues, such as g
constrained power [3] and admission control [8]. However, Il. NOTATIONS AND PRELIMINARIES

it was only recently that time-delays were taken into actourn, Notations

for this algorithm [9]. In [9], it is proven that if the Fosacfii For two symmetric matrice# and B, A= B means that
Miljanic algorithm converges when there are no time-delaylg\_ B is positive definite andA = B m’eans thatA — B is
present in the network then it is guaranteed to converge gbmi-positive definiteAT andA-! denote the transpose and

the presence of delays, as well. However, this work relies Rverse of matrixA respectively.|A| is the element-wise
the assumption that the delays are constant over time, whig solute value of the matrix (i.8A| 2 [|Ai[]), A< B is
. - ] ’ =

in not always met in practice. the element-wise inequality between matrices A and B and

?Ut’ kwh_y the_ stud>t/ oIotllme-\_/ar?/mg detlayskm wwele_slsﬁ < B is the strict element-wise inequality between A and
NEtWOrks 1S So Importants In WIreless networks, especially - 5 nonnegative matrix (i.e. a matrix whose elements are

* Control Laboratory, Department of Engineering, Univeysitf Cam- honnegative) is denoted b > 0 and a positive matrix is
bridge, UK.t c257@ng. cam ac. uk denoted byA > 0. g(A) denotes the spectrum of matrix

1 Universieé de Toulouse, UPS, INSA, INP, ISAE; LAAS; F—31O77A /\(A) denotes an element of the spectrum of matrix
Toulouse, France. ’

2 CNRS; LAAS; Universié de Toulouse, 7, avenue du Colonel Roche,A’ and p(A) denotes its_ spectrall radius'-et(A) Qeno'Fes
F-31077 Toulouse, Francgari ba@ aas. fr the determinant of matribA and diagg) the matrix with



elementsxy, X2 , ... on the leading diagonal and zeros @

elsewhere. 7
B. System model @ P
We consider a planar network where the links are assumed “wee L7 o
to be unidirectional and each node is supported by an (/11\ ) >l
omnidirectional antenna. This can be represented by a graph -7

_ 921 >~

4 = (N,%), where .t is the set of all nodes an& is @ TNl

the set of the active links in the network. Each node can @

be a receiver or a transmitter only at each time instant

due to the half-duplex nature of the wireless transceivefid- 1. An example of a network consisting of two communicatiair
. h . . . only. Each pairi consists of a transmitte§ and a receiveR, connected

Each transmitter aims to communicate with a single nodgih a solid line while the grey dotted arrows indicate theeiference that

(receiver) only, which cannot receive from more than oneansmitters cause to the neighboring receivers.

nodes simultaneously. We denote Bythe set of transmitters

and Z the set of receivers in the network.

The channel gain on the link between transmiitand ~Where

receiver j is denoted bygj; and incorporates the mean I = diag(y)

path-loss as a function of distance, shadowing and fading, T
as well as cross-correlations between signature sequences p=(P P2 . Pn)
All the g;j’s are positive and can take values in the range o ,ifi=]j,
(0,1]. The power level chosen by transmitteis denoted Gi=yo i i # .

by pi and the intended receiver is also indexed ibw y.vg"

denotes the variance of thermal noise at the receiver, which ni
is assumed to be additive Gaussian noise. The link quality

is measured by the Signal-to-Interference-and-NoisésRatlet,

(SINR). The interference power at tHBreceiver/;, includes C=TG (6)
the interference from all the transmitters in the netwopafa

from the communicating transmitter) and the thermal nois@0 that (5) can be written as

Gii

and is given by (1-C)p>n @)
= > 79“ Pj+V. @) The matrixC has nonnegative elements and it is reasonable
LIS . o to assume that is irreducible, since we are not considering
Therefore, the SINR at the receiverT;, is given by totally isolated groups of links that do not interact witttka
o i Pi 2 other. By the Perron-Frobenius theorem [12], we have that
TS aDp v 2 . _ _ /
Yi+ijes 9jiPj+V the spectral radius of the matr® is a simple eigenvalue,

Due to the nature of the wireless channel, it is necessaty. ile the corresponding eiggnyector is .plositive comppnent
to ensure Quality of Service (QoS) at the wireless link&/iSe- The necessary and sufficient condition for the exigten

in terms of SINR in wireless networks. Independently O]Of a nonnegative solution to inequality (7) for every positi

