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Abstract— This paper provides some new techniques to L.K.F. for the original system. Hence, in [8], a partitiogin
construct a Lyapunov-Krasovskii functional for time varying  delay scheme is developed in order to construct a L.K.F

delay systems. The construction is based on a partitioning \yhich depends on a discretizing version of the whole state
scheme of the time-varying delay leading to a new type of

Lyapunov-Krasovskii functional. This functional is depending 4(0)-

on an augmented state and also on an integral quadratic

constraint added to reduce the conservatism of the proposed . .

methodology. This approach is then extended to the robust case. In the case of time varying delay, the results are much

Finally, some examples support our approach. more scarce and the proposed methodologies are often con-
servative. In this paper, we aim at developing new type of
I. INTRODUCTION LKF by fractionning the delay in order to take into account

Delay systems and especially its asymptotic stability ha/de whole state of the system. Even if this idea is not so
been thoroughly studied since several decades [1], [2], [SEW in the constant delay case it is much more complicated
and references therein. The study of the delay phenomenthelaborate if the delay is time varying. Indeed, due to the
is motivated by its applied aspect. Indeed, many processd@e varying nature of the delay, partitioning the delay and
include dead-time phenomena in their dynamics such as Bptroducing an augmented state variable do not generally
ology, chemistry, economics, as well as population dynamidnduce a good description of the original system. More
[2]. Moreover, processing time and propagation time in ad?articularly, itis not proved that using the state augmtéma
tuators and sensors generally induce such delays, edpecidye recover the original delayed state. That's the reason why
if some devices are faraway from each other. That is thig the literature we can find the use of some slack variables to
challenge of the stability of networked controlled Systemgrtificially construct linear relations between the augtadn
[4] as well as networks control [5] [6]. state formulation and the original state of the system. Here

In the case of constant delay, many different technique¥e Propose to cope with this problem by adding an integral
lead to efficient algorithms (mainly based on LMIs) to tesfluadratic constraint which take into account the_ r_elatidms
the stability of time delay system. It includes the robusPetween the augmented delay state and the original delayed
approach (method based on the use of IQCs, separatidfte-
approach or small gain like theorems [3]) and Lyapunov
approach. In this last approach, we aim at finding a Lyapunov
functional depending on the whole state of the sysie() Notations: For two symmetric matricesd and B, A >
which is not an easy task even for a linear time delay systefd) B means thatd — B is (semi-) positive definiteA”

with one delay. Indeed, for a linear time delay system, SoMgotes the transpose df 1, and0.x, denote respectively
general functional can be found [3] but is very difficultiye jgentity matrix of size: and null matrix of sizen x n.

to handle. That is the reason why more simple and thyg ihe context allows it, the dimensions of these matrices
more conservative Lyapunov-Krasovskii functional (LKF)5re often omitted. For a given matri®8 € R™*" such that

have been proposed. Generally, all these approach haver%k(B) — 7, we defineBL € R™ (") the right orthogonal
deal with two main difficulties (see [7] and [3]). The first complement of B by BB = 0. ||z(t)| corresponds to

one is the choice of the model transformation. The seconfle Eyclidean norm of(t). We denote byL, the space of
problem lies on the bound of some cross terms which appear o0

in the derivative of the Lyapunov functional. Mainly, two X" valued functions of finite energytf|7, = Of |f(6)|*dt.
techniques have been proved to be efficient to reduce tfig the space ofR™ valued functions of finite energy on
conservatism. The first one adopt a discretizing scheme fifite interval. Defining an operator,a mapping from a normed
the L.K. matrices [3]. At a price of an increasing numbegpace to anotheD : = — Dz|, D"[z] means that the
of variables to be optimized, the result tends to become gperatorD is applied n times to z. For instance,D?[z]
necessary and sufficient condition. Another interesting agorresponds t® [D[z]]. A causal operatof from L to LS
proach, developed in a Lyapunov and robust frameworks uggsaid to be bounded ifH || = sup ., IZ/1 is bounded.

an augmented state vector formulation to construct some new( ) is the function such that — z;(f) Hi” z(t + 6) and

N refers to the time delay system state. Finally, we denote by
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I[I. AFIRST STEP TO A DISCRETIZATION SCHEME Given the signalk (), there is no apparent relationship with

