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Abstract— We investigate the stability analysis of linear time-
delay systems. The time-delay is assumed to be a time-varying
continuous function belonging to an interval (possibly excluding
zero) with a bound on its derivative. To this end, we propose to
use the quadratic separation framework to assess the intervals
on the delay that preserves the stability. Nevertheless, to take
the time-varying nature of the delay into account, the quadratic
separation principle has to be extended to cope with the general
case of time-varying operators. The key idea lies in rewording
the delay system as a feedback interconnection consisting of
operators that characterize it. The original feature of this
contribution is to design a set of additional auxiliary operators
that enhance the system modelling and reduce the conservatism
of the methodology. Then, separation conditions lead to linear
matrix inequality conditions which can be efficiently solved with
available semi-definite programming algorithms. The paper
concludes with illustrative academic examples.

I. INTRODUCTION

Time-delay systems and their stability have been in-
tensively studied since several decades. The reasons are
not only the challenging theoretical issues of this problem,
but also because the dead-time effects are often met in
applied problems [1]. Indeed, many processes include dead-
time phenomena such as biology, chemistry, economics, as
well as population dynamics. Furthermore, in communication
networks or networked control systems, delays are inherent
to data transportation, propagation time as well as processing
time and are often the origin of performances and stability
degradation.

In the case of constant delay and unperturbed linear
systems, efficient criteria based on roots location [2], [3]
allow to find all the stability regions with respect to the
value of the delay. For the case of uncertain linear systems,
i.e. for proving the robust stability, the problem has been
partially solved, either by using Lyapunov functionals [4],
[5], [6] or robustness tools (small gain theory [4], quadratic
separation [7], [8]). All resulting stability conditions are
based on convex optimization (Linear Matrix Inequality
framework) and allow to conclude on stability region with
respect to the delay and/or the uncertainties. For time-varying
delays, the results are much more scarce and are mainly
based on Lyapunov-Krasovskii [9], [10], [11], [12], [13]
or IQCs/quadratic separation [14], [15]. Besides, all these
latter methodologies often require, explicitly or implicitly,
the delay-free system to be stable which is a rather important
restriction.

This paper aims at going further in providing an efficient
delay range stability condition even if the delay-free system
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enue du Colonel Roche, 31077 Toulouse, France fgouaisb@laas.fr

is unstable. More precisely, we propose to construct criteria
based on an extension of the quadratic separation principle
[7], [16], already developed for several delay-dependent
conditions. Criteria are then derived and expressed in terms
of Linear Matrix Inequalities (LMIs) which may be solved
efficiently with Semi-Definite Programming (SDP) solvers.

The derivation of the proposed results is based on redun-
dant system modelling. Indeed, based on known interactions
between delays, their variations and derivatives, redundant
equations are introduced to construct a new modelling of the
delay systems. To this end, an augmented state is considered
which is composed of the original state vector and its
derivatives. Then, a suitable interconnection modelling is
proposed, improved with the use of auxiliary operators that
emphasize the relationships. At last, a delay range stability
condition (the delay h is belonging to a prescribed interval
[hmin, hmax]) is also introduced. This condition is able to
detect pockets of stability even in case of unstable delay-
free systems.
Notations: Throughout the paper, the following notations are
used. The set of Ln

2 consists of all measurable functions
f : R+ → Cn such that the following norm ‖f‖L2 =(∞∫

0

(f∗(t)f(t))
)1/2

dt < ∞. When context allows it, the

superscript n of the dimension will be omitted. The set Ln
2e

denotes the extended set of Ln
2 which consists of the func-

tions whose time truncation lies in Ln
2 . For two symmetric

matrices, A and B, A > (≥) B means that A−B is (semi-)
positive definite.AT denotes the transpose of A. 1n and 0m×n

denote respectively the identity matrix of size n and null
matrix of size m×n. If the context allows it, the dimensions
of these matrices are often omitted. diag(A,B,C) stands for

the block diagonal matrix: diag(A,B,C) =

⎡
⎣A 0 0

0 B 0
0 0 C

⎤
⎦.

Introduce as well the truncation operator PT such that:

PT (f) = fT =
{
f(t), t ≤ T,
0, t > T.

