Trace polynomial optimization with applications in quantum information

Victor Magron, LAAS CNRS

Joint work with Felix Huber, Igor Klep and Jurij Volčič

CWI Workshop on Semidefinite and Polynomial Optimization September 1, 2022

What is noncommutative optimization?

Eigenvalue optimization

Trace optimization

SDP hierarchies

Polynomial Bell inequalities

What is noncommutative optimization?

Eigenvalue optimization

Trace optimization

SDP hierarchies

Polynomial Bell inequalities

What is noncommutative optimization?

Self-adjoint noncommutative variables $x_{i} \in \mathcal{B}(\mathcal{H})$

What is noncommutative optimization?

Self-adjoint noncommutative variables $x_{i} \in \mathcal{B}(\mathcal{H})$

$$
f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{4}-2 x_{4}-x_{5}
$$

What is noncommutative optimization?

Self-adjoint noncommutative variables $x_{i} \in \mathcal{B}(\mathcal{H})$
$f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{4}-2 x_{4}-x_{5}$
with $x_{1} x_{2} \neq x_{2} x_{1}$, involution $\left(x_{1} x_{2}\right)^{\star}=x_{2} x_{1}$

What is noncommutative optimization?

Self-adjoint noncommutative variables $x_{i} \in \mathcal{B}(\mathcal{H})$
$f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{4}-2 x_{4}-x_{5}$
with $x_{1} x_{2} \neq x_{2} x_{1}$, involution $\left(x_{1} x_{2}\right)^{\star}=x_{2} x_{1}$

Constraints

$$
\mathcal{D}_{S}=\left\{x: x_{i}^{2}=x_{i}, x_{i} x_{j}=x_{j} x_{i} \text { if } i \in\{1,2,3\}, j \in\{4,5,6\}\right\}
$$

What is noncommutative optimization?

Self-adjoint noncommutative variables $x_{i} \in \mathcal{B}(\mathcal{H})$
$f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{4}-2 x_{4}-x_{5}$
with $x_{1} x_{2} \neq x_{2} x_{1}$, involution $\left(x_{1} x_{2}\right)^{\star}=x_{2} x_{1}$
Constraints
$\mathcal{D}_{S}=\left\{x: x_{i}^{2}=x_{i}, x_{i} x_{j}=x_{j} x_{i}\right.$ if $\left.i \in\{1,2,3\}, j \in\{4,5,6\}\right\}$
Quadratic module $\mathcal{M}(S)=\left\{\sum_{i} h_{i}^{\star} h_{i}+\sum_{s \in S} \sum_{i} t_{s i}^{\star} \leqslant t_{s i}\right\}$

What is noncommutative optimization?

Self-adjoint noncommutative variables $x_{i} \in \mathcal{B}(\mathcal{H})$
$f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{4}-2 x_{4}-x_{5}$
with $x_{1} x_{2} \neq x_{2} x_{1}$, involution $\left(x_{1} x_{2}\right)^{\star}=x_{2} x_{1}$

Constraints
$\mathcal{D}_{S}=\left\{x: x_{i}^{2}=x_{i}, x_{i} x_{j}=x_{j} x_{i}\right.$ if $\left.i \in\{1,2,3\}, j \in\{4,5,6\}\right\}$
Quadratic module $\mathcal{M}(S)=\left\{\sum_{i} h_{i}^{\star} h_{i}+\sum_{s \in S} \sum_{i} t_{s i}^{\star} s t_{s i}\right\}$
Minimal eigenvalue optimization

$$
\lambda_{\min }=\inf \left\{\langle f(x) \mathbf{v}, \mathbf{v}\rangle: x \in \mathcal{D}_{S},\|\mathbf{v}\|=1\right\}
$$

What is noncommutative optimization?