Consider the following linear time delay system the delayed instantaneous statg — /(7)) and in order to
clarify the relations between the two signals, we introduce
{ #(t) = Ax(t) + Aqz(t — h(t)), Vt >0, (1) an additional operator front; to Lo,
x(t) = ¢(t)v vt € [_hmv 0}, t_#_h(t—g(t)/2
wherezx(t) € R" is the state vectord, A, € R"*" are known Vi ox(t) — z(u)du @)
constant matrices and is the initial condition. The delay, t=h(t)
h(t), is assumed to be a time-varying continuous functiothat highlights the link between signats(¢) andx(t — h(t).
that satisfies Remarks that for a constant deldy, is reduced to the null
0 <h(t) < hpy, (2) operator. Then, we can prove that the induced norm of

where h,, > 0 may be infinite if delay independent con-the operatoi’ is bounded by"z< (Tld) Indeed, thel.,-
ditions are looked for. Furthermore, we also assume thatryrm of the operatoK is defined by
bound on the derivative 0i(t) is provided : 5

(R hG=h(t)/2
T2 T T2

() <d<1 ) V@2, /OOO / s(u)du | dt

with d a positive scalar.

Previous works on the stability analysis of time delay
system with time-invariant delay have been proposed in [9] oo
and in a quadratic separation [10] and Lyapunov-Krasovskii = /
[3] frameworks, respectively. In these studies, the kew ie 0 t—h(t)
derive an efficient stability analysis criterion consistslelay
fractioning. Indeed, it is shown that introducing redurtdanwith 8(t) = h(t) — h(t — ") which can be bounded by
equations shifted in time by fractions of the delay reduce t t hod
the conservatism of the stability condition. o(t) = / h(u)du < / d du < 2=

The feature of this present contribution is to extend these 1= =25 2
previous results to the stability analysis of time-varyingor all t € R*. Then, the Cauchy-Schwarz inequality states
delay systems. Of course, the time-varying nature of thgat
delay makes the task more complicated to deal with. Indeed,
consider a time-invariant delay system,

t—h(t)
t—h(t)+316(t)
x(u)du | dt

t—h(t)+35(t)

* hpd
V@IE. < [ 25 [ e Pl

@(t) = Ax(t) + Aga(t — h) (4) t—h(t)
with h a positive constant scalar. ©p g hmd/4
Applying the constant delay operataR;,n : w(t) — g/ i / llz(u+t — h(t)|*dudt.
z(t — h/N) to the state vector of (4N times, the delayed o 4

0
state vectorz(t — h) of (4) is recovered. Then, a suitable

choice of a Lyapunov-Krasovskii functional as explained i €forming the substitution = u + ¢ — A(t), we obtain

[9] leads to an efficient stability condition. This functadn hmd/4

depends explicitly on a discretizing version of the whole g ()|2 SML / / ll2(s)||2dsdu
state[z(t),z(t — h/2),...,x(t — (N — 1)h/N),z(t — h)]'. : 4 1-d ®)
Considering a time-varying delay system (1), the fundamen- 9

tal difference is that applying time-varying delay operato < (hmd) LHJ;H% )

Duiyn :  a(t) — x(t — h(t)/N) do not lead to a "\ 4 ) 1-d

appropriate description of the state. For example, in tise caThis last inequality concludes the proof.

of N = 2, the fractioning scheme lead to the augmented state

vector [z (t), z(t — @),x(t— @ - W)}’. The last Remark 1 In order to use this inequality, we shall remark
component is deduced when the operd®y;),» is applied that d is supposed to be less than one. This technic is then
two times tox(t) (Di(t)/z[x(t)]) and is hardly suitable to not suitable for large variations of delay derivative, ifast
describe the delayed instantaneous stéte- ). In order to  varying delay systems.