II. PRELIMINARIES

A. Problem statement

Let consider the following time-varying delay system:{
ẋ(t) = Ax(t) +Adx(t− h(t)) ∀t ≥ 0,
x(t) = φ(t) ∀t ∈ [−hmax, 0], (1)

where x(t) ∈ Rn is the state vector, φ is the initial condition
and A, Ad ∈ Rn×n are constant matrices. The delay h is
time-varying and the following constraints are assumed

h(t) ∈ [hmin, hmax] and |ḣ(t)| ≤ d, (2)

where hmin, hmax and d are given constant scalars.



B. Stability analysis via quadratic separation

Coming from robust control theory, the quadratic separa-
tion provides a fruitful framework to address the stability
issue of non-linear and uncertain systems [7], [16]. Recent
studies [8] have shown that such a framework allows to
reduce significantly the conservatism of the stability analysis
of time-delay systems with constant delay. Nevertheless, the
delay being time-varying, the previous results [8], restricted
to time-invariant systems, cannot be applied directly and
should be extended to handle time-varying operators. To this
end, based on the inner product and the L2e space, a suitable
theorem is proposed.

Let consider the interconnection defined by Figure 1 where
E and A are two, real valued, possibly non-square matrices
and ∇ is a linear operator from L2e to L2e. For simplicity
of notations, we assume in the present paper that E is full
column rank. Assuming the well-posedness, we are interested
in looking for conditions that ensure the stability of the
interconnection.

+

+

zw

w̄

z̄

w − w̄ = ∇z

E(z − z̄) = Aw

Fig. 1. Feedback system.

Theorem 1: The interconnected system of Figure 1 is
stable if there exists a symmetric matrix Θ = Θ′ satisfying
both conditions[ E −A ]⊥′

Θ
[ E −A ]⊥

> 0 (3)

∀u ∈ L2e, ∀T > 0, 〈
[

1
PT∇

]
uT ,Θ

[
1

PT∇
]
uT 〉 ≤ 0

(4)
Proof: Inspired from [7], the proof is detailed in [15]

and [17].
This result suggests that the proof of stability include two
conditions: a matrix inequality (3) related to the lower bloc
and a inner product (4) that states a quadratic constraint
(Integral Quadratic Constraint) on the upper one. Basically,
inequality (4) which forms an integral quadratic constraint, is
built from definitions and informations on different operators
which compose the matrix ∇. Then, the other one (3)
provides the stability condition of the interconnection.

C. Defining operators

Toward modeling delay system as an interconnected sys-
tem such as illustrated in Figure 1, it is required to define
appropriate operators. Define the integral operator

I : L2e → L2e,

x(t) →
t∫
0

x(θ)dθ, (5)

and the delay operator (or shift operator)

D : L2e → L2e,
x(t) → x(t− h), (6)

which constitute the fundamental elementary operators to
describe a delay system. The related integral quadratic
constraints are introduced in the following two lemmas.
These latters will be helpful to construct inequality (4)
and to derive then stability criteria for linear systems with
time-varying delays in the next section.

Lemma 1: An integral quadratic constraint for the opera-
tor I is given by the following inequality ∀x ∈ Ln

2e and for
any positive definite matrix P ,

〈
[

1n

PTI1n

]
xT ,

[
0 −P

−P 0

] [
1n

PTI1n

]
xT 〉 ≤ 0.

Proof: See [18].
The second step is to derive an integral constraint for the
operator D.

Lemma 2: An integral quadratic constraint for the opera-
tor D is given by the following inequality ∀T > 0, ∀x ∈ Ln

2e

and for any positive matrix Q,

〈
[

1n

PTD1n

]
xT ,

[ −Q 0

0 Q(1 − ḣ)

] [
1n

PTD1n

]
xT 〉 ≤ 0.

(7)
Proof: See [18].

In the constant delay case, when looking at works dedicated
to the robust analysis for time delay systems, another
operator is also introduced and expressed as 1−e−hs

s , [14],
[8]. This latter is usually embedded as a norm bounded
uncertainty, considering that supw

∥∥∥1−e−jωh

jω

∥∥∥ ≤ hmax.
Following the same idea, we formulate now the time-varying
counterpart.

Lemma 3: An integral quadratic constraint for the oper-
ator F = (1 − D) ◦ I is given by the following inequality
∀x ∈ Ln

2e and for a positive definite matrix R,

〈
[

1n

PTF1n

]
xT ,

[ −h2
maxR 0
0 R

] [
1n

PTF1n

]
xT 〉 ≤ 0,

where hmax is the upperbound on the delay h(t).
Proof: See [14] or [15] for the same formulation.

