Mobile Systems from a Validation Perspective: a Case Study

Hélene Waeselynck*, Zoltan Micskei®, Minh Duc Nguyen*, Nicolas Riviere*

*IAAS-CNRS
7 avenue Colonel Roche
31077 Toulouse, France

° Budapest University of Technology and
Economics, Muegyetem rkp. 3, 1111
Budapest, Hungary

waeselyn@laas.fr, micskeiz@mit.bme.hu, mdnguyen@laas.fr, nriviere@laas.fr

Abstract

Advances in wireless networking have yielded the
development of mobile applications. However, sound
technology to specify, design and validate such
applications is still to be investigated. In order to
exemplify some of the challenges that are raised, this
paper reports on a case study: a group membership
protocol for ad hoc networks. The protocol has been
analyzed by reviewing the specification and the code,
and then by testing the implementation. The outcomes
provides us with hints for research direction.

1. Introduction

Advances in wireless networking technology have
yielded the emergence of the mobile computing
paradigm. Mobile computing calls for the use of
devices (handset, PDA, laptop...) that move within
some physical areas, while being connected to
networks by means of wireless links (Blue-tooth, IEEE
802.11, GPRS...). Mobile-based applications and
services may involve device-to-device or device-to-
infrastructure communication. They have to be aware
of, and adapt to, contextual changes.

A substantial amount of research is devoted to the
development of this recent technology, but correctness
issues have been paid insufficient attention so far.
There is an urgent need for proper methods to specify,
design, and validate mobile computing systems.

To support this claim, this paper reports on a case
study. We analyzed a Group Membership Protocol
(GMP) for ad hoc networks [1], found in the literature
on middleware for mobility. It is worth noting that the
authors address a very important problem. A GMP is a
fundamental service lying at the heart of distributed,
fault-tolerant systems. Its aim is to maintain a
consistent view of who is in the group, in spite of the
faults that may affect some nodes (faulty nodes are
excluded from the group). The problem has been

extensively studied for traditional distributed systems,
but needs to be revisited to account for mobile
settings. In [1], the authors proposed a location-aware
protocol that accommodates the disconnections induced
by mobility. An open-source implementation of the
protocol is given in the LIME middleware [2].
Our analysis of the GMP involved several steps:
* informal review of the paper specification,
* reverse engineering of the source code to produce
UML models and analyze the design,
* preliminary test experiments according to a crude
strategy (nodes move at random).

They showed that several requirements are violated
by the implementation. But the aim was not so much
to reveal flaws in a research prototype given as a proof-
of-concept illustration. Rather, it was to tackle a non-
trivial example of mobile-based service, and to gain
concrete insights into the related validation issues. We
experienced that the consideration for mobility may
yield complex behavior patterns, making rigorous
V&V methods a major concern. The case study
exemplifies some of the challenges to be addressed,
and provides us with hints for research direction.

Section 2 of the paper introduces the studied GMP.
Sections 3 to 5 reports on the correctness issues raised
at each step of the study (review of the specification, of
the design, and testing). Section 6 discusses related
work. Section 7 concludes on research perspectives.

2. Overview of the Case Study Protocol

The functionality of the protocol is divided into two
parts: (i) group discovery manages the discovery and
reporting of newly arrived hosts, (ii) group
reconfiguration performs the merging and splitting of
groups when needed. Every group has one leader. The
group is uniquely identified by the leader’s id and a
group change sequence number, which is increased after
each group change operation.

To account for the mobile settings, the novelty of
this GMP is the safe distance concept. If two nodes are
within this distance, the protocol guarantees that,
regardless of their moving pattern, they can finish the
task in progress. The leader of each group monitors the
location of the members. It splits the group if they
start to move away too far from each other, thus
preventing unannounced changes. Before the merging
of groups, the safe distance criterion is also checked.

Since the focus 1is on mobility-induced
disconnections, other classes of threats are explicitly
excluded from consideration. It is assumed that the
communication service is reliable and that the message
delivery time has an upper bound t4. There are no host
crashes, nor omission and performance failures caused
by network congestion. The membership service is
then characterized with the properties presented in
Table 1 (see Section 2.1 in [1] for a more precise
definition of the properties).