. _1 . . .
nodal distribution and traffic pattern, a transmission frorjeCto”zl's that(I —C)~~ exists and is nonnegative. However,
transmitter i to its corresponding receiver is considered! ~C) " =0 if and only if p(C) <1 [13] (Theorem 2.5.3),

successful if the SINR of the receiver is greater or equziim] ' _ .
to y (Fi > y), called thecapture ratio and is dependent on Therefore, the necessary and sufficient condition for (7)

the modulation and coding characteristics of the radio.[ll{O have a positive _solutl_op for a positive ve(_:_torn is that
Therefore we require he Perron-Frobenius eigenvalue of the ma@iis less than

1. That is, there exists a set of powers such that all the

giP >W (3) senders can transmit simultaneously and still meet the8 Qo

2 j#i.je7 9jiPi TV requirements (minimum SINR for successful reception).

C. Préiminary results The Foschini-Miljanic algorithm, [2], succeeds in attaigi
Equation (3) after manipulation, is equivalent to the folthe required SINRs for all nodes in the network if a solution
lowing exists and fails if there does not exist a solution. The

following differential equation is defined in [2] in order to
D>y ( %pj " V) . (4) model the continuous-time power dynamics:
j2iTes Yi ii

dpi(t gji Y
In matrix form, for a network consisting @f communication Zit() =k <_ Pi(t)+u ( Z E;pj (t)+ g..)) ©
pairs, this can be written as i#er
wherek € R, ki > 0, denotes the proportionality constag,
p=TGp+n (3)  denotes the channel gain on the link between transmitter



and receiver andy denotes the desired SINR. It is assume@xample [15]) is utilized, which is an extension of the traditional
that each transmitteir has knowledge of the interference at'-yap_léhov Ltp/ﬁmy- ('jt_ is an ﬁ_ff(;Ctlve étl)nd plrac(t;calﬁ_metr}odol_or?y
i i M=v., . Yip v providing conditions which can be solved efficiently wit
ItSIrecel\t/(?r ?nly'l't(rt].) . ZJ#'.;[JIEQ 5 Pi)+ g semi-definite optimization solvers in a polynomial time.

N matrix form this 1s written as Assume that the delaysli(t) for all i € &) are continuously
AN differentiable, bounded (& Ti(t) < T, T, > 0), andTi(t) < aj,
p(t) = —KHp(t) +Kn ©) a; >0, vt and Vi € 7. The following theorem states the conditions
whereK = diag(k) and for which the FM algorithm subjected to time-varying delays is
stable.

1 ifi=j Theorem 1. Given scalarsTj, > 0 and a; > 0, Vi € .7, the
Hij = gji o7 system (13) is asymptotically stable for any time-varying delays
—VYg o HiIFAL Ti(t) satisfying 0< Ti(t) < T, andTi(t) < a;, Vt and Vi€ .7, if

there existdN x N matricesQy >~ 0, S > 0, R¢ = 0, k={1,...,N}
and N x N diagonal matrice - 0, X >~ 0, Y > 0 such that the
following LMI holds:

For this differential equation, it is proved [2] that the ®m
will converge to the optimal set of solutionp; > 0, for
any initial power vectorp(0) > 0. Therefore, the distributed

algorithm (8) for each communication pair, leads to global { 811 812 } <0andZ>=W, (14)
stability of the system. It is proven in [9] that, if the syste 2 22
is stable when there are no delays into the network, theniithere
is also stable for arbitrarily large time-dela 0, and for -
any proportionality const;/ntq EO. e 1 T ﬁRlJrXAdl ﬁRN XA
lenLAng Uy 0
1. M AIN RESULTS O = : : . )
Since the transmitter uses information (interference} pro iRN.Jr T (') U
vided by the receiver, unavoidably, there exists a timexdel L Tm Ay N
on the information used while updating the power. However, 0 0 -Y
this delay is rarely kept constant during the operation ef th 1 T
network. Consequently, for a more realistic represematioe | R0 AdrY
of the algorithm we introduce time-varying delay§ ({)) 12= : : :
to the Foschini-Miljanic algorithm and analyze the stapili : . :
conditions for the system. Therefore, the differentialatpn | O T RN AlNZ
m
(8) becomes 91 —OL,,
. ii v rV 0 0
pi(t)—lq<pi(t)+w< %pj(tﬂ(t))+“>>~ (10) ,1 ,
jzitTes i Gii Op—| : :
In matrix form, in the case o nodes, (10) can be written as 8 \gN OZ
. N and
p(t) = —Kp(t) +K (ZAdkp(t—Tk(t)Hn), (11) \ .
K=1
T= +S—— } —2X,
where kgl {Qk S T R
t B 2
B pl_() B 0, if j=korik, Uk*_(l_ak)Qk_ERky
p(t) = : o Adg, = ~W,  otherwise, 1
Vige Kn
11 N
K= diag(k), n= : W= TR
WL K=1
ONN (15)
12) 1 stabilizing gairk = diag(kj) is given byK =z~1v.