III. MAIN RESULTS

A. Stability of time-varying delay systems: methodology

To illustrate the idea of the methodology, let us reformulate
the dynamic of the system (1) as suggested in Figure 1 on
a simple case. As a first modelling, we take advantage of
the three aforementioned operators. In these conditions, the
system (1) can be described as the feedback⎡
⎣ x(t)

x(t− h(t))
x(t) − x(t− h(t))

⎤
⎦

︸ ︷︷ ︸
w(t)

=

⎡
⎣ I1n

D1n

F1n

⎤
⎦

︸ ︷︷ ︸
∇

⎡
⎣ ẋ(t)
x(t)
ẋ(t)

⎤
⎦

︸ ︷︷ ︸
z(t)

,

(8)



over the feedforward equation

⎡
⎢⎣

1 0 0
0 1 0
−1 0 1
0 0 0

⎤
⎥⎦

︸ ︷︷ ︸
E

z(t) =

⎡
⎢⎣
A Ad 0
1 0 0
0 0 0
1 −1 −1

⎤
⎥⎦

︸ ︷︷ ︸
A

w(t). (9)

Then, for applying Theorem 1, we have to find a separator
Θ that fulfills both inequalities (3)-(4). Note that combining
the three constraints related to the different operators (stated
by the lemmas in Section II-C), a global (conservative)
constraint on ∇ is deduced. Hence, the matrix

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 −P 0 0
0 −Q 0 0 0 0
0 0 −h2

maxR 0 0 0
−P 0 0 0 0 0

0 0 0 0 Q(1 − ḣ(t)) 0
0 0 0 0 0 R

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)
where P , Q and R are n × n positive definite matrices,
satisfies the inequality (4). Then, it remains to assess the
other one, which forms the stability criterion. Eventually,
we can conclude that the interconnected system (8)-(9)
(and therefore the system (1)) is stable if the matrix
inequality (3), with E , A and Θ defined as (9) and (10),
holds. Because of the occurrences of hmax and ḣ(t) in
the criterion, it is refered as delay and rate dependent.
Setting ḣ(t) = d in the separator, the condition becomes
a single LMI that can be easily solved via SDP programming.

Remark 1: It has been shown in [15] that the above
criterion, based on the three well-known operators, provides
the same results in terms of conservativeness than several
classical results of the literature [5], [19]. Indeed, such
a particular choice of operators and separator amounts to
choosing a Lyapunov-Krasovskii functional candidate of the
form:

V (xt) = xT
t (0)Pxt(0) +

0∫
−h(t)

xT
t (θ)Qxt(θ)dθ

+

0∫
t−hm

0∫
θ

ẋT
t (s)Rẋt(s)dsdθ.

More generally, some interesting papers have emphasized the
existing links between the Lyapunov method and the robust
analysis [11], [20], [21].

Remark 2: A further simple criterion can be derived re-
moving the third operator F from ∇ and considering only
the minimal elementary operators (the integrator and the
delay) required to describe a time-varying delay system. In
that case, the stability condition would be independent of
the delay because no information on the size of h(t) (for
instance, hmax) would be available in the matrices E , A and
Θ. However, it remains a rate dependent condition where a
bound on ḣ is required.

Remark 3: Because the inequality in the Lemma 2 im-
poses a constraint on the delay variation ḣ(t), a rate in-
dependent condition can be obtained if the system (1) is
modeled only through the first and the third operators. Of
course, the matrices E and A of the implicit equation have
to be appropriately designed so as to describe the original
system and to link each component of the internal signals
(w(t) and z(t)).

In the next sections, we investigate new modellings of
the delayed dynamic via the introduction of extra operators.
The objective is twice: on one hand we expect to reduce
the conservatism of the stability analysis, on the other hand,
we want to take into account some informations on the delay
(upperbound, interval). Throughout the paper we will observe
the following procedure:

(a) Rewrite the delay system (1) as an interconnected
feedback.

(b) Embed the integrator, the delay and other auxiliary
operators into the matrix ∇.

� How to represent the delayed dynamic?
� How to choose the set of operators?

(c) Construct integral quadratic constraints for each oper-
ator and thus for ∇. Deduce the separator Θ.

� It defines the inequality (4) of Theorem 1.
(d) Obtain Linear Matrix Inequalities.