3. Review of the Specification

Specification reviews typically aim at revealing
inconsistencies, omissions, or ambiguities in the
specification. In our case, the specification document is
the material published in [1]. It contains a textual
description of the GMP in natural language, and a
more precise description under the form of pseudo-
code. We now present the issues that were raised
during the review.

3.1. General Properties

The definition of the eight properties of the GMP
was carefully reviewed.

It was noticed that the definition of Same View
Message Delivery only implies that the two nodes
should have the same member list. It does not require
that the group identifiers should be same. For example,
a split and a merge could occur between the sending
and receiving of the message.

The formulation of two properties, Conditional
Eventual Integration and Conditional Group Split,
was found inadequate from a verification perspective.
For example, in the definition of Conditional Eventual
Integration, the constant for how long the merging
criterion shall be satisfied is not constructively defined.
This makes the verification of the protocol with respect
to this property not feasible. Also, the requirement
does not explicitly specify the case when more than
two groups are involved in a merging. Similarly,
conformance to Conditional Eventual Integration
cannot be practically verified.

It is worth noting that the formal specification of
such properties would be specifically challenging. Both
the merge and split criteria involve some spatio-
temporal relationships between the mobile nodes. How
to determine the right abstractions for them, and which
specification formalism to choose, are open problems.

3.2. Safe Distance Calculation

The key concept of safe distance is also quite
challenging. Intuitively, worst-case scenarios involve
the joint consideration of both the movement of nodes
and the distributed execution of group-level operations.
Two definitions are given for safe distance in [1],
respectively in Sections 3 and 5. They are reproduced
below. The left one is the general definition of an
abstract threshold 7. The right one refines the general
definition to account for the detailed GMP
specification, yielding a value d..

r <R - 2v(t + t’) de = R — 2Vpax (tu + 7tq)

R: range of communication
t: time of application level task
t’: time for a group operation

V, Vimax: maximum speed
t,: location report period
ty: maximum network latency

It is not clear how the two formulas could be
mapped. It seems to us, that the calculated result t, +
7t4, which comes from the time needed for a split (2tq)
taken into account the uncertainty of nodes (t,+ts) and
that a merge could be in progress which cannot be

Table 1. General properties of the protocol

Property

INFORMAL DEFINITION

Self inclusion

Local monotonicity

Membership agreement

Initial membership view
Membership change justification

Same view message delivery

Conditional eventual integration
Conditional group split

A node is always a part of its membership view.

Group identifiers installed on each node are in increasing order.

If two nodes have the same group id, then they have the same membership view.

A node always installs itself as the only member in its view when it starts.

The successor of group g w.r.t p is either a proper superset or a proper subset of the group g.

If node p sends a message m,, to node g at time ¢, and ¢ is in mem(p,), then m,, is guaranteed to be
delivered to ¢ at time ¢, and mem(q, ¢y) = mem(p, ?)."

If two groups satisfy the merging criteria and do so for long enough, they will merge into one group.
A group splits only if it is necessary.

: mem(p, ¢) yields p’s local view of the membership at time ¢.

aborted (4ty), is only ¢’ from the left formula, and the ¢
part is missing.

The definition and calculation of t; are also
ambiguous. In Section 1 of the paper, parameter tq is
referred as the network delay, while in Section 5 it is
defined as the network plus queuing delay. However,
calculating the maximum queuing delay in the protocol
can be problematic, because messages can block each
other. For example, if a merge is in progress after the
group change notification is received, the processing of
messages is blocked.

As can be seen, the calculation of the safe distance is
a very complex problem and probably needs more
attention.

3.3. Definition of the Control Flow

The pseudo-code description is very useful to
understand the functions of the protocol. However, the
flow of control is missing. It is not stated whether the
functions may be executed in parallel, and how they
may interrupt each other. For example, can a location
update be processed during a merge?

It is even more problematic that the atomicity of the
group change operations is not clearly stated. It is
hinted, but it does not appear in the formal description,
e.g. like a precondition for split saying that a merge
cannot be in progress. This endangers the whole
protocol, as such situations could lead to the violation
of the properties.

3.4. Flush messages

One mechanism intended to make the operations
globally atomic is the including of flush messages, i.e.
each group change operation is closed by sending to
peers a message indicating that this is the last message
from the old membership configuration.

The definition of flushing was found incomplete
during the review. For example, it is not specified
whether the control and hello messages should be
blocked during the flushing phase (probably yes).

