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Abstract— Stability analysis of linear systems with time-
varying delay is investigated. In order to highlight the relations
between the variation of the delay and the states, redundant
equations are introduced to construct a new modeling of the
delay system. New types of Lyapunov Krasovskii functionals
are then proposed allowing to reduce the conservatism of
the stability criterion. Delay dependent stability conditions are
then formulated in terms of linear matrix inequalities (LMI).
Finally, an example shows the effectiveness of the proposed
methodology.

I. INTRODUCTION

During the last decades, stability of linear time delay
systems have attracted a lot of attention [5], [13], [14],
[17], [9] and references therein. Numerous tools for esti-
mating the stability of linear time delay systems have been
successfully exploited. The first classical technique relies
on the study of the roots of the associated characteristic
equation, a quasipolynomial in s and e−hs. Even very
effective in practice [18], these approaches reveal themselves
quite complicated when uncommensurate delays, robustness
issues or time varying delays are considered. The stability
of time-delay systems can be also studied in an Input-
Output framework [5], [12], [8], [7] and [9]. In this case,
methods aim at embed the delay as an uncertain operator
and hence transform the original delay system into a linear
system submitted to a perturbation. Then, the use of classical
robustness tools like Small Gain theorem, IQC or Quadratic
Separation approach allow then to develop effective criteria
[22], [21], [12], [16] and [7]. In this framework, the source
of induced conservatism is clear and generally comes from
the choice of the interconnection (often related to the choice
of a model transformation) and the choice of the uncertainty
set which covers the delay operator.

Another very popular approach relies on the use of a
Lyapunov-Krasovskii functional. Indeed, for a linear time
delay system, some general functional can be found [9] but
is very difficult to handle. That is the reason why more simple
and thus more conservative Lyapunov-Krasovskii functional
have been proposed. Generally, all these approach have to
tackle with two main difficulties. The first one is the choice
of the model transformation. The second problem lies on the
bound of some cross terms which appear in the derivative
of the Lyapunov functional. The present paper brings a
contribution to the first issue using an augmented model of
time-varying delay systems. This method is closely related
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to the technique proposed by [3] in a robustness framework.
In this latter paper, an extended state variable is constructed
to deal with the stability of a linear uncertain system. This
modelling allows then to develop a parameter-dependent
Lyapunov function. For time delay systems, it was shown
that introducing redundant differential equations shifted in
time allows to build conditions that improve results (see [1]
for independent of delay criteria and [6] for delay dependent
criteria). In [11], an augmented Lyapunov functional is
proposed and is based on the use of the state variable and
its derivative and shows interesting results especially for
robustness issues. In this paper, using the derivative oper-
ator, a different method is proposed to consider augmented
time-varying delay systems and then to provide new delay
dependent stability criteria.

The paper is organized as follows. In section 2, a first
result is derived from a Lyapunov-Krasovskii functional
developed in [10] for delay dependent stability analysis. This
section aims at exhibiting another formulation of the analysis
problem for time-varying delay systems. Then, in section 3
we expose the two main results of this paper: the use of the
system derivative and an additional term for the Lyapunov-
Krasovskii functional. Finally, the following section 4 is
devoted to a numerical experiment that illustrate the proposed
approach.

Notations: For two symmetric matrices, A and B, A >
(≥) B means that A − B is (semi-) positive definite. AT

denotes the transpose of A. 1n and 0m×n denote respectively
the identity matrix of size n and null matrix of size m× n.
If the context allows it, the dimensions of these matrices
are often omitted. For a given matrix B ∈ Rm×n such that
rank(B) = r, we define B⊥ ∈ Rn×(n−r) the right orthogonal
complement of B by BB⊥ = 0.

II. A FIRST RESULT ON STABILITY

Consider the following linear time delay system:
{

ẋ(t) = Ax(t) + Adx(t− h(t)), ∀t ≥ 0,
x(t) = φ(t), ∀t ∈ [−hm, 0], (1)

where x(t) ∈ Rn is the state vector, A, Ad ∈ Rn×n are known
constant matrices and φ is the initial condition. The delay,
h(t), is assumed to be a time-varying continuous function
that satisfies

0 ≤ h(t) ≤ hm (2)

where hm > 0 may be arbitrarily large if delay independent
conditions are looked for. Furthermore, we also assume that



a bound on the derivative of ḣ(t) is provided :

|ḣ(t)| ≤ d, (3)

The aim of this section is to derive some conditions on hm,
the upperbound which ensure the stability of (1) for a given
value d by using a Lyapunov-Krasovskii framework. The
next theorem gives the following delay dependent result for
system (1).