� based on the first inequality (3) of Theorem 1

B. Model extension

Previous works [22] and [8], [23] have shown that re-
dundant system modelling (for linear uncertain systems
and constant delay systems, respectively) may increase the
relevancy of the stability analysis. The rational behind this
model extension is to provide some extra relations between
the delay, its variations and the state. Using the derivative
operator, an augmented state is constructed and is composed
of the original state vector and its derivative. Then defining
relationship between augmented state ẋ, ẍ, the delay h and
its derivative ḣ, an enhanced stability condition is provided.
Differentiating the system (1), we get:

ẍ(t) = Aẋ(t) + (1 − ḣ(t))Adẋ(t− h(t)).

Consider the artificially augmented system

{
ẋ(t) = Ax(t) +Adx(t− h(t)),
ẍ(t) = Aẋ(t) + (1 − ḣ(t))Adẋ(t− h(t)),

(11)

so as to embed on the model extra informations. Introducing
the augmented state

ς(t) =
[
ẋ(t)
x(t)

]
, (12)

and specifying the relationship between the two components
of ς(t) with the equality [0 1]ς̇(t) = [1 0]ς(t), we have the
new descriptor augmented system

Eς̇(t) = Āς(t) + Ādς(t− h(t)), (13)



where

E =

⎡
⎣ 1 0

0 1
1 0

⎤
⎦ , Ā =

⎡
⎣ A 0

0 A
0 1

⎤
⎦ ,

Ād =

⎡
⎣ Ad 0

0 (1 − ḣ(t))Ad

0 0

⎤
⎦ .

C. Delay range stability condition

Most of the papers from the literature focus on the so-
called delay dependent stability analysis using the Lyapunov-
Krasovskii method (see for example [5], [19], [9], [24]).
Basically, a stable delay-free system is considered and the
maximal value of the delay that preserves the stability is
looked for. In this section, we propose to address the tricky
case of the delay range condition where the delay belongs
to an interval (h(t) ∈ [hmin, hmax]) and the system may be
unstable for small delays (for some values ⊂ [0, hmin[).

Considering the artificially augmented system (13), a new
operator H, which will be applied to the new signal ẍ, may
be introduced:

H =
I2 −DI2 − h(t)I

h(t)
: x(t) → 1

h(t)

t∫
t−h(t)

t∫
s

x(θ)dθds.

(14)
The following lemma gives a parameterized constraint on H.

Lemma 4: An integral quadratic constraint for the oper-
ator H is given by the following inequality ∀T > 0, ∀x ∈
Ln

2e, ∀S > 0,

〈
[

1n

PTH1n

]
xT ,

[
−h2

max

2 S 0
0 2S

] [
1n

PTH1n

]
xT 〉 ≤ 0.

Proof:

‖Hx‖2 =
1

h2(t)

⎛
⎜⎝

t∫
t−h(t)

t∫
s

x(θ)dθds

⎞
⎟⎠

T ⎛
⎜⎝

t∫
t−h(t)

t∫
s

x(θ)dθds

⎞
⎟⎠

Using Cauchy-Schwartz inequality and setting H̃ = Hh(t),
∀T > 0, ∀x ∈ Ln

2e, we get the following inequality,

‖H̃x‖2 ≤

⎛
⎜⎝

t∫
t−h(t)

t∫
s

dθds

⎞
⎟⎠

⎛
⎜⎝

t∫
t−h(t)

t∫
s

‖x(θ)‖2dθds

⎞
⎟⎠

‖H̃x‖2

h2(t)/2
≤

t∫
t−h(t)

t∫
s

‖x(θ)‖2dθds

∫ ∞

0

2
h2(t)

‖H̃x‖2dt ≤
∞∫
0

0∫
−hmax

0∫
s

‖xt(θ)‖2dθdsdt

∫ ∞

0

2
h2(t)

‖H̃x‖2dt ≤ h2
max

2

∫ ∞

0

‖x(t)‖2dt

Hence, we get∫ ∞

0

2
h2(t)

‖H̃x‖2 − h2
max

2
‖x(t)‖2dt ≤ 0

∫ ∞

0

2‖ H̃x
h(t)

‖2 − h2
max

2
‖x(t)‖2dt ≤ 0

which concludes the proof.
In the same way, the former operator F = (1 − D)I is
slightly transformed as F̄ = 1

h(t)F . The corresponding
integral constraint is now expressed as follow.