Messages that arrive after sending the flush
messages are blocked until all other flush messages
arrive. If a hello message is blocked, then the
uncertainty of the location of a node grows even with
one tg, which was probably not taken into account in
the safe distance calculation. We are back to the
problem of the identification of worst-case scenarios
combining mobility patterns with distributed execution
schemes.

4. Review of the implementation

The analysis of the specification was followed by
reviewing the code of the implementation. This was
performed with the double aim of (1) studying
conformance with respect to the detailed specification
(here, the pseudo-code description), and (2) looking for
classical implementation flaws (e.g., thread
synchronization problems).

The implementation is not just a small example
program: it consists of 4 KLOC of Java code, contains
22 Java classes and after all the components are started
there are 6 concurrent threads. Thus, a UML model was
created to ease the understanding of the architecture and
the behavior of the implementation.

To obtain the static structure, the Java code was
reverse engineered into UML class diagrams. This
helped us to identify which entities store which part of
the state data. To capture the dynamic behavior,
sequence diagrams were created for the important
scenarios. It helped us to analyze how the
implementation works actually, what kind of messages
are exchanged during the group change operations. The
review of the model revealed the following issues.

4.1. The code differs from the specification

It turned out that the Java code is not the
implementation of the pseudo-code included in the
specification. We tried to map the message types and
the pseudo code functions in the paper to the message
classes and Java functions of the implementation, but
in most cases without success. The most significant
differences in the two protocols are the following.

In the specification, the group members
automatically report new nodes to the leader, and the
leader stores every member’s location and decides
whether the new node is in safe distance. The
implementation uses a decentralized approach. Each
node monitors the location of its neighbors.
Connectivity changes (as opposed to precise location
information) are reported to the leader only if needed.

The specification uses a two-phase commit protocol
to perform a merge, with a request-acknowledge-
commit sequence. In the implementation the changes
are performed without the request and commit phases.
After asking about the old membership view, the new
leader just notifies the members about the new one.

There are also two important features that are not
included in the implementation, the sequence numbers
(to implement group ids) and the flush messages (to
close group change operations).

A more detailed presentation of the differences can
be found in [3]. Taking into consideration all of them,

we came to the conclusion that although the two GMP
versions are based on the same concept and are
characterized by the same properties, they shall be
treated as two different protocols. A consequence is
that, in our test experiments (Section 5), the pseudo-
code description cannot be used as a reference for oracle
checks. Pass or Fail verdicts will only be established
with respect to the high-level properties in Table 1.

4.2. Atomicity in group change operations

As said before, there are no flush messages in the
implementation. In Section 4 of [1], the authors
explain that their implementation separates the
application messages and the GMP messages, sent on a
different channel. The implementation of mechanisms
to guarantee atomicity (e.g. flush or timeout) is then
left to each application. In our opinion, the problem
cannot be delegated to the application because atomic
group changes must be controlled at the level of the
GMP package.

The local atomicity of the split is guaranteed in the
implementation by blocking the message processing
thread with built-in Java synchronization mechanisms
during the coordination of a split. For a merge,
however, this processing thread is not blocked.

Finally, the fact that changes are performed without
request and commit phases is potentially dangerous.
The nodes always accept new configurations sent by
anyone (not just their current leader).

4.3. Scenarios violating the properties

During the review, two scenarios were identified as
potentially violating the properties of the protocol. The
first one is caused by the atomicity problems
mentioned above; the second one is related to global
ordering of messages.

Scenario 1: A split can interleave with merge and
thus create an inconsistent group view (Fig. 1).

Here Nodes 1 and 2 are part of a group led by Node
2, while Node 3 is a leader of another group. Node 2
detects that 3 is in safe distance and queries its leader.
It detects that the other one should lead the merge
(because its id is higher), so it sends its member list
and connectivity information in an SPGrouplnfo
message. However, before the SPGroupChange
containing the new membership view arrives from
Node 3, Node 2 detects a departure from its old group,
thus performs the split. By the time the
SPGroupChange from Node 3 arrives, it contains also
the nodes that departed meantime. Thus the scenario
results in an inconsistent group view and violates the
safe distance concept.

1: SPGetLeader

1.1: SPLeaderAddress
1.1.1: SPGroupinfo

21 SPConnectionChanges
2.1; partitionGroups

2.2 SPGroupChanges

3 SPGroupChange

Figure 1. Split interleaving with a merge. Message
SPGroupChange contains the new membership view.