Theorem 1 Given scalars hm > 0 and d ≥ 0, system
(1) is asymptotically stable for any time-varying delay h(t)
satisfying (2) and (3) if there exists n × n matrices P > 0,
Qi > 0, i = {1, 2} and R > 0 such that the following LMI
holds:

S⊥
T

ΓS⊥ < 0 (4)

where
S =

[ −1 A Ad 0
]

and (5)

Γ =




hmR P 0 0

P T 1
hm

R 0

0 1
hm

R U 1
hm

R

0 0 1
hm

R V




. (6)

with
T = Q1 + Q2 − 1

hm
R,

U = −(1− d)Q1 − 2
hm

R,

V = − 1
hm

R−Q2.

S⊥ is an right orthogonal complement of S.

Proof: Define the following Lyapunov-Krasovskii func-
tional candidate:

V (xt) = xT
t (0)Pxt(0) +

0∫
−h(t)

xT
t (θ)Q1xt(θ)dθ

+
0∫

−hm

xT
t (θ)Q2xt(θ)dθ

+
t∫

t−hm

t∫
θ

ẋT (s)Rẋ(s)dsdθ

(7)

Remark that since P , Q1, Q2, R are positive definite, we
can conclude that for some ε > 0, the Lyapunov-Krasovskii
functional condition V (xt) ≥ ε

∥∥xt(0)
∥∥ is satisfied [9]. The

derivative along the trajectories of (1) leads to

V̇ (xt) = 2xT (t)Pẋ(t) + xT (t)Q1x(t)

−(1− ḣ(t))xT (t− h(t))Q1x(t− h(t))

+xT (t)Q2x(t)− xT (t− hm)Q2x(t− hm)

+hmẋT (t)Rẋ(t)−
t∫

t−hm

ẋT (θ)Rẋ(θ)dθ.

(8)
As noted in [10], the derivative of∫ t

t−hm

∫ t

θ
ẋT (s)Rẋ(s)dsdθ is often estimated as

hmẋT (t)Rẋ(t) − ∫ t

t−h(t)
ẋT (θ)Rẋ(θ)dθ and the term

− ∫ t−h(t)

t−hm
ẋT (θ)Rẋ(θ)dθ is ignored, which may lead to

considerable conservatism. Hence, the last term of (8) can
be separated in two parts:

−
t∫

t−hm

ẋT (θ)Rẋ(θ)dθ = −
t−h(t)∫
t−hm

ẋT (θ)Rẋ(θ)dθ

−
t∫

t−h(t)

ẋT (θ)Rẋ(θ)dθ.

(9)
Using the Jensen’s inequality [9], (9) can be bounded as

follow:

−
t−h(t)∫
t−hm

ẋT (θ)Rẋ(θ)dθ −
t∫

t−h(t)

ẋT (θ)Rẋ(θ)dθ

< −vT (t) R
hm−h(t)v(t)− wT (t) R

h(t)w(t)

< −vT (t) R
hm

v(t)− wT (t) R
hm

w(t)

with
v(t) = x(t− h(t))− x(t− hm),
w(t) = x(t)− x(t− h(t)).

Therefore, we get V̇ (xt) < ξT (t)Γξ(t) with Γ defined as
(6) and

ξ(t) =




ẋ(t)
x(t)

x(t− h(t))
x(t− hm)


 . (10)

Furthermore, using the extended variable ξ(t), system
(1) can be rewritten as Sξ = 0 with S defined as (5). The
original system (1) is asymptotically stable if for all ξ such
that Sξ = 0, the inequality ξT Γξ < 0 holds. Using Finsler
lemma [19], this is equivalent to S⊥

T

ΓS⊥ < 0, where S⊥

is a right orthogonal complement of S, which concludes the
proof.

Note that Condition (4) can be rewritten as



AT P + PA + Q1 + Q2 PAd 0
AT

d P −(1− d)Q1 0
0 0 −Q2




− 1
hm



−1 0
1 −1
0 1




[
R 0
0 R

] 

−1 0
1 −1
0 1




T

+hm




AT

AT
d

0


 R




AT

AT
d

0




T

< 0.