describe properly the proposed methodology, the following

is devoted to the case where the delay is partionned into twidieorem 1 Given scalarsh,,, > 0 and0 < d < 1, system

parts. Consider the following signals: (1) is asymptotically stable for any time-varying delaft)
h(t) satisfying (2) and (3) if there exists x n positive definite
xo(t) =x(t — T)’ (5) matricesP, Qo, Q2, Ry, Ry and a2n x 2n matrix @, > 0
0 ol h(t) At h(t)/2)) © such that the following LMI holds:
TN =T 2 2 ' StTrst <o )



where and the 1QC

- S=[p1 A @ O, ] d ., (10) ¢
g-lp 8 gl &
N(t,a) = Of ("49)" " ()Qai(s)  (1q
PV R 0 R Vli(s)]* Qz Vi(s))ds
=l 0 2ZR1 —7ZR:1 0 0 V[.] is an operator defined as (7). Sinfe Ry, Ry, Q; for
i = {0,1,2} are positive definite matrices, the functional
0 0 0 Q2 Q2 Vi(z) + Va(z) + Vs(z) 4+ Va(z) + Vs(x) is also positive
1 (11) Yz € R". Let us prove thatll(¢,x;) is also a positive
L 0 7o TR0 0 Q2 W function. For this purpose, following a similar approach as
0 Onx2n  Onxan for mput output stability analysis method in [12], let rark
+ 02n><n Ql 02n><2n T 1/2 2
that [ V[z \Y P, and
o e O Of 1" QaVi(s)lds = | PIVIQy*a(0)]]
[ Oono O Oanx as the operatofV is causal, this last expression can be
nx2n nx2n nxn 1/2 . 1/2.
+ | Ooan —(1—d/2)Q1 O expressed a®;(V[Qy “a(1)]]I1* = || PVIF[Qy & (1)]])|1?
01 scom 01 scom 0 using standard arguments [13] [12],
with 1PV Py @)% < PRIV Py e ()]
U = (f24)"1Qs+ 4Ry + hyRo, with B < L VI < ("4)* 1L, and
V = Qo-;=Ri - ;-Ro, IPQYi(t)]]> = f:c 5)Qai(s)ds. Regrouping all
W = —(1-d)Qo— Q2 - 7=Ro. the terms proves thaﬂ(t,xt) is positive definite. The
derivative of the functional (12) along the trajectories(df

S+ is an right orthogonal complement 6f. leads to
Proof: The proof is based on the Lyapunov-Krasovskii v (z) = V;(z) + Va(z) + Va(z) + Va(z) + Vs(z)  (19)
approach. The LKF considered is composed of the traditional
terms used in the litteraturé/{, V3 and Vs, see [11] [9] where
and references therein), some terms that take into accoupt .T T .
the delay partitionning Wz and V,, see [8] for invariant UD - (t)Pz(tT+x (B)P(),
delay case) and an integral quadratic constralif(t,(z;)). Va(z) = { x(t) Q [ z(t) ]

Similarly as the input-output stability approach in time xo(t) wo(t)
domain, adopted in [3], the 1QC is constructed with the help d [ zo(t) T wo(t)
of the Ly-norm of an operator. Let us define the following - (1= 5) { 1 (t) } Q1 { 21 (t) ] )
Lyapunov-Krasovskii functional candidate: . T T
Va(z) =2” (t)Qox(t) — (1 —d)z” (t — h(t))Qox(t — h(%))-
Viz) =Vi(x) + Va(x) + Va(x) + Vi(x) + Vs(x 12
(=) =) 2(7) + Va(@) + Va(e) (@) (12 with z¢(t) and z,(¢) defined as (5) and (6), respectively.
where Invoking the Jensen’s inequality [3], termig andV; can be
bounded by
Vi(z) =a" (1)Pa(t), (13) ) )
! T Vi(z) <247 (#)Rai(t) — ——wT () Ryw(t)
x(s) x(s) 2 h(t)
x(s -~ h(s)) Q1 .Z‘(S _ h(s)) ds, [ . 2
D) 2 2 §7x (t)Ryx(t) — oW (t)Ryw(t)
s (21)
(14) v 7 I
. 5(2) <hgmi® (6)Roa(t) Wu (t)Rov(t)
_ T
Vs(a) = / 2 (5)Qoz(s)ds, (15) < (D Roi() — ——0T () Rov(t)
t—h(t) m
bt i _ h(t) _
) . with w(t) = x(t) —x(t— =) andv(t) = (t) —x(t —h(t)).
Vi(z) = / /xT(u)Rlx(u)dudS, (16) " Invoking now the scaled small gain theorem presented in [3,
- s p287] and considering the proposed IQC (18), the stability
¢t of (1) will be proved if the functional
_ T . )
Vi) = [ [ @ @Roitduas, O W) = Vitw) + (229) 2T (0Qei) ()
t—h,;, s