Self-adjoint noncommutative variables $x_{i} \in \mathcal{B}(\mathcal{H})$
$f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{4}-2 x_{4}-x_{5}$
with $x_{1} x_{2} \neq x_{2} x_{1}$, involution $\left(x_{1} x_{2}\right)^{\star}=x_{2} x_{1}$

Constraints
$\mathcal{D}_{S}=\left\{x: x_{i}^{2}=x_{i}, x_{i} x_{j}=x_{j} x_{i}\right.$ if $\left.i \in\{1,2,3\}, j \in\{4,5,6\}\right\}$
Quadratic module $\mathcal{M}(S)=\left\{\sum_{i} h_{i}^{\star} h_{i}+\sum_{s \in S} \sum_{i} t_{s i}^{\star} s t_{s i}\right\}$
Minimal eigenvalue optimization

$$
\begin{aligned}
& \lambda_{\min }= \inf \left\{\langle f(x) \mathbf{v}, \mathbf{v}\rangle: x \in \mathcal{D}_{S},\|\mathbf{v}\|=1\right\} \\
&= \sup \lambda \\
& \text { s.t. } \quad f(x)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall x \in \mathcal{D}_{S}
\end{aligned}
$$

Trace polynomials

Elements of $\mathbb{T}=\mathrm{T}\langle x\rangle$

Trace polynomials

Elements of $\mathbb{T}=\mathrm{T}\langle x\rangle$
Symmetric nc vars $x=\left(x_{1}, \ldots, x_{n}\right) \&$ sums of trace products T

Trace polynomials

Elements of $\mathbb{T}=\mathbf{T}\langle x\rangle$
Symmetric nc vars $x=\left(x_{1}, \ldots, x_{n}\right)$ \& sums of trace products T

$$
f=x_{1} x_{2} x_{1}^{2}-\operatorname{tr}\left(x_{2}\right) \operatorname{tr}\left(x_{1} x_{2}\right) \operatorname{tr}\left(x_{1}^{2} x_{2}\right) x_{2} x_{1} \in \mathbb{T}
$$

with $x_{1} x_{2} \neq x_{2} x_{1}$, involution $\left(x_{1} x_{2}\right)^{\star}=x_{2} x_{1}$

Trace polynomials

Elements of $\mathbb{T}=\mathrm{T}\langle x\rangle$
Symmetric nc vars $x=\left(x_{1}, \ldots, x_{n}\right)$ \& sums of trace products T

$$
f=x_{1} x_{2} x_{1}^{2}-\operatorname{tr}\left(x_{2}\right) \operatorname{tr}\left(x_{1} x_{2}\right) \operatorname{tr}\left(x_{1}^{2} x_{2}\right) x_{2} x_{1} \in \mathbb{T}
$$

with $x_{1} x_{2} \neq x_{2} x_{1}$, involution $\left(x_{1} x_{2}\right)^{\star}=x_{2} x_{1}$

$$
\begin{aligned}
\operatorname{tr}(f) & =\operatorname{tr}\left(x_{1}^{3} x_{2}\right)-\operatorname{tr}\left(x_{2}\right) \operatorname{tr}\left(x_{1} x_{2}\right)^{2} \operatorname{tr}\left(x_{1}^{2} x_{2}\right) \in \mathrm{T} \\
f^{\star} & =x_{1}^{2} x_{2} x_{1}-\operatorname{tr}\left(x_{2}\right) \operatorname{tr}\left(x_{1} x_{2}\right) \operatorname{tr}\left(x_{1}^{2} x_{2}\right) x_{1} x_{2}
\end{aligned}
$$

Trace polynomials

Elements of $\mathbb{T}=\mathrm{T}\langle x\rangle$
Symmetric nc vars $x=\left(x_{1}, \ldots, x_{n}\right)$ \& sums of trace products T

$$
f=x_{1} x_{2} x_{1}^{2}-\operatorname{tr}\left(x_{2}\right) \operatorname{tr}\left(x_{1} x_{2}\right) \operatorname{tr}\left(x_{1}^{2} x_{2}\right) x_{2} x_{1} \in \mathbb{T}
$$

with $x_{1} x_{2} \neq x_{2} x_{1}$, involution $\left(x_{1} x_{2}\right)^{\star}=x_{2} x_{1}$

$$
\begin{aligned}
\operatorname{tr}(f) & =\operatorname{tr}\left(x_{1}^{3} x_{2}\right)-\operatorname{tr}\left(x_{2}\right) \operatorname{tr}\left(x_{1} x_{2}\right)^{2} \operatorname{tr}\left(x_{1}^{2} x_{2}\right) \in \mathrm{T} \\
f^{\star} & =x_{1}^{2} x_{2} x_{1}-\operatorname{tr}\left(x_{2}\right) \operatorname{tr}\left(x_{1} x_{2}\right) \operatorname{tr}\left(x_{1}^{2} x_{2}\right) x_{1} x_{2}
\end{aligned}
$$