3: 2: 1:

1:epli (3,2,1)

Titesplt (2,1)

2:splt (2,1)
3: split (1)

1.1: spit (2,1)

Figure 2. Accepting future messages. Labels split(new
members) denote SPGroupChange messages.

Scenario 2: Processing of future messages could
violate the same view delivery property (Fig. 2).

In this scenario Nodes 3, 2 and 1 are in one group at
the beginning, 3 is the leader. Node 3 detects that it
will be separated from 2 and 1, so performs a split, and
sends the new group to 2 and 1. But due to network
latency, 1 receives far later the message than 2. In the
meantime, 2 (who is the leader of the new group),
detects also that it will be separated from 1, performs a
split, and informs 1 about the group change. Node 1
processes 2’s message before 3’s, so upon receiving
both messages, it thinks it is still in the (2,1) group.
The problem is that there is no blocking until all
members apply the group change. Future messages can
be processed before completion of the current change.

As can be seen, reviews can be effective to reveal
design flaws and problematic scenarios. The UML
models proved a useful support for the analysis. They
allowed us to gain deep insight into the code executed
by each node. However, reasoning about the global
behavior of several moving nodes remained difficult.

5. Testing the GMP

Testing is performed against the high-level
requirements of the GMP. Since two of the required
properties (Conditional Bounded Integration,
Conditional Group Split) are lacking a precise
definition, they are not retained for testing. Two others
(Local Monotonicity, Membership Agreement) depend
on the availability of group identifiers, which is an
unimplemented feature. We then slightly modified the
source code to introduce it in accordance with the paper
specification [1]: each group is identified by a pair
(leader id, group change sequence number). We
describe below the test platform (Section 5.1) and
system parameterization (Section 5.2) used in our
experiments. Test results are presented in Section 5.3.
They are followed by a discussion in Section 5.4.

5.1. Test platform

A test platform is needed to run the GMP on a set
of mobile nodes and observe the results. As a first
step, we decided to simply use the prototyping
facilities offered in the source code distribution.

At the top of the resulting platform (Fig.3), a test
driver creates a random number of nodes. All nodes
physically reside in the same processing unit, and
inter-node communication is made via the wired LAN
(using TCP/IP). In each node, the GMP instance is
connected to two stub components: an application stub
to be notified whenever the group changes, and a
location service stub delivering (xy) coordinates for the
node. The application stub also generates group traffic
at the applicative level. At random instants, it sends its
membership view to all peers currently in the group. A

Single processing unit

creates Driver creates

Bimulated node Simulated node
| Apnlication | | Application |
[[
| F .. | GMIEP

| Location service |

| Location service

Commuication Commuication
layer layer

TCE/IP

Router of LAN

Figure 3. Architecture of the test platform.

receiving application stub may then compare it with its
own view and report inconsistency in a log file. The
log file also contains the group change notifications,
and the dated trace of the messages received or sent by
the GMP instance. After completion of a run, a test
oracle component collects the log files of all nodes for
post-mortem analysis. It implements checks for the
violation of any of the target properties.

5.2. Parameters of system configuration

A number of parameters must be instantiated to
determine the experimental configuration. These
parameters can be classified into two categories:

* Parameters that are dimensioning with respect to
the GMP, like the maximal speed of nodes.

e Parameters that are more related to test strategy,
like the mobility model used to generate (xy)
coordinates for the nodes.

Table 2 provides an overview of the values used in
our experiments. Applying the formula for safe
distance calculation, the valuation of GMP parameters
yields a safe distance of 140 m. As regards the test
parameters, it is worth noting that the GMP behavior
(in terms of split and merge operations) is only
indirectly controlled via the generated node positions.

5.3. Test results

The experiments involved 100 runs, 82 of which
violated at least one property. Violations were for:

* Local properties, Local monotonicity (LM) and
Membership change justification (MCJ).

* Global properties involving several nodes,
Membership Agreement (MA) and Same View
delivery (SVD).