Therefore, the stability of (11) is a equivalent and can be assesse

by the study of the following system:

N
p(t) = —Kp(t) +K (kz Agp(t —Tk(t))> : (13)
=1

In the constant delay case, preliminary result [9] has guaranteed the

stability of the Foschini-Miljanic algorithm using the multi-variate
Nyquist criterion P]. This latter study established conditions on
ki’s such that the algorithm is stable independently from deliags,

whatever the values of delajfs However, this approach appears to
be unrealistic since the delays is practice are usually time-varyin
The aim of this work is the establishment of a stability conditio
which takes into account that delays are time-varying and hence,
comprises a more realistic representation of the Foschini-Miljani

n

e
B Proof: Consider the following Lyapunov-Krasovskii func-
tional [15], extended for the multiple time-varying delays case:

N t
Vitp) = p PP+ [ pT(O)Qp(6)dE
(u)R¢p(u)dudé.

K= )
t t
/ z
(16)

K=o,
Given that Qx, &, R« for k € 7 are positive-definite
matrices andP is a diagonal positive matrix, we can conclude
that for somee > 0, the Lyapunov-Krasovskii functional

N t
p(e)Sp(e)00+ 5 |

K=k T,

N -
p

g.

Algorithm. To this end, the Lyapunov-Krasovskii method (see foconditionV (pr) > €||p(0)|| is satisfied [15]. The derivative



along the trajectories of (13) leads to
V(t,pt) = 2p" (t)P(t)

+ ki [P (t)Qup(t)

—(1=Ti(®)p" (t — Ti) Qup(t — T)]

N
+ kz [PT(®)SP(t) —P" (t — Tig,)ScP(t — Tiey)]
=1

N t
+3 |Tad ORG0 -~ [ pTORG(O)6|
=] T

t—

17)
Consider the integral term:
t t=Ti ()
| PTORpEdO= [ pT(OR(E)dO
t_Tkm t_Tkm

t
+ [ PTORpOE.

t—Ti(t)

and T = 30, [Qu+S— L RJ —KP—PK, U= —(1-

) Qk— 72 Ra k= —Sc— £ -ReandW = 33U T, Re. ak is
the upper bound offi(t). If we introduce a diagonal positive
definite matrixZ (as decision variable) such that- W, the
following condition impIiesV(p) <0:

ETMHrE®) +p' (H)Zp(t) <o. (20)
The condition can be re-written as
ETMONEM) +ET(HNTZNE(t) <0 (21)
which is equivalent to
F+N'ZN<0andZ>W
{:)[ZFN N_TZZ}<OandZ—W§0, (22)
with N = [ —K KAg KAgqny O 0 ]. Then,

we perform the change of variabl¥:= ZK and X = PK.
Since P and Z are diagonal positive definite matrices and
K is also a diagonal matrix with positive components (that
is, the proportionality constantg are positive — a necessary
condition as introduced in [2]) thevi and X are required to

and applying the Jensen’s inequality [15] to both terms, wee diagonal positive matrices. This latter additional ¢bod

have
t
~ [ PTORHO)86 < (DR,
t—Ti(t)
t=Ti(t)
~ | PT(ORHO)d < ~whORWK(D).
I—Tkm
where vi(t) = (p(t) — p(t — Tu(t))) and w(t) = (p(t -
Tk(t)) — p(t — Tk,). Combining (17) and (18), we obtain:

V(t,pr) < ETOER) +pT (HWp(L),

(18)

where
I T 7i-R1+PKAg i RN+ PKAGN
ﬁRl-‘rAdlKP U]_ 0 :
: : . 0
r= ﬁRN-i-AgNP 0 Un
0 ﬁ 3 0
0
1
L 0 0 o RN
0 0
, r p(t) T
ﬁRl 0 p(t—Ta(t))
' )= | plt—Tn())
m t—T
Vi Ny p( | 1m)
: L pt—T, i
0 W p(t —Tny)

(19)

on X is necessary to ensure the existence of a diagonal pos-
itive matrix P = XK~1. Thus the condition (22) is expressed
as condition (14). |
Theorem 1 provides a practical and systematic condition
that provides’s ensuring the stability of the FM algorithm.
Once these gains are embedded in each node (via broad-
casting or by communication with a central controller),reac
power p;(t) used by the transmittérwill converge towards
its corresponding equilibrium poim, according to (11) in a
distributed manner, wherg, = % (Z#i,jey %pjo + g—‘i’i is
the minimal power required to satisfy the SINR constraints.