$f^{\star} f$ hermitian square

Trace polynomials

Elements of $\mathbb{T}=\mathrm{T}\langle x\rangle$
Symmetric nc vars $x=\left(x_{1}, \ldots, x_{n}\right)$ \& sums of trace products T

$$
f=x_{1} x_{2} x_{1}^{2}-\operatorname{tr}\left(x_{2}\right) \operatorname{tr}\left(x_{1} x_{2}\right) \operatorname{tr}\left(x_{1}^{2} x_{2}\right) x_{2} x_{1} \in \mathbb{T}
$$

with $x_{1} x_{2} \neq x_{2} x_{1}$, involution $\left(x_{1} x_{2}\right)^{\star}=x_{2} x_{1}$

$$
\begin{aligned}
\operatorname{tr}(f) & =\operatorname{tr}\left(x_{1}^{3} x_{2}\right)-\operatorname{tr}\left(x_{2}\right) \operatorname{tr}\left(x_{1} x_{2}\right)^{2} \operatorname{tr}\left(x_{1}^{2} x_{2}\right) \in \mathrm{T} \\
f^{\star} & =x_{1}^{2} x_{2} x_{1}-\operatorname{tr}\left(x_{2}\right) \operatorname{tr}\left(x_{1} x_{2}\right) \operatorname{tr}\left(x_{1}^{2} x_{2}\right) x_{1} x_{2}
\end{aligned}
$$

$f^{\star} f$ hermitian square
$S \subset \operatorname{Sym} \mathbb{T} \quad x_{j}$ operators from finite von Neumann algebra
Constraints $\mathcal{D}_{S}=\{x: s(x) \succcurlyeq 0, \quad \forall s \in S\}$

Primer on von Neumann algebras

$\mathcal{B}(\mathcal{H})$ bounded linear operators on Hilbert space \mathcal{H}

Primer on von Neumann algebras

$\mathcal{B}(\mathcal{H})$ bounded linear operators on Hilbert space \mathcal{H}
$\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ is von Neumann algebra iff

Primer on von Neumann algebras

$\mathcal{B}(\mathcal{H})$ bounded linear operators on Hilbert space \mathcal{H}
$\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ is von Neumann algebra iff
■ closed in strong operator topology (locally convex generated by the seminorms $\left.p_{\xi}(x)=\|x \xi\|, \quad \xi \in \mathcal{H}\right)$

- contains ld $_{\mathcal{H}}$

Primer on von Neumann algebras

$\mathcal{B}(\mathcal{H})$ bounded linear operators on Hilbert space \mathcal{H}
$\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ is von Neumann algebra iff

- closed in strong operator topology (locally convex generated by the seminorms $\left.p_{\xi}(x)=\|x \xi\|, \quad \xi \in \mathcal{H}\right)$
- contains $\operatorname{ld}_{\mathcal{H}}$

Examples: $\mathcal{B}(\mathcal{H}), \mathbb{C}^{n \times n}$ when $\mathcal{H}=\mathbb{C}^{n}$

Primer on von Neumann algebras

$\mathcal{B}(\mathcal{H})$ bounded linear operators on Hilbert space \mathcal{H}
$\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ is von Neumann algebra iff

- closed in strong operator topology (locally convex generated by the seminorms $\left.p_{\xi}(x)=\|x\|^{Z} \|, \quad \xi \in \mathcal{H}\right)$
- contains $\operatorname{ld}_{\mathcal{H}}$

Examples: $\mathcal{B}(\mathcal{H}), \mathbb{C}^{n \times n}$ when $\mathcal{H}=\mathbb{C}^{n}$
Commutant $\mathcal{A}^{\prime}=$ elements commuting with elements of \mathcal{A}

Primer on von Neumann algebras

$\mathcal{B}(\mathcal{H})$ bounded linear operators on Hilbert space \mathcal{H}
$\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ is von Neumann algebra iff

- closed in strong operator topology (locally convex generated by the seminorms $\left.p_{\xi}(x)=\|x\|^{Z} \|, \quad \xi \in \mathcal{H}\right)$
- contains $\operatorname{ld}_{\mathcal{H}}$

Examples: $\mathcal{B}(\mathcal{H}), \mathbb{C}^{n \times n}$ when $\mathcal{H}=\mathbb{C}^{n}$
Commutant $\mathcal{A}^{\prime}=$ elements commuting with elements of \mathcal{A}
If $\mathcal{A}=\mathcal{B}(\mathcal{H})$ then $\mathcal{A}^{\prime}=\operatorname{Cld}_{\mathcal{H}}$