—V(#)"Q2V(2)



is negative. In addition, this latter quantity can be expees S+ is an right orthogonal complement f.
as Wi(t,xz;) < £T(t)TE(t) (gathering (20), (21) and (22))

with T defined as (11) and Proof: Define the following Lyapunov-Krasovskii func-

tional candidate:

) o V(e) = Va() + Va(e) + Va(e) + Vale) + Va(a)  (27)
£(t) = ot — M) — xo(t) . whereVi(z), Vs(z), Vs(z) are defined as (13), (15), (17)
R _ hO=h@y/2) 21 () and
x(t 5 5 )
x(t — h(t)) z(t — h(t)) x(s g x(s)
(23) t z(s — Medy x(s — 1))
Furthermore, using the extended variable) (23), sys- N N
tem (1) can be rewritten aS¢ = 0 with .S defined as (10) Vi(w) = / 21(t) Q: 21(t) ds,
The original system (1) is asymptotically stable if for &ll t— ) : :
such thatS¢ = 0, the inequality¢’T¢ < 0 holds. Using rn_2(t) TN _o(l)
Finsler lemma [14], this is equivalent t6* I'S‘ < 0, (28)
where S+ is a right orthogonal complement &, which toot
concludes the proof. B y(2) = / /lﬂT(u)Ri‘(u)dudS (29)
1. MAIN RESULT t—lm s

N

In the previous section a new condition for the time- Il as the 10C
varying delay systems analysis is obtained by means gp el as the Q
extension of the state variables introducing a half deléws T M hmd(N=1)\? 1 .7 .
methodology is now generalized by partitioning the intérva Tn(t,ze) = Of ( N ) ad (5)Qa2d(s) (30)
[t — h(t), ] into N parts. — V[i(s)]" Q2 V[i(s)]ds
with z;(t) andV[.] are defined as (31) and (35), respectively.

_Theorem 2 Given scalarsh;m > 0,0 S d < 1 and an As it has been stated in section |, the idea is to provide a
integer V> 0, system (1) is asymptotically stable for any, \c fnctional that takes into account the state between

time-varying delay(t) satisfying (2) and (3) if there exists jny;  (4) Thus, a discretization-like method is employed

noxn pOS|t|ve_def|n|te matrices’, Qo, Q2, Ro, Iy and a. considering the state vector shifted by a fracti@ﬁﬁ of

Nnx Nn matrix @y > 0 such that the following LMI holds: o jojay The discretized extended state is constructéed wi
SLTSt <0 (24) signals:

2 (8) = DY T,
whereS=[ -1 A Ouyxnn Ag | and (25) i(t) = Dy v ()] (31)

(t)/N
Note that these latter variables can be rewrittencgg) =
x(t;) where

U P 0 OnxNn il . .
P vV YR, 0 :iNRo t; = Dy I =t — ag(i + DA(E) + a1 (i + 1)5(t)
= 0 ;-Ri —ZZRl OnxNn +a2(l+1)5(t+h1(t))+-~-+ai(l+1)5(t+hi—(%(2t)))
0 0 0 X with
Nnxn 1 Nnxn .
—R h(t i h(t
TR m) =" n) =Dl -1 (39
0 0n><Nn 0n><2n h(t) i—j if 4 . 0
+ | Onnxn Q1 Onnxan 8(t) = h(t) — h(t — =), a;(i)={ N> "T1=J>
N / 0, otherwise.
L 02n><n 02n><Nn 02n><2n ’ (34)
[ 02n><2n O2n><Nn 02n><n . . . .
+ | Onnxzn —(1—d/N)Q1  Onnxn Then, in order to emphasize the relationship between
Onscon Onsc N 0 xn_1(t) andx(t — h(t)), we redefine the operatdr|.] as
- (26) v
with Vi oz(t) — / x(u)du. (35)
) Jt—h(t)
U - (hmd§x71)> Q2 + %2Ry + hyRo, Seeing that
V - Qo- XRy- LR, tnot = (= h(t)) = ar(N)5(8) + as(N)3(t + I (1))
" " + .ot aw—1)(N)o(t + hn-3(t)),
On(N—2)xn(N—=2)  On(N—2)xn  On(N—2)xn humd
X = Onsn(N-2) —Q2 Q: ; S )+ +agen (V)] =
Onxn(N—2) Q2 w hpyd(N —1)
< -~ 7