(11)
Thus, according to this latter expression, we can conclude
that if the LMI (11) is feasible for a given hm > 0, then
it is feasible also for all delays less than the prescribed
upperbound hm.

Remark 1 Instead of using an orthogonal complement of
S, Finsler lemma also states that condition S⊥

T

ΓS⊥ < 0
is equivalent to the existence of some X ∈ R4n×n such
that the LMI Γ + XS + ST XT < 0 holds. Creating such



additional variable X is useless for the considered case:
it only increases the number of variables and constraints
in the LMI problem without reducing conservatism of the
approach. But as demonstrated in [15], [6] and many others,
such additional “slack variables”are of major interest for
robust analysis purpose.

Remark 2 Note that delay-dependent results for fast vary-
ing delay (i.e. proving stability whatever the positive bound
d) are a special case of the theorem 1. Fixing Q1 = 0
renders the conditions independent on d and therefore gives
conditions for possibly fast varying delays.

III. MAIN RESULTS

A. An augmented state for modelling the delayed systems

As it has been noted, Theorem 1 is not a new result
but a new formulation of existing equivalent results with
fewer decision variables. Here, we aim at developing further
the methodology used in the previous section to derive less
conservative results. The key idea is that since the delay-
dependent criterion proposed depends also on the derivative
of the delay, we should highlight the relation between ḣ(t)
and states variables. One way is to consider an extended state
z = [xT ẋT ]T as it has been proposed in [3] in a robustness
context.

Differentiating the system (1), we get:

ẍ(t) = Aẋ(t) + (1− ḣ(t))Adẋ(t− h(t)). (12)

Introducing derivative of system (1) should provide more
information on the system and hence improve results. Con-
sider the artificially augmented system

{
ẋ(t) = Ax(t) + Adx(t− h(t))
ẍ(t) = Aẋ(t) + (1− ḣ(t))Adẋ(t− h(t))

(13)

with accordingly defined initial conditions. Introducing the
augmented state

z(t) =
[

x(t)
ẋ(t)

]
(14)

and specifying the relationship between the two components
of z(t) with the equality [1 0]ż(t)= [0 1]z(t), we have the
new augmented system

Eż(t) = Āz(t) + Ādz(t− h(t)), (15)

where

E =




1 0
0 1
1 0


 , Ā =




A 0
0 A
0 1


 ,

Ād =




Ad 0

0 (1− ḣ(t))Ad

0 0


 .

(16)

Finally, we obtain a descriptor linear time delay and
time varying system, which may be more difficult to handle.
Applying methodology developped in Section II to (15), the
stability would be guaranteed only for a fixed ḣ(t) since this
term appears in Ād. A common idea consists in embedding

the time varying parameters h and ḣ into an uncertain
set, described by a polytopic set and employing quadratic
stability framework (see [2] and [9]).

Theorem 2 Define matrices A, B and Θ2 as (25) and (26).
Given scalars hm > 0 and d ≥ 0, the linear system
(1) is asymptotically stable for any time-varying delay h(t)
satisfying (2) and (3) if there exists 2n×2n matrices P > 0,
Qj > 0, j = {1, 2} and R > 0 such that the following LMI
holds for i = {1, 2}:


 A(i) − 1

hm
B Θ(i)T

2 R

RΘ(i)
2 − 1

hm
R


 < 0 (17)

where A(i) (Θ(i)
2 ) for i = 1, 2 are the two vertices of A(ḣ) ∈

R5n×5n (Θ2(ḣ) ∈ R2n×5n respectively), replacing the term
ḣ(t) by di. di, i = {1, 2} corresponding to the bounds of
ḣ(t): d1 = d and d2 = −d.

Proof: We now consider the following Lyapunov-
Krasovskii functional associated with the augmented state
vector z(t):

V (zt) = zT
t (0)Pzt(0) +

0∫
−h(t)

zT
t (θ)Q1zt(θ)dθ

+
0∫

−hm

zT
t (θ)Q2zt(θ)dθ

+
t∫

t−hm

t∫
θ

żT (s)Rż(s)dsdθ.

(18)

Using the same idea developed in the proof of Theorem
1, the derivative of (18) is such that V̇ (zt) ≤ ψ(t)T Γ(ḣ)ψ(t)
where

ψ(t) =




ż(t)
z(t)

z(t− h(t))
z(t− hm)


 , (19)

Γ(ḣ) =




hmR P 0 0

P T 1
hm

R 0

0 1
hm

R U 1
hm

R

0 0 1
hm

R V




(20)

with
T = Q1 + Q2 − 1

hm
R,

U = −(1− ḣ(t))Q1 − 2
hm

R,

V = − 1
hm

R−Q2.