Primer on von Neumann algebras

$\mathcal{B}(\mathcal{H})$ bounded linear operators on Hilbert space \mathcal{H}
$\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ is von Neumann algebra iff

- closed in strong operator topology (locally convex generated by the seminorms $\left.p_{\xi}(x)=\|x \xi\|, \quad \xi \in \mathcal{H}\right)$
- contains $\operatorname{ld}_{\mathcal{H}}$

Examples: $\mathcal{B}(\mathcal{H}), \mathbb{C}^{n \times n}$ when $\mathcal{H}=\mathbb{C}^{n}$
Commutant $\mathcal{A}^{\prime}=$ elements commuting with elements of \mathcal{A}
If $\mathcal{A}=\mathcal{B}(\mathcal{H})$ then $\mathcal{A}^{\prime}=\operatorname{Cld}_{\mathcal{H}}$ "丷̈" "Trivial commutant" = factor

Primer on von Neumann algebras

$\mathcal{B}(\mathcal{H})$ bounded linear operators on Hilbert space \mathcal{H}
$\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ is von Neumann algebra iff

- closed in strong operator topology (locally convex generated by the seminorms $\left.p_{\xi}(x)=\|x \tilde{\xi}\|, \quad \xi \in \mathcal{H}\right)$
- contains $\operatorname{ld}_{\mathcal{H}}$

Examples: $\mathcal{B}(\mathcal{H}), \mathbb{C}^{n \times n}$ when $\mathcal{H}=\mathbb{C}^{n}$
Commutant $\mathcal{A}^{\prime}=$ elements commuting with elements of \mathcal{A}
If $\mathcal{A}=\mathcal{B}(\mathcal{H})$ then $\mathcal{A}^{\prime}=\operatorname{Cld}_{\mathcal{H}}$ "芦"Trivial commutant" = factor
$\mathcal{A}=L^{\infty}(\mathcal{X}, \mu)$ is a vNa in $L^{2}(\mathcal{X}, \mu)$

Primer on von Neumann algebras

Linear functional τ on \mathcal{A} is positive if $\tau\left(x^{\star} x\right) \geqslant 0$ for all $x \in \mathcal{A}$

Primer on von Neumann algebras

Linear functional τ on \mathcal{A} is positive if $\tau\left(x^{\star} x\right) \geqslant 0$ for all $x \in \mathcal{A}$
Faithful if $\tau\left(x^{\star} x\right)=0 \Longrightarrow x=0$

Primer on von Neumann algebras

Linear functional τ on \mathcal{A} is positive if $\tau\left(x^{\star} x\right) \geqslant 0$ for all $x \in \mathcal{A}$
Faithful if $\tau\left(x^{\star} x\right)=0 \Longrightarrow x=0$ State if positive $\& \tau(1)=1$

Primer on von Neumann algebras

Linear functional τ on \mathcal{A} is positive if $\tau\left(x^{\star} x\right) \geqslant 0$ for all $x \in \mathcal{A}$ Faithful if $\tau\left(x^{\star} x\right)=0 \Longrightarrow x=0$ State if positive $\& \tau(1)=1$ Tracial if $\tau(x y)=\tau(y x)$

Primer on von Neumann algebras

Linear functional τ on \mathcal{A} is positive if $\tau\left(x^{\star} x\right) \geqslant 0$ for all $x \in \mathcal{A}$ Faithful if $\tau\left(x^{\star} x\right)=0 \Longrightarrow x=0$ State if positive $\& \tau(1)=1$ Tracial if $\tau(x y)=\tau(y x)$

Tracial $\mathrm{vNa}=\mathrm{vNa} \mathcal{A}$ equipped with a tracial state τ

Primer on von Neumann algebras

Linear functional τ on \mathcal{A} is positive if $\tau\left(x^{\star} x\right) \geqslant 0$ for all $x \in \mathcal{A}$ Faithful if $\tau\left(x^{\star} x\right)=0 \Longrightarrow x=0$ State if positive $\& \tau(1)=1$ Tracial if $\tau(x y)=\tau(y x)$