Lemma 5: An integral quadratic constraint for the oper-
ator F̄ is given by the following inequality ∀T > 0, ∀x ∈
Ln

2e, ∀R > 0,

〈
[

1n

PT F̄1n

]
xT ,

[ −hmaxR 0
0 h(t)R

] [
1

PT F̄1n

]
xT 〉 ≤ 0.

Proof: Omitted.
Let us now model the augmented time-varying delay system
(13) through the new set of operators:⎡
⎢⎣

ς(t)
ςd(t)
w1(t)
w2(t)

⎤
⎥⎦

︸ ︷︷ ︸
w(t)

=

⎡
⎢⎢⎣

I12n

D12n

F̄12n

H1n

⎤
⎥⎥⎦

︸ ︷︷ ︸
∇

⎡
⎢⎣
ς̇(t)
ς(t)
ς̇(t)
ẍ(t)

⎤
⎥⎦

︸ ︷︷ ︸
z(t)

(15)
with

ςd(t) = ς(t− h(t)),

w1(t) =
ς(t) − ς(t− h(t))

h(t)
,

w2(t) = ẋ(t) − x(t) − x(t− h(t))
h(t)

= E1ς(t) − E2w1(t).

Matrices E1 and E2 are defined as E1 =
[

1 0
]

and
E2 =

[
0 1

]
respectively. Then, according to the lemmas

related to the different operators, a particular separator

Θ =
[

Θ11 Θ12

∗ Θ22

]
, (16)

Θ11 = diag
(
02n,−Q ,−hmaxR,−h2

max

2
S

)
,

Θ12 = diag
( − P, 05n

)
,

Θ22 = diag
(
02n, (1 − ḣ(t))Q , h(t)R, 2S

)
,

with some positive definite matrices P , Q, R ∈ R2n×2n and
S ∈ Rn×n, fulfils the requirement (4). Consequently, the
stability of (13) (and thus (1)) will be proved if the condition

ξT (t)Θ(h(t), ḣ(t))ξ(t) > 0 (17)

such that
[ E −A ]

ξ(t) = 0 with ξ =
[
z(t)
w(t)

]
, is

true. This condition is an equivalent formulation of (3). The
condition (17) can again be rewritten as another equivalent
condition

ψT (t)NT (ḣ(t))Θ(ḣ(t))N(ḣ(t))ψ(t) > 0 (18)



ψ =

⎡
⎢⎣

x(t)
ς(t− h(t))
w1(t)
w2(t)

⎤
⎥⎦, such that S(h(t))ψ(t) = 0 with

S =

⎡
⎣ A −1 Ad −1h(t) 0 0

1 0 −1 0 −1h(t) 0
A 0 Ad 0 −1 −1

⎤
⎦ (19)

and

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AA Ad(1 − ḣ) AAd
A 0 Ad

A 0 Ad

1 0 0

AA Ad(1 − ḣ) AAd
A 0 Ad

AA Ad(1 − ḣ) AAd
A 0 Ad

08n×3n

16n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Invoking Finsler’s lemma, condition (18) is equivalent to

NT (ḣ(t))ΘN(ḣ(t))+XS(h(t))+ST (h(t))XT > 0. (21)

Some calculus show that N T (ḣ(t))ΘN(ḣ(t)) is affine, and
thus convex, in h and ḣ. So the condition (21) has to be
assessed on the 4 vertices of the polytop generated by the
intervals on h(t) and ḣ(t). We are now in a position to state
our main result.

Theorem 2: For given positive scalars d, hmin and hmax,
if there exist positive definite matrices P , Q, R ∈ R2n×2n

and a positive definite matrix S ∈ Rn×n and a matrix
X ∈ R6n×3n, then the system (1) with a time varying delay
constrained by (2) is asymptotically stable if the LMI (21)
holds for ḣ(t) = {−d, d} and h(t) = {hmin, hmax}.

IV. NUMERICAL EXAMPLES

A. First example: delay dependent case

Considering the following academic numerical example

ẋ(t) =
[ −2 0

0 −0.9

]
x(t) +

[ −1 0
−1 −1

]
x(t− h(t)).