W = —(1-d)Qo— Q2 - ;-Ro. - 2N



sinced(t) = ]:,m h(s)ds < % and by the same way as lead to the results of [17]. Consequently, criteria prodide
(8), the following inequality is derived in this paper are necessarily less pessimistic in the sense
that results obtained are at least equivalent to the toawditi
(N = 1)hpnd

2
1 - o
2 < 2 stability conditions.

. . . IV. ROBUSTNESS ISSUES
Using the same idea developed in the proof of Theorem

1, it can be easily proved thaf(z) (27) and the IQC (30) The proposed approach in Section III' can pe easily ex-
are positive functions for alt € R and we have tended to the robust case. Indeed, while affine polytopic

) ) . . . . uncertain models are considered, the following system is
Vi(z) = Vi(z) + Va(x) + Vs(z) + Vz(x) + Va(z)  (37)  defined:

whereV; (z), Vs(z), Vs(z) are defined as (20) (21) and i(t) = A(a)z(t) + Ag(@)z(t — h(t)), (41)
x(t) 4 x(t) with  h(t) satisfying conditons (2) (3) and
Ve@)=| Q| [ A(a) Ad(a) ] = Syai| Al Al ]
Tn_o(t) Tn_o(t) where « = (o ... o, ) belongs to the set
hs) h(s) 2 = {w> >, ,a;=1}. Note that the matrix$
d w(t — =) ot — =) (25) is linear with respect to the model parametdf$ and
—(1- 5) : Q1 : ) Ag]. Thus, we denote the parameter dependent matrix
rN-1(t) rn-1(t) " . U :
. S = S = i =1 Al Onxnn AY
Va(e) < 3T (DR (1) — 2T (1) Ram(t) () ZO‘ ZO‘ | xNn A
N hm i=1 i=1
(38) (42)
with m(t) = (t) — «(t — M2). Invoking, as previously,

the scaled small gain theorem presented in [3, p287] and'eorem 3 Given scalarsh,, > 0, 0 < d < 1 and
considering the proposed IQC (30), the stability of (1) will2n integer N' > 0, system (41) is asymptotically robustly
be proved if the functional stable for any time-varying delay(t) satisfying (2) and (3)
5 if there existsn x n positive definite matricesl"), Qg],
Wi(t,xy) = V(t,z) + (%) =T (1) Qa2 (t) QY. R, R and Nn x Nn matrices Q! > 0 and a
—V[#]T Q2 V]i] (N + 3)n x n matrix Y such that the following LMI hold
(89) fori={1,2...n}:
is negative. In addition, this latter quantity can be expeés (i o (T~ T
asWi(t,z;) < £7(t)T¢(t) with T defined as (26) and M+ys™+5% ¥Y° <0

BT where St are defined as in (42) antll’) are structered as
(1) (26) with the according matrice®!’l, Ql, Qi rY, RY!
ot - 10 and Q)
t) = . 40
&) : (40) Due to space limitation the proof is omitted. Nevertheless,
rn_1(t) this latter is very similar to the one presented in [18] for
x(t — h(t)) linear systems.
Then, using the extended varialdé) (40), system (1) V. EXAMPLES

can be rewritten as¢ = 0 with S defined as (25). As ithas  Consider the following system,

been stated in the proof of Theorem 1, the original system

(1) is asymptotically stable if for aff such thatS¢ = 0, the i(t) = [ —2 0 } x(t) + [ -10 } z(t — h(t)).
inequality ¢7T¢ < 0 holds. Using Finsler lemma [14], this 0 09 -1 -1 (43)