Tracial $\mathrm{vNa}=\mathrm{vNa} \mathcal{A}$ equipped with a tracial state τ Example: $L^{\infty}(\mathcal{X}, \mu)$ with $\tau_{\mu}=\int_{\mathcal{X}} f \mathrm{~d} \mu$

Primer on von Neumann algebras

Linear functional τ on \mathcal{A} is positive if $\tau\left(x^{\star} x\right) \geqslant 0$ for all $x \in \mathcal{A}$ Faithful if $\tau\left(x^{\star} x\right)=0 \Longrightarrow x=0$ State if positive $\& \tau(1)=1$ Tracial if $\tau(x y)=\tau(y x)$

Tracial $\mathrm{vNa}=\mathrm{vNa} \mathcal{A}$ equipped with a tracial state τ Example: $L^{\infty}(\mathcal{X}, \mu)$ with $\tau_{\mu}=\int_{\mathcal{X}} f \mathrm{~d} \mu$

Factor types vNa (with trivial commutant)

Primer on von Neumann algebras

Linear functional τ on \mathcal{A} is positive if $\tau\left(x^{\star} x\right) \geqslant 0$ for all $x \in \mathcal{A}$ Faithful if $\tau\left(x^{\star} x\right)=0 \Longrightarrow x=0$ State if positive $\& \tau(1)=1$ Tracial if $\tau(x y)=\tau(y x)$

Tracial $\mathrm{vNa}=\mathrm{vNa} \mathcal{A}$ equipped with a tracial state τ Example: $L^{\infty}(\mathcal{X}, \mu)$ with $\tau_{\mu}=\int_{\mathcal{X}} f \mathrm{~d} \mu$

- Factor types vNa (with trivial commutant)

■ Type I: isomorphic to some $\mathcal{B}(\mathcal{H})$

Primer on von Neumann algebras

Linear functional τ on \mathcal{A} is positive if $\tau\left(x^{\star} x\right) \geqslant 0$ for all $x \in \mathcal{A}$ Faithful if $\tau\left(x^{\star} x\right)=0 \Longrightarrow x=0$ State if positive $\& \tau(1)=1$ Tracial if $\tau(x y)=\tau(y x)$

Tracial $\mathrm{vNa}=\mathrm{vNa} \mathcal{A}$ equipped with a tracial state τ Example: $L^{\infty}(\mathcal{X}, \mu)$ with $\tau_{\mu}=\int_{\mathcal{X}} f \mathrm{~d} \mu$
$\ddot{\theta}$ Factor types vNa (with trivial commutant)
■ Type I: isomorphic to some $\mathcal{B}(\mathcal{H}) \Longrightarrow I_{n}$ isomorphic to $\mathbb{C}^{n \times n}$ or I_{∞} when $\operatorname{dim} \mathcal{H}=\infty$

- Type $\mathrm{II}_{1}: \infty$-dim tracial vNa

Primer on von Neumann algebras

Linear functional τ on \mathcal{A} is positive if $\tau\left(x^{\star} x\right) \geqslant 0$ for all $x \in \mathcal{A}$ Faithful if $\tau\left(x^{\star} x\right)=0 \Longrightarrow x=0$ State if positive $\& \tau(1)=1$ Tracial if $\tau(x y)=\tau(y x)$

Tracial $\mathrm{vNa}=\mathrm{vNa} \mathcal{A}$ equipped with a tracial state τ Example: $L^{\infty}(\mathcal{X}, \mu)$ with $\tau_{\mu}=\int_{\mathcal{X}} f \mathrm{~d} \mu$
$\ddot{\theta}$ Factor types vNa (with trivial commutant)
■ Type I: isomorphic to some $\mathcal{B}(\mathcal{H}) \Longrightarrow I_{n}$ isomorphic to $\mathbb{C}^{n \times n}$ or I_{∞} when $\operatorname{dim} \mathcal{H}=\infty$

- Type $\mathrm{II}_{1}: \infty$-dim tracial vNa

■ More complicated ones!