Since each 5 minutes run could actually involve
many violations, it was not possible to analyze all of
them. We extracted a few scenarios from each failing

Table 2. Parameterization of our test experiments

GMP _parameters Value
Transmission range 300 m
Maximal speed 10 m/s
Period for location Is
update

Network latency 1s
Test parameters Value

Number of nodes
Start time of a node
Initial position
Mobility model
Applicative messages

Random in [3,15]

Random in [0, 1000] milliseconds

x,y: random in [-150,150] m

Random movement at maximum speed
Random delay between two messages in
[0,10000] milliseconds

Duration of a run 5 minutes

run, by analyzing the first violation and then by
searching later scenarios violating new properties. A
total amount of 164 scenarios were extracted. As
shown in Table 3, the diagnosed problem is always the
non-atomicity of merge operations. A merge may
interleave with split or with another merge. The
problem may induce a variety of failure patterns,
ranging from violation of any of the LM, MCJ, MA or
SVD property, to multiple violation patterns.

An example of concurrent split and merge with
multiple violations is given in Figure 4. It is a variant
of the scenario found by reviewing the implementation
(Fig. 1). In the original scenario, a group leader
performs a split operation while being explicitly
engaged in a merge operation. In the variant of
Figure 4, the leader performing the split (Node 7) is
totally unaware of the on-going merge, which is
initiated with another member of its group (Node 5).
Let us explain the details of the scenario.

At the beginning, there are two groups: a singleton
with Node 1, and a group with Nodes 2, 3, 4, 5, 6, 7.
The second group is led by Node 7, which is noted 7*.

Node 7 detects that its group configuration is no
longer safe and performs a split into two subgroups:
(2, 5*%) and (3, 4, 6, 7*). Then, it sends a series of
SPGroupChange messages to notify all members about
the split (for the sake of simplicity, Figure 4 only
represents the message to Node 5).

In the meantime, Node 1 discovers Node 5 as a new
neighbor and starts a merge. It adds Node 5 to its
connectivity graph and asks for its leader address
(SPGetLeader). When receiving the query, Node 5 is
still in the old configuration and replies with its leader
address as Node 7 (SPLeaderAddress). Node 1 finds
that it will not be the new leader after the merge. It
sends its connectivity information to Node 7
(SPGrouplnfo). Node 7 must accept the merge, which
is made by adding (1, 5) to its membership view. At
the end of the merge, the group is (1, 3, 4, 5, 6, 7%).
Several problems can be mentioned here:

* Node 5 has been notified two consecutive group
changes: (2, 3,4, 5,6, 7%) — (2, 5*) — (1, 3, 4,
5, 6, 7*). Since the last view is not a superset of
the previous one, MCJ is violated.

Table 3. Analysis of a sample of 164 fail scenarios

Violation Concurrent splits Concurrent
and merges merges
LM violation only 5 38
MCI violation only 10 19
MA violation only 10 0
SVD violation only 18 22
2 properties violated 18 16
3 properties violated 6 2

Total # of scenarios 67 97

1 3

T +@34387
Start merge (2,3,4,5.6,7%
=L Split
SPCroupChange
SPGetLeadet For spliy L aas

BPLeader ddress -

Hot new

leader |- SPCrouplnfo

Merge
T L34567%)

(134567 T
SPOroupChangs

T (L34567%

Figure 4. Split and merge interleaving: MCJ+SVD violation.

* Node 2 still believes that it is in (2, 5¥). An SVD
violation is observed via an applicative message.

* More generally, the fact that Node 5 is re-
integrated in Node 7’s group, while no longer
being at a safe distance, raises the problem of the
protection offered by the safe distance concept.

Many other variants of split and merge interleaving

were observed. In some intriguing cases, we observed a

leader sending a series of inconsistent SPGroupChange

messages. This was related to the multi-threaded

behavior of the leader: it started notification about a

merge, then switched to notification about a split, and

then completed the notification about the merge.
Likewise, concurrent merges generated many
scenario variants.

5.4. Discussion

The test experiments could not produce concrete
instances of the second scenario found by reviewing the
implementation (Fig. 2). This is due to the limitation
of the test platform. It does not offer facilities to
control communication delays. Hence, it was not
possible to trigger the global ordering of messages
yielding the target scenario. This is not satisfactory, as
global ordering problems are expected to frequently
occur in mobile systems. The GMP is intended to
accommodate multi-hop communication (a group is
safe if any two members are connected via a path along
which all consecutive nodes are at a safe distance), and
it seems reasonable to assume that communication
delays may vary depending of the network topology.
This leaves open the possibility for messages to be
received in a different order by the nodes (e.g., in
Figure 2, Node 1 receives the split from Node 3 after
the split from Node 2). Such configurations cannot be
tested in the current platform.