So, the system (15) is asymptotically stable if for all ψ
such that S(ḣ)ψ = 0 with

S(ḣ) =
[ −E Ā Ād 0

]
, (21)

the inequality ψ(t)T Γ(ḣ)ψ(t) < 0 holds. Using Finsler
lemma [19], this is equivalent to

S⊥
T

(ḣ)Γ(ḣ)S⊥(ḣ) < 0 (22)



where S⊥(ḣ) is a right orthogonal complement of S(ḣ) given
by

S⊥(ḣ) =




A Ad 0 0 0

AA AAd (1− ḣ)Ad 0 0
1 0 0 0 0
A Ad 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




. (23)

Carrying out algebraic calculus of (22) with (23), condition
(24) is derived:

A(ḣ)− 1
hm

B + hmΘT
2 (ḣ)RΘ2(ḣ) < 0 (24)

where

A(ḣ) = ΘT
1 PΘ2(ḣ) + ΘT

2 (ḣ)PΘ1

+ ΘT
3

[
Q1 0

0 −(1− ḣ)Q1

]
Θ3

+ ΘT
4

[
Q2 0
0 −Q2

]
Θ4,

B = ΘT
5

[
R 0
0 R

]
Θ5.

(25)

and

Θ1 =
[

1 0 0 0 0
A Ad 0 0 0

]
,

Θ2(ḣ) =
[

A Ad 0 0 0

A2 AAd (1− ḣ)Ad 0 0

]
,

Θ3 =




1 0 0 0 0
A Ad 0 0 0
0 1 0 0 0
0 0 1 0 0


 ,

Θ4 =




1 0 0 0 0
A Ad 0 0 0
0 0 0 1 0
0 0 0 0 1


 ,

Θ5 =




0 1 0 −1 0
0 0 1 0 −1
1 −1 0 0 0
A Ad −1 0 0


 .

(26)

Since matrix R is positive definite and using schur
complement, condition (24) is equivalent to

[
A(ḣ)− 1

hm
B ΘT

2 (ḣ)R
RΘ2(ḣ) − 1

hm
R

]
< 0 (27)

At this stage, assume that ḣ(t) is not precisely known
but varies between a lower and upper bound, ḣ(t) ∈ [d1, d2].
Since this uncertain parameter appears linearly in (27), the
uncertain set can be described by a polytope [9]. The vertices
of this set can be calculated by setting the parameter to

either lower or upper limit. The inequality (27) can then be
rewritten as follow:


∑2

i=1 αiA(i) − 1
hm
B ∑2

i=1 αiΘ
(i)T

2 R

R
∑2

i=1 αiΘ
(i)
2 − 1

hm
R


 < 0 (28)

where αi(t) ∈ [0, 1],
∑2

i=1 αi(t) = 1 and A(i) (Θ(i)
2 ), i =

1, 2 are the two vertices of the uncertain matrix A(ḣ) (Θ2(ḣ)
respectively) for ḣ(t) ∈ [d1, d2]. Considering the quadratic
stability framework [2], condition (28) is equivalent to

[
A(i) − 1

hm
B Θ(i)T

2 R
RΘ(i)

2 − 1
hm

R

]
< 0, i = 1, 2. (29)

Thus, the inequality (27) has to be verified only on
its vertices (29). Finally, the asymptotic stability of system
(15) is guaranteed if the two LMI (29) are feasible at
the same time. For any initial conditions, the whole state
z(t) converges asymptotically to zero. Its components x(t)
converge as well. The original system (1) is asymptotically
stable.

Remark 3 In the same way that in Section II for Theorem
1, if condition (24) holds for hm then it still holds for h(t) ≤
hm.

B. A new Lyapunov functional

The proposed new functional is based on the extension of
a classical Lyapunov-Krasovskii functional (7). In order to
take into account the variable ẍ(t), let introduce a new term
for the Lyapunov-Krasovskii functional.

V (zt) = zT
t (0)Pzt(0) +

0∫
−h(t)

zT
t (θ)Qzt(θ)dθ

+
t∫

t−hm

t∫
θ

żT (s)Rż(s)dsdθ +
t∫

t−hm

t∫
s

t∫
u

ẍT (θ)Wẍ(θ)dθduds

(30)
Then, we can propose the following result.