Optimization over \mathbb{T} : special cases

- Eigenvalue optimization no traces [Helton-McCallough 04, Navascuez-Pironio-Acin 08]

$$
\begin{aligned}
\lambda_{\text {min }} & =\inf \left\{\langle f(x) \mathbf{v}, \mathbf{v}\rangle: x \in \mathcal{D}_{S},\|\mathbf{v}\|=1\right\} \\
& =\sup \left\{\lambda: f(x)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall x \in \mathcal{D}_{S}\right\}
\end{aligned}
$$

Optimization over \mathbb{T} : special cases

- Eigenvalue optimization no traces [Helton-McCallough 04, Navascuez-Pironio-Acin 08]

$$
\begin{aligned}
\lambda_{\text {min }} & =\inf \left\{\langle f(x) \mathbf{v}, \mathbf{v}\rangle: x \in \mathcal{D}_{S},\|\mathbf{v}\|=1\right\} \\
& =\sup \left\{\lambda: f(x)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall x \in \mathcal{D}_{S}\right\}
\end{aligned}
$$

- POP for scalar variables [Lasserre, Parrilo 01]

Optimization over \mathbb{T} : special cases

 04, Navascuez-Pironio-Acin 08]

$$
\begin{aligned}
\lambda_{\min } & =\inf \left\{\langle f(x) \mathbf{v}, \mathbf{v}\rangle: x \in \mathcal{D}_{S},\|\mathbf{v}\|=1\right\} \\
& =\sup \left\{\lambda: f(x)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall x \in \mathcal{D}_{S}\right\}
\end{aligned}
$$

曾 POP for scalar variables [Lasserre, Parrilo 01]
■ Trace optimization $\ddot{\theta}$ cost $=\sum$ of traces + no traces in the constraints [Calfuta-Klep-Povh-Burgdorf 12-13]

$$
\operatorname{tr}_{\min }=\inf \left\{\operatorname{tr}(f(x)): x \in D_{S}\right\}
$$

Optimization over \mathbb{T} : special cases

- Eigenvalue optimization no traces [Helton-McCallough 04, Navascuez-Pironio-Acin 08]

$$
\begin{aligned}
\lambda_{\text {min }} & =\inf \left\{\langle f(x) \mathbf{v}, \mathbf{v}\rangle: x \in \mathcal{D}_{S},\|\mathbf{v}\|=1\right\} \\
& =\sup \left\{\lambda: f(x)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall x \in \mathcal{D}_{S}\right\}
\end{aligned}
$$

棠 POP for scalar variables [Lasserre, Parrilo 01]

- Trace optimization cost = \sum of traces + no traces in the constraints [Calfuta-Klep-Povh-Burgdorf 12-13]

$$
\operatorname{tr}_{\min }=\inf \left\{\operatorname{tr}(f(x)): x \in D_{S}\right\}
$$

- Finite-dimensional matrices [Klep-Spenko-Volcic 18]: $f \succ 0$ on $\mathcal{D}_{S} \Rightarrow f$ has weighted SOHS decomposition

Optimization over \mathbb{T} : special cases

- Eigenvalue optimization no traces [Helton-McCallough 04, Navascuez-Pironio-Acin 08]

$$
\begin{aligned}
\lambda_{\text {min }} & =\inf \left\{\langle f(x) \mathbf{v}, \mathbf{v}\rangle: x \in \mathcal{D}_{S},\|\mathbf{v}\|=1\right\} \\
& =\sup \left\{\lambda: f(x)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall x \in \mathcal{D}_{S}\right\}
\end{aligned}
$$

当 POP for scalar variables [Lasserre, Parrilo 01]

- Trace optimization cost = \sum of traces + no traces in the constraints [Calfuta-Klep-Povh-Burgdorf 12-13]

$$
\operatorname{tr}_{\min }=\inf \left\{\operatorname{tr}(f(x)): x \in D_{S}\right\}
$$

- Finite-dimensional matrices [Klep-Spenko-Volcic 18]: $f \succ 0$ on $\mathcal{D}_{S} \Rightarrow f$ has weighted SOHS decomposition
- Univ case [Klep-Pascoe-Volcic 21]: $f \succcurlyeq 0 \Rightarrow f=$ SOHS/SOHS
- Multilinear case [Huber 21]

Motivation: Bell inequalities

"Pillars" of quantum physics: violations imply that properties (e.g. entanglement) can't be represented by classical physics

Motivation: Bell inequalities

"Pillars" of quantum physics: violations imply that properties (e.g. entanglement) can't be represented by classical physics

Conditional joint probabilities (correlations):
$P(a, b \mid s, t):=P$ (Alice answers a, Bob answers $b \mid$ Alice is asked s, Bob is asked t)

Motivation: Bell inequalities

"Pillars" of quantum physics: violations imply that properties (e.g. entanglement) can't be represented by classical physics