(22)
First, let us remark that the delay-free system is stable.
Then, for various d, the maximal allowable delay, hmax, is
computed. To demonstrate the effectiveness of our criterion,
results are compared to few ones from the literature. All
these papers, except [14], [18], use the Lyapunov theory in
order to derive some stability analysis criteria for time delay
systems. In [14], the stability problem is solved by a robust
control approach: the IQC framework. The results are shown
in Table I.

In [14] and [18], the delay is likened to some uncertain
operators and appropriate weighting filters are used to bound
it. Their methodologies provide very good results, however,
they are restricted to time-delay system that are stable with-
out delay. Although our Theorem 2 does not provide the best
values, it shows interesting results in terms of conservatism
reduction compared to most well-known conditions extracted
from the literature. Besides, the proposed theorem has been

TABLE I

THE MAXIMAL ALLOWABLE DELAYS hmax FOR SYSTEM (22)

d 0 0.1 0.2 0.5 0.8 1

[5] 4.472 3.604 3.033 2.008 1.364 0.999

[19] 4.472 3.604 3.033 2.008 1.364 -

[11] 1.632 1.632 1.632 1.632 1.632 1.632

[14] 6.117 4.714 3.807 2.280 1.608 1.360

[9] 4.472 3.605 3.039 2.043 1.492 1.345

[18] 6.117 4.794 3.995 2.682 1.957 1.602

[13] 4.476 3.611 3.047 2.072 1.590 1.529

Theorem 2 5.120 4.081 3.448 2.528 2.152 1.991

primarily designed to address the stability issue of systems
with interval delays, which may be unstable for small delays
(or without delays).

B. Second example: delay range case

Now, the system is such that ÿ(t) − 0.1ẏ(t) + 2y(t) =
u(t). We aim at stabilizing the system using a static delayed
output-feedback u(t) = ky(t − h(t)). Choosing k = 1, we
get the following state space model:

ẋ(t) =
[

0 1
−2 0.1

]
x(t) +

[
0 0
1 0

]
x(t− h(t)). (23)

Among the possible choices of set of operators at the model-
ing step, only the one of Theorem 2 is able to find stability
interval for delayed systems that are unstable without any
delay. In order to assess the interval of the delay such that
system (23) is stable, Theorem 2 is applied with given hmin

and hmax. Then, a sliding window principle is performed
to stretch the bounds. The following results are obtained in
Table II.

TABLE II

INTERVAL OF STABILIZING DELAYS FOR SYSTEM (23)

hmin hmax

d = 0 0.102 1.424
d = 0.1 0.102 1.424
d = 0.2 0.103 1.423
d = 0.5 0.104 1.421
d = 0.8 0.105 1.419
d = 1 0.105 1.418
analytical (constant case) 0.10016826 1.7178

This result is also illustrated in Figure 2. It shows the
assessment of an interval on the delay for which the system
(23) is stable (when d = 1). It can be noticed that the system
is unstable for a small delay. Let us recall that the Theorem
2 ensures the stability of (23) for the entire interval ∀h(t) ∈
[hmin, hmax] (via a sliding window) and is not a gridding
based estimation.

At last, varying the output feedback gain, the Theorem 2
allows to assess an inner (conservative) region of stability
w.r.t k and h(t) (for d = 1). It thus provides a set of values
of k that ensures a stabilizing delayed output feedback for
the LTI system ÿ(t)−0.1ẏ(t)+2y(t) = u(t) (see Figure 3).



Fig. 2. Detection of a pocket of stability for the system (23) (case d = 1).

Fig. 3. Stability region of ÿ(t) − 0.1ẏ(t) + 2y(t) = ky(t − h(t)) w.r.t.
k and h(t) (for d = 1).

V. CONCLUSION

In this paper, the problem of the delay dependent stability
analysis of a time varying delay system has been studied
by means of quadratic separation. Inspired from previous
work on time delay systems with constant delay [8], stability
criteria for time varying delay system are provided. Based on
this first result, and using an augmented state, new modelling
of time delay systems are introduced which emphasizes the
relation between ḣ and signals ẋ and ẍ. The resulting criteria
are then expressed in terms of a convex optimization problem
with LMI constraints, allowing the use of efficient solvers.
Finally, a numerical example shows that these methods
reduced conservatism and improved the maximal allowable
delay.
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Birkhäuser Boston, 2003, control engineering.

[5] E. Fridman and U. Shaked, “An improved stabilization method for
linear time-delay systems,” IEEE Trans. on Automat. Control, vol. 47,
pp. 1931–1937, Nov. 2002.