Theorem 3 Given scalars hm > 0, d ≥ 0, the linear system
(1) is asymptotically stable for any time-varying delay h(t)
satisfying (2) and (3) if there exists 2n×2n matrices P > 0,
Q > 0, R > 0, a n × n matrix W > 0 and a matrix X ∈
R7n×4n such that the following LMI holds for i = {1, 2, 3, 4}:




Γ ET Θ
(i)T

3 R ET Θ
(i)T

3 ET
2 W

RΘ
(i)
3 E − 1

hm
R 0

WE2Θ
(i)
3 E 0 − 2

h2
m

W


 < 0

Γ = A(i) + XS(i) + S(i)T

XT

(31)

where A(i), Θ(i)
3 and S(i) for i = 1, 2, 3, 4 are the vertices of

matrices A(h, ḣ) ∈ R7n×7n, Θ3(ḣ) ∈ R2n×2n and S(h, ḣ) ∈
R4n×7n respectively, replacing the terms h by 0 and hm and
ḣ(t) by d and −d. A, S, E and Θ3 are defined as (38) and
(39) and (41).

Proof: First, let define the two matrices E1 = [1n 0n]
and E2 = [0n 1n]. Consider the Lyapunov-Krasovskii



functional (30). Let us derive this quantity:

V̇ ≤ 2żT (t)Pz(t) + zT (t)Qz(t)

−(1− ḣ(t))zT (t− h(t))Qz(t− h(t))

+hmżT (t)QRż(t)

−[z(t)− z(t− h(t))]T R
h(t) [z(t)− z(t− h(t))]

+h2
m

2 żT ET
2 WE2ż

−[h(t)E1ż(t)− E1(z(t)− z(t− h(t)))]T W
h2(t)/2

[h(t)E1ż(t)− E1(z(t)− z(t− h(t)))].
(32)

The last term of the inequality is not linear with respect
to h(t). Introducing the following signals

δ1(t) =
z(t)− δ0

h(t)
and δ2(t) = ż(t)− δ1. (33)

allow to transform the right hand side of (32) into

V̇ ≤ 2żT (t)Pz(t) + zT (t)Qz(t)

−(1− ḣ(t))zT (t− h(t))T Qz(t− h(t))

+hmżT (t)Rż(t)− h(t)δT
1 (t)Rδ1(t)

+h2
m

2 żT ET
2 WE2ż − 2δT

2 (t)ET
1 Q2E1δ2(t)

(34)

Defining two extended vectors:

ξ(t) =




z(t)
ż(t)

z(t− h(t))
δ1(t)
δ2(t)




and ψ(t) =




x(t)
z(t− h(t))

δ1(t)
δ2(t)


 .

(35)
In equation (34) can be expressed as

V̇ ≤ ξT




Q P 0 0 0
P T 0 0 0

0 0 −(1− ḣ)Q 0 0
0 0 0 −hR 0
0 0 0 0 −2ET

1 WE1




ξ.

(36)
with T = hmR+ h2

m

2 ET
2 WE2. Then, specifying expressions

of signals ẋ and ẍ the following inequality is deduced.

V̇ ≤ ψT (t)NT MNψ(t) (37)

where M is the matrix of the inequality (36) and

N =




Θ1 02n 02n 02n×n

Θ2 Θ3(ḣ) 02n 02n×n

02n×n 12n 02 02n

02n×n 02n 12 02n

02n×n 02n 02 12n


 ,

with

Θ1 =
[

1 0
A Ad

]
, Θ2 =

[
A Ad

A2 AAd

]
,

Θ3(ḣ) =
[

0 0

(1− ḣ)Ad 0

]
.

(38)

So, we get the inequality (37) under the constraint Sψ = 0
with

S(h, ḣ) =




1 −1 0 −h1 0 0 0
A Ad −1 0 −h1 0 0
A Ad 0 −1 0 −1 0

A2 AAd (1− ḣ)Ad 0 −1 0 −1


 .

(39)
Using Finsler’s lemma [19], equation (37) is equivalent

to the following

V̇ ≤ψT (t)
[
A(h, ḣ) + XS(h, ḣ) + ST (h, ḣ)XT

+ ET ΘT
3 (ḣ)TΘ3(ḣ)E

]
ψ(t)

(40)

with

A(h, ḣ) =NT MN − ET ΘT
3 (ḣ)TΘ3(ḣ)E

E =
[

02n 12n 02n 0n×2n

]

X ∈R7n×4n is a decision variable.