Generally speaking, the platform does not allow us
to control the delivery of messages based on location
information. This is a major limitation with respect to
the safe distance concept. For example, we would like
to observe loss of messages whenever a node moves
out of range of its group without having completed a
split operation. In the platform, there is no global view
of the location of nodes, and no possibility to tune the
communication layer to the current topology. Scenarios
impacting the safe distance concept were identified by
post-mortem analysis (e.g., the scenario in Figure 4
yielding the reintegration of Node 5), but a richer test
platform would be required for further investigation of
the GMP dynamics.

6. Related work

Related work includes work on modelling mobile
systems, on transferring model-based testing
technology to this new application field, and on
developing test platforms for experimental studies.

6.1. Modelling mobile computing systems

The reverse engineering exercise focused on the code
executed by each node. It would have been interesting
to produce models giving a global view of sets of
nodes and their mobile computing environments.

In the recent years several methods were proposed to
model the different aspects of mobile computing,
however, no standard has been published yet. Mobile
agents gained much attention [4], in [5] a UML profile
was defined for global systems, and [6] developed a
new formalism, MobiCharts, for mobile computing
environments. However, all of the above papers focus
more on scenarios, where mobile entities could move
to predefined locations, and not on ad hoc networks.

6.2. Model-based Testing

The contributions on model-based testing mainly
came from the protocol testing community. In this
community, a widely used modelling language is SDL
(Specification and Design Language), and there are
methods to generate test cases from an SDL
specification and a set of test purposes.

In [7], the authors study MIPv6, a protocol enabling
nodes to remain reachable while moving around in the
IPv6 Internet. In [8], the studied protocol is in the ad
hoc domain: the Dynamic Source Routing protocol
(DSR) that allows routes to be discovered and
maintained in multi-hop wireless ad hoc networks.
Both [7] and [8] had to tackle the problem of not
having mobility-related concepts into SDL. They had

to add specific components (one for each node, plus a
centralized controller) to capture the notion of
communication with neighbors. They also had to
choose a baseline configuration for test generation,
e.g., in [8], five nodes connected according to a certain
topology, with one link becoming broken after 15
seconds. Moreover, the test approaches focus on
conformance with respect to the operational behaviour
of the specification (in terms of message emission and
reception). They do not consider declarative properties
like the local and global ones required from the GMP.

6.3. Test platforms

Test platforms must offer facilities to experiment in
mobile settings. The usual approach to simulate
wireless communication (in both infrastructure and ad
hoc modes) is to integrate a network simulator into the
test platform. Such simulators have been originally
developed to support networking research, but they are
now also used to experiment with the applicative level
as well. For example, the ns-2 simulator' is used in [9]
to evaluate a health-monitoring application, and in [10]
to evaluate a car-to-car messaging system. In both
cases, the network simulator is only part of the
complete platform (see Fig. 5), which also includes a
context controller. The context controller is used to
simulate contextual information, like location-based
data. The application exploits contextual information
to take different actions adaptively. Context is also
needed by the network simulator to set up parameters
for imitating the real network characteristics.

As can be seen, technological solutions exist to
build simulated environments for mobile applications
and middleware. The schematic architecture in Figure 5
yields much more complex platforms than the one we
used for first experiments. Such a complexity is
probably needed in many cases, so as to be able to test
relevant behavior patterns (see our previous examples
of untested GMP patterns).

Context

coitroller
Application » Hetwork
execution support [sitnalator

Fig. 5. High-level view of the platforms used by [9, 10]

" hitp://www.isi.edu/nsnam/ns/

7. Conclusion

Our study shows that rigorous software engineering
techniques would have been useful to support the
design of a complex protocol such as the GMP. Many
problems were identified without any preliminary
execution of the code. Analyzing the high-level
requirements from the perspective of verification
yielded the conclusion that some key properties
(conditional bounded integration, conditional group
split) were not practically checkable. The review of the
design (which was made possible by reverse
engineering of the code) showed a lack of traceability
between the specification and the implementation. The
UML models were a useful support to question design
choices. A number of issues were raised, and some
potentially dangerous configurations (e.g., a merge
interrupted by splits) could already be identified. Then,
the test experiments confirmed that the high-level
requirements could be violated by the implementation.
Although a crude strategy was used, it proved effective
to produce many fail scenarios. These concrete
scenarios, some of them depending not only on inter-
node messages but also on how intra-node threads
interleave, would have been difficult to invent based on
an intuitive understanding of the GMP behavior.