Conditional joint probabilities (correlations):
$P(a, b \mid s, t):=P$ (Alice answers a, Bob answers $b \mid$ Alice is asked s, Bob is asked t)

Deterministic (= classical) strategies:

$$
P(a \mid s), P(b \mid t) \in\{0,1\} \Longrightarrow P(a, b \mid s, t)=P(a \mid s) P(b \mid t) \in\{0,1\}
$$

Motivation: Bell inequalities

"Pillars" of quantum physics: violations imply that properties (e.g. entanglement) can't be represented by classical physics

Conditional joint probabilities (correlations):
$P(a, b \mid s, t):=P$ (Alice answers a, Bob answers $b \mid$ Alice is asked s, Bob is asked t)

Deterministic (= classical) strategies:

$$
P(a \mid s), P(b \mid t) \in\{0,1\} \Longrightarrow P(a, b \mid s, t)=P(a \mid s) P(b \mid t) \in\{0,1\}
$$

classical correlations = convex combinations of deterministic correlations

Motivation: Bell inequalities

Linear inequalities in the correlations $P(a, b \mid s, t) \&$ marginals $P(a \mid s)$, $P(b \mid t)$, valid for all classical correlations: Bell polytope

Motivation: Bell inequalities

Linear inequalities in the correlations $P(a, b \mid s, t) \&$ marginals $P(a \mid s)$, $P(b \mid t)$, valid for all classical correlations: Bell polytope

Clauser-Horne-Shimony-Holt (CHSH) inequality is violated by quantum systems:
$-P_{a}(1 \mid 0)-P_{b}(1 \mid 0)+P(1,1 \mid 0,0)+P(1,1 \mid 0,1)+P(1,1 \mid 1,0)-P(1,1 \mid 1,1) \leqslant 0$

Motivation: Bell inequalities

Linear inequalities in the correlations $P(a, b \mid s, t)$ \& marginals $P(a \mid s)$, $P(b \mid t)$, valid for all classical correlations: Bell polytope

Clauser-Horne-Shimony-Holt (CHSH) inequality is violated by quantum systems:
$-P_{a}(1 \mid 0)-P_{b}(1 \mid 0)+P(1,1 \mid 0,0)+P(1,1 \mid 0,1)+P(1,1 \mid 1,0)-P(1,1 \mid 1,1) \leqslant 0$
Alice \& Bob share a bipartite quantum state Ψ and they answer s, t by performing quantum measurements on their part of Ψ :

$$
P(a, b \mid s, t)=\Psi^{\star} X_{s}^{a} Y_{t}^{b} \Psi, \quad P(a \mid s)=\Psi^{\star} X_{s}^{a} \Psi, \quad P(b \mid t)=\Psi^{\star} Y_{t}^{b} \Psi
$$

Motivation: Bell inequalities

Linear inequalities in the correlations $P(a, b \mid s, t)$ \& marginals $P(a \mid s)$, $P(b \mid t)$, valid for all classical correlations: Bell polytope

Clauser-Horne-Shimony-Holt (CHSH) inequality is violated by quantum systems:
$-P_{a}(1 \mid 0)-P_{b}(1 \mid 0)+P(1,1 \mid 0,0)+P(1,1 \mid 0,1)+P(1,1 \mid 1,0)-P(1,1 \mid 1,1) \leqslant 0$
Alice \& Bob share a bipartite quantum state Ψ and they answer s, t by performing quantum measurements on their part of Ψ :

$$
P(a, b \mid s, t)=\Psi^{\star} X_{s}^{a} Y_{t}^{b} \Psi, \quad P(a \mid s)=\Psi^{\star} X_{s}^{a} \Psi, \quad P(b \mid t)=\Psi^{\star} Y_{t}^{b} \Psi
$$

X_{s}^{a}, Y_{t}^{b} are bounded operators on separable Hilbert spaces s.t.:

$$
\begin{array}{rll}
X_{s}^{a} Y_{t}^{b}=Y_{t}^{b} X_{s}^{a}, & X_{s}^{a} X_{s}^{a}=X_{s}^{a}, & Y_{t}^{b} Y_{t}^{b}=Y_{t}^{b} \\
X_{s}^{a} X_{s}^{a^{\prime}}=Y_{t}^{b} Y_{t}^{b^{\prime}}=0, & \sum_{a} X_{s}^{a}=\sum_{b} Y_{t}^{b}=I &
\end{array}
$$