(41)

Then, applying twice the Schur’s complement, expression
(31) of Theorem 3 is obtained. Since h and ḣ appear linearly
in (31) and using similar arguments as in the proof of
Theorem 2, if the condition (31) is satisfied then the system
(15) is asymptotically stable. As previously, since the whole
state z converges asymptotically to zero, its first component
x converges as well.

IV. NUMERICAL EXAMPLE

Consider the following system,

ẋ(t) =
[ −2 0

0 −0.9

]
x(t) +

[ −1 0
−1 −1

]
x(t− h(t)).

(42)
For this academic example, many results were obtained

in the literature. For various d, the maximal allowable delay,
hm, is computed. To demonstrate the effectiveness of our
criterion, results are compared against those obtained in [4],
[5], [20], [10], [11] and [12]. All these papers, except the last
one, use the Lyapunov theory in order to derive some stability
analysis criteria for time delay systems. In [12], the stability
problem is solved by a classical robust control approach: the
IQC framework. The results are shown in Table I.

The numerical experiments show that Theorem 1 gives
similar results to [10]. That seems logical since the same
Lyapunov functional is used. Results for d ≥ 1 and ∀d are
computed with Theorem 1 and choosing Q1 = 0 in (6). [5]
gives a rate-independent criterion which may be interesting
(in certain cases as in example (42)) when d is unknown. On
the other hand, as no informations are taken into account
about ḣ(t), this could be conservative especially for small
delay variations.

Then, considering the augmented system (15) composed
by the original system (1) and its derivative, Theorem
2 improves the maximal allowable delays. Indeed, using
the same Lyapunov-Krasovskii functional, conservatism is
reduced thanks to the derivation of (1). As expected, this
operation provides more information on the system and thus
improves the stability analysis criterion.



TABLE I
THE MAXIMAL ALLOWABLE DELAYS hm FOR SYSTEM (42)

d 0 0.1 0.2 0.5 0.8 1 1.1 1.2 1.3 ∀d
Fridman et al (2002) [4] 4.472 3.604 3.033 2.008 1.364 0.999 0.999 0.999 0.999 0.999

Fridman et al (2006) [5] 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632

Wu et al (2004) [20] 4.472 3.604 3.033 2.008 1.364 - - - - -

Kao et al (2005) [12] 4.472 3.604 3.033 2.008 1.364 0.999 - - - -

He et al (2007) [10] 4.472 3.605 3.039 2.043 1.492 1.345 1.345 1.345 1.345 1.345

He et al (2007) [11] 4.472 3.605 3.039 2.043 1.492 1.345 1.345 1.345 1.345 1.345

Theorem 1 4.472 3.605 3.039 2.043 1.590 1.345 1.345 1.345 1.345 1.345

Theorem 2 4.472 3.670 3.209 2.514 2.181 2.034 1.728 1.502 1.377 -

Theorem 3 5,120 4,081 3,448 2,528 2,152 1,991 1,575 1,271 1,108 -

Furthermore, Theorem 3 which consider an additional
term (30) improves again the upperbound. This result sug-
gests that the new proposed Lyapunov-Krasovskii functional
(30) is suitable for time varying delay system stability
analysis, reducing conservatism. However, in example (42)
for |ḣ| ≥ 0.8, Theorem 2 provides slightly better results than
Theorem 3. Nevertheless, this difference could be compen-
sate by adding to the functional (30) the term

∫ t

t−hm
zT Q2z

and applying the separation of the integral in the third term
as (9).

V. CONCLUSION

In this paper, the problem of the delay dependent stability
analysis of a time varying delay system has been studied
by means of a new Lyapunov-Krasovskii functional. The
first criterion is based on an existing Lyapunov-Krasovskii
functional [10] (see Theorem 1). Based on this first result,
and using an augmented state, new types of Lyapunov-
Krasovskii functional are introduced which emphasizes the
relation between ḣ and signals ẋ and ẍ. The resulting
criteria are then expressed in terms of a convex optimization
problem with LMI constraints, allowing for the use of effi-
cient solvers. Finally, a numerical example shows that these
methods reduced conservatism and improved the maximal
allowable delay.
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