IV. NUMERICAL EXAMPLES

This section aims to elucidate the proposed methodology
via illustrative examples. Firstly, consider an ad-hoovoek
consisting of 4 communicating pairsg. 8 mobile devices
in total. For this example we set the SINR threshold and the
thermal noise for each node = 3 andv = 0.04 Watts,
respectively. The initial powep; (0) for all transmitters is set
to 1 Watt. The network is described by matr® — which
is obtained by (6) — and it is schematically shown in Figure
2.

0 0.0163 00108 00212
0.0250 0 15124 02566
0.0213 02146 0 03564
0.0771 00111 01224 0

Ci= (23)

Applying Theorem 1 to this representative example, a
stabilizing gain matrix K1) is obtained,

K1 = diag(0.12800.0608 0.08590.0919).

The power adjustment by each transmitter is simulated and
the results are depicted in Figure 3.



Fig. 2. Example of a wireless ad-hoc networkno 8 nodes, consisting of Fig. 4. Example of a wireless ad-hoc networkro# 12 nodes, consisting
four communication pair§S — Ri}. The grey dotted arrows are included Of six communication pair§§ — R;}. Interference caused is not depicted
to indicatively show the interference caused to the receiby S;. in the figure.
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Fig. 3. Simulation of the network represented in Figure 2 Roereels

converge to the desired SINR and to the optimal power vector. Fig. 5. Simulation of the network represented in Figure 4 Roeeels

converge to the desired SINR and to the minimal power vector

The communication time-varying delays between the dif-

ferent pairs have been simulated with different signal genye|ays that transmitters may experience, calculate apiptep
erators (sine and sawtooth with different frequenueshsuc@ainS that guarantee global stability of the system and
that Ty < ax = 1. The maximal values of each delays argjisseminate the information required to the corresponding

Tm = {2,3,4,2} where eachly, is expressed iis (seconds). sers. Then, the system will operate in a distributed fashio
Consider a second example of a wireless network with 6
communicating pairs (see Figure 4) characterized by matrix V. CONCLUSIONS ANDFUTURE WORK

(24). A. Conclusions

0 0.0414 02074 02925 03998 01345

0.0159 0 00506 00043 00422 1164 In this paper, the delay-dependent stability analysis of
Co— 0.7335 00626 0 00364 Q0477 04231 (24) the time-varying delay Foschini-Miljanic algorithm hasee
06359 00222 Q0644 O 03283 00447 studied by means of a Lyapunov-Krasovskii functional. A
0.0227 00536 00155 Q0215 0 00407 . . . . . :
00228 01114 02458 Q0030 Q011 0 LMI is derived which provides a practical and systematic

condition for stability of the Foschini-Miljanic algorith.

Settingy; andv as previously and considering time-varyingThe LMI condition is centrally solved with the aid of semi-
delays such tha < a, =1 andT,={4,2,8,4,2,3} (), the definite LMI solvers in polynomial time and the propor-
stability condition (14) provides a stabilizing gain matk, tionality constants; are fed back to the transmitters. Once

. the corresponding gains are embedded to each transmitter,

Kz = diag(0.03000.04350.0401,0.0427,0.0538 0.0391). the network operates in a distributed manner and it is

Then simulation has been performed and the evolution @symptotically stable.
the power used by each transmitter is shown in Figure 5.

The significance of the result can be appreciated especiaffy Future Viork
in cases where a central controller/base station is able toExtension to this work is the derivation of upper bounds
obtain an estimate on the upper bounds of the maximuon the proportionality constants if necessary, such that



the the algorithm operates in a distributed way without the
need for any information dissemination by a central station
or controller to the rest of the nodes in the network.

It would also be interesting to investigate in an analytical
way and obtain the relationship between the convergenee rat
of the algorithm with the magnitude of the time delay. If the
convergence time grows much faster than the communication
delays, then the algorithm will not operate well in practice
under the presence of time delays.
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