[6] A. Seuret, “Lyapunov-krasovskii functionals parameterized with poly-
nomials,” in the 6th IFAC Symposium on Robust Control Design, Haifa,
Israel, June 2009.

[7] D. Peaucelle, D. Arzelier, D. Henrion, and F. Gouaisbaut, “Quadratic
separation for feedback connection of an uncertain matrix and an
implicit linear transformation,” Automatica, vol. 43, no. 5, pp. 795–
804, 2007.

[8] F. Gouaisbaut and D. Peaucelle, “Robust stability of time-delay
systems with interval delays,” in 46th IEEE Conference on Decision
and Control, New Orleans, USA, Dec. 2007.

[9] Y. He, Q. G. Wang, L. Xie, and C. Lin, “Further improvement of free-
weighting matrices technique for systems with time-varying delay,”
IEEE Trans. on Automat. Control, vol. 52, pp. 293–299, Feb. 2007.

[10] Y. Ariba and F. Gouaisbaut, “An augmented model for robust stability
analysis of time-varying delay systems,” Int. J. Control, vol. 82, pp.
1616–1626, Sept. 2009.

[11] E. Fridman and U. Shaked, “Input-output approach to stability and l2-
gain analysis of systems with time-varying delays,” Systems & Control
Letters, vol. 55, pp. 1041–1053, Sept. 2006.

[12] C. Briat, “Robust control and observation of LPV time-delay systems,”
Ph.D. dissertation, INP-Grenoble, 2008.

[13] J. Sun, G. G.P. Liu, J. Chen, and D. Rees, “Improved delay-range-
dependent stability criteria for linear systems with time-varying de-
lays,” Automatica, vol. 46, no. 2, pp. 466 – 470, 2010.

[14] C.-Y. Kao and A. Rantzer, “Stability analysis of systems with uncertain
time-varying delays,” Automatica, vol. 43, no. 6, pp. 959 – 970, 2007.

[15] Y. Ariba, F. Gouaisbaut, and D. Peaucelle, “Stability analysis of
time-varying delay systems in quadratic separation framework,” in The
International conference on mathematical problems in engineering ,
aerospace and sciences (ICNPAA’08), June 2008. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00357766/fr/

[16] T. Iwasaki and S. Hara, “Well-posedness of feedback systems: insights
into exact robustnessanalysis and approximate computations,” IEEE
Trans. on Automat. Control, vol. 43, pp. 619–630, May 1998.

[17] D. Peaucelle, L. Baudouin, and F. Gouaisbaut, “Integral quadratic
separators for performance analysis,” in European Control Conference,
Budapest, Hungary, Aug. 2009.

[18] Y. Ariba and F. Gouaisbaut, “Input-output framework for robust
stability of time-varying delay systems,” in the 48th IEEE Conference
on Decision and Control (CDC’09), Shanghai, China, Dec. 2009.

[19] M. Wu, Y. He, J. H. She, and G. P. Liu, “Delay-dependent criteria for
robust stability of time-varying delay systems,” Automatica, vol. 40,
pp. 1435–1439, 2004.

[20] M. Safonov, Stability and Robustness of Multivariable Feedback
Systems, ser. Signal Processing, Optimization, and Control. MIT
Press, 1980.

[21] J. Zhang, C. R. Knopse, and P. Tsiotras, “Stability of time-delay
systems: Equivalence between Lyapunov and scaled small-gain condi-
tions,” IEEE Trans. on Automat. Control, vol. 46, no. 3, pp. 482–486,
Mar. 2001.

[22] Y. Ebihara, D. Peaucelle, D. Arzelier, and T. Hagiwara, “Robust
performance analysis of linear time-invariant uncertain systems by
taking higher-order time-derivatives of the states,” in 44th IEEE
Conference on Decision and Control and the European Control
Conference, Seville, Spain, Dec. 2005.

[23] P.-A. Bliman, “Lyapunov equation for the stability of linear delay
systems of retarded and neutral type,” IEEE Trans. on Automat.
Control, vol. 47, pp. 327–335, Feb. 2002.

[24] S. Xu and J. Lam, “A survey of linear matrix inequality techniques in
stability analysis of delay systems,” International Journal of Systems
Science, vol. 39, no. 12, pp. 1095–1113, Dec. 2008.