. . LT 1 .
Is equivalent toS= I'S™ < 0, which concludes the pr(:of. For this academic example, many results were obtained
. L in the literature. For varioug, the maximal allowable delay,

withlt CIQS Wgrth;/néoRnotSeetﬂEtoccirrlseldggr;gs;icge rtle_slﬂl:ts(lozf) hm, IS computed. To demonstrate the effectiveness of our
b w2 ! ’ criterion, results are compared against those obtainetili [

the _I|_tterature [11] [15] [16] are recovergd (related to th?l] [15], [17], [19] and [16]. All these papers, except thst

trad|t|or1al LKF). Moreover, adding to this latter LKF the one, use the Lyapunov theory in order to derive some stabilit

term [ 27(s)Qsz(s)ds and performing the separation analysis criteria for time delay systems. In [16], the digbi
t=lom . S . .. problem is solved by a classical robust control approach: th

of the integral tg%(x) (,17) |.e.test|mz;t|ng th? derivative IQC framework. Finally, [20] provides a stability criterio

of Vs(z) as himd" ()Rod(t) — [, 3" (WRod(u)du = paced on a new modelling of time delay systems considering

tt:::) T (u)Ro#(u)du rather than omitting the last term, an augmented state composed of the original state and its



TABLE |
THE MAXIMAL ALLOWABLE DELAYS h,, FOR SYSTEM(43)

Nb of
d 0 01 | 02 | 05 | 08 Var
11 7472 | 3.604 | 3.033 | 2.008 | 1.364 35 1]
6] 1632 | 1.632 | 1.632 | 1.632 | 1.632 32
[15] 4472 | 3.604 | 3.033 | 2.008 | 1.364 27
[16] 4472 3.604 | 3.033 | 2.008 | 1.364 6 [2]
[17] 4472 | 3.605 | 3.039 | 2.043 | 1.492 2
[19] 4472 | 3.605 | 3.030 | 2.043 | 1.492 | 146
[20] 5,120 | 4,081 | 3,448 | 2,528 | 2,152 | 313 (3]
']I'\?e:o 2 |l 5,717 | 4,286 | 3,366 | 2,008 | 1,364 22 4]
E‘e:o 42 5,967 | 4,375 | 3,349 | 2,008 | 1,364 48 5]
Ivh‘f().z 6,120 | 4,396 | 3,321 | 2,008 | 1,364 90 6]
[7]
TABLE I
THE MAXIMAL ALLOWABLE DELAYS h,, FOR SYSTEM(44)
(8]
[ d [ 0 [ 005 01 02 03] 05
] oo | 8.330 | 5.450 | 3.255 | 2.176 | 0.999 [9]
6 1.082 | 1.082 | 1.082 | 1.082 | 1.082 | 1.082
[15] oo | 8.330 | 5.459 | 3.255 | 2.176 | 0.999
[17] oo | 8.331 | 5.461 | 3.264 | 2.195 | 1.082 [10]
Theo 2 || oo | 10.311| 6.095 | 3.295 | 2.176 | 0.999
[11]

derivative. Then, a suitable new type of LKF is derived which
reduce the conservatism of the stability condition. Theliss [12]
are shown in Table I. [13]

Then, considering the augmented state vector (40) by delay
fractioning, Theorem 2 improves the maximal allowabld14]
delays for slow time-varying delays. Indeed, conservatism
is reduced thanks to the discretization scheme. As expectegh
this operation provides more information on the system and
thus improves the stability analysis criterion. Considewn
the following system,

i(t) [_01 _12}1(15)%

The delay dependent stability analysis of system (44) h&]
been studied and results are shown in table (ll). System
(44) is 10D stable iadependent of deldywhen the delay [19]
is constant. Once again, it is observed that Theorem 2 (with
N = 2) improves the maximal bound on the delay whicl”[ZO]
preserves the stability of (44) in the case of slow time-iayy
delays.

[16]

0 O
-1 1

[17]

] z(t — h(t)). (44)

VI. CONCLUSION

In this paper, a new condition for the stability analysis of
time-varying delay systems is proposed in the Lyapunov-
Krasovskii framework. This latter criterion is formulated
in terms of LMI which can be solved efficiently. Inherent
conservatism of the Lyapunov-Krasovskii approach is re-
duced with the use of the delay fractioning methodology.
Then, additional terms for the Lyapunov functional are
required in order to describe as well as possible the system
making the links between the different considered signals.
Finally, a numerical example shows that this method reduced

conservatism and improved the maximal allowable delay for
slow time-varying delays.
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