A general conclusion is that research on mobile-
based middleware should have greater concern of V&V
issues. Conversely, there is a need for the software
engineering community to address the specificities of
mobile computing, which raises some open problems:

* Adequate specification and design formalisms still
need to be proposed. While classical formalisms
(e.g., UML, SDL) may be sufficient to represent
one node in isolation, system-level behavior and
structure are not easily captured. The formalisms
do not offer concepts to express the spatiotemporal
relationships of nodes as first-class entities. Such
concepts would be useful to describe the joint
behavior of the nodes as well as the dynamic
evolution of the system structure.

* The ability to perform model-based testing
crucially depends on the availability of solutions
to the previous modeling issue. In the GMP
example, we experimented with a crude random
strategy for lack of better guidance. The oracle
checks were implemented based on our
interpretation of the informal high-level
requirements. Clearly, the test selection and test
oracle problems deserve a substantial amount of
work in close connection with work on
specification and design methodologies.

* The implementation of testing also raises the
technological problem of the test platforms to be

settled. Tools exist that were developed mainly for
prototyping and evaluation purposes (like location
generators and network simulators) but that can be
used for verification purposes as well. Then, an
open issue concerns the language to describe
concrete scenarios to be implemented on the
platform, and the relation with more abstract
descriptions at the model level.
We believe that the development of challenging case
studies, such as the GMP in this paper, will play a
crucial role in guiding investigation to these problems.

Acknowledgements — This work was partially
supported by the ReSIST Network of Excellence (IST
026764) and the Hidenets project (IST 26979) funded
by the European Union under the Information Society
Sixth Framework Programme.

References

[1] Q.Huang, C. Julien, and G. Roman, “Relying on Safe
Distance to Achieve Strong Partitionable Group
Membership in Ad Hoc Networks”, IEEE Trans. on
Mobile Computing, 3(2), April 2004, pp. 192-204.

[2] G.P. Picco, A.L. Murphy, and G.C. Roman, “LIME: A
Middleware for Logical and Physical Mobility”, Proc.
21st Int. Conf. Distributed Computing Systems, IEEE
CS Press, USA, July 2001, pp. 524-536.

[3] Z. Micskei et al., “Analysis of a group membership
protocol for Ad-hoc networks”, LAAS Report
no. 06797, France, November 2006.

[4] E. Belloni and C. Marcos, “MAM-UML: An UML
Profile for the Modeling of Mobile-Agent
Applications”, Proc. of the XXIV Int. Conf. of the
Chilean Computer Science Society (SCCC’04), IEEE
CS Press, Chile, November 2004, pp. 3-13.

[5] H. Baumeister et al., “UML for Global Computing”,
Proc. of Global Computing 2003, LNCS 2874,
Springer-Verlag, Italy, February 2003, pp. 1-24.

[6] S. Acharya and R.K. Shyamasundar, “MOBICHARTS:
A Notation to Specify Mobile Computing
Applications”, Proc. of 36th Hawaii Int. Conf. on
System Sciences (HICSS-36), IEEE CS Press, Hawaii,
January 2003, pp 298-308.

[7] F.Ngani Noudem and C. Viho, “Modeling, Verifying
and Testing the Mobility Management in the Mobile
Ipv6 Protocol”, Proc. 8th Int. Conf. on
Telecommunications (ConTEL 2005), Vol.2, IEEE CS
Press, Croatia, June 2005, pp. 619-626.

[8] A. Cavalli ef al., “A validation Model for the DSR
protocol”, Proc 24th Int. Conf. on Distributed
Computing Systems Workshops (ICDCSW’04), IEEE
CS Press, Japan, March 2004, pp.768-773.

[9] R. Morla and N. Davies, “Evaluating a Location-Based
Application: A Hybrid Test and Simulation
Environment”, [EEE Pervasive computing, Vol.3,
No.2, July-September 2004, pp.48-56.

[10]C. Schroth et al., “Simulating the traffic effects of
vehicle-to-vehicle messaging systems”, Proc. 5Sth Int.
Conf. on ITS Telecommunications (ITST 2005),
France, June 2005.