"Mathematically": inequality on eigenvalues of noncommutative polynomials

Motivation: Bell inequalities

Entanglement in quantum mechanics
\rightarrow upper bounds for violation levels of Bell inequalities

Motivation: Bell inequalities

Entanglement in quantum mechanics
\rightarrow upper bounds for violation levels of Bell inequalities
[Pozas et al 19] extension \rightarrow identify correlations not attainable in entanglement-swapping scenario (quantum teleportation)

Quantum physics operators x_{i}, y_{j} satisfy causal constraints:

$$
\operatorname{tr}\left(x_{1} x_{2} y_{1} y_{2}\right)-\operatorname{tr}\left(x_{1} x_{2}\right) \operatorname{tr}\left(y_{1} y_{2}\right)=0 .
$$

What is noncommutative optimization?

Eigenvalue optimization

Trace optimization

SDP hierarchies

Polynomial Bell inequalities

Eigenvalue optimization

$$
\lambda_{\min }=\inf _{\mathbf{v}, \mathcal{H}}\left\{\langle f(x) \mathbf{v}, \mathbf{v}\rangle: x \in \mathcal{D}_{S},\|\mathbf{v}\|=1, \mathbf{v} \in \mathcal{H}\right\}
$$

Eigenvalue optimization

$$
\begin{aligned}
& \lambda_{\min }=\inf _{\mathbf{v}, \mathcal{H}}\left\{\langle f(x) \mathbf{v}, \mathbf{v}\rangle: x \in \mathcal{D}_{S},\|\mathbf{v}\|=1, \mathbf{v} \in \mathcal{H}\right\} \\
&= \sup \quad \lambda \\
& \quad \text { s.t. } f(x)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall x \in \mathcal{D}_{S}
\end{aligned}
$$

Eigenvalue optimization

$$
\begin{aligned}
& \lambda_{\min }=\inf _{\mathbf{v}, \mathcal{H}}\left\{\langle f(x) \mathbf{v}, \mathbf{v}\rangle: x \in \mathcal{D}_{S},\|\mathbf{v}\|=1, \mathbf{v} \in \mathcal{H}\right\} \\
&= \sup \quad \lambda \\
& \quad \text { s.t. } \quad f(x)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall x \in \mathcal{D}_{S}
\end{aligned}
$$

$\mathcal{M}(S)$ Archimedean quadratic module: $N-\sum_{i} x_{i}^{2} \succcurlyeq 0$
Theorem: NC Putinar's representation [Helton-McCullough 02]
$f \succcurlyeq 0$ on $\mathcal{D}_{S} \Longrightarrow f+\varepsilon \in \mathcal{M}(S)$, for all $\varepsilon>0$

Eigenvalue optimization

$$
\begin{aligned}
& \lambda_{\min }=\inf _{\mathbf{v}, \mathcal{H}}\left\{\langle f(x) \mathbf{v}, \mathbf{v}\rangle: x \in \mathcal{D}_{S},\|\mathbf{v}\|=1, \mathbf{v} \in \mathcal{H}\right\} \\
&= \sup \quad \lambda \\
& \quad \text { s.t. } \quad f(x)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall x \in \mathcal{D}_{S}
\end{aligned}
$$

$\mathcal{M}(S)$ Archimedean quadratic module: $N-\sum_{i} x_{i}^{2} \succcurlyeq 0$
Theorem: NC Putinar's representation [Helton-McCullough 02]
$f \succcurlyeq 0$ on $\mathcal{D}_{S} \Longrightarrow f+\varepsilon \in \mathcal{M}(S)$, for all $\varepsilon>0$

NC variant of Lasserre's Hierarchy for $\lambda_{\text {min }}$:
"replace " $f-\lambda \mathbf{1} \succcurlyeq 0$ on \mathcal{D}_{S} " by $f-\lambda \mathbf{1} \in \mathcal{M}(S)_{r}$

Eigenvalue optimization

$$
\begin{aligned}
& \lambda_{\min }=\inf _{\mathbf{v}, \mathcal{H}}\left\{\langle f(x) \mathbf{v}, \mathbf{v}\rangle: x \in \mathcal{D}_{S},\|\mathbf{v}\|=1, \mathbf{v} \in \mathcal{H}\right\} \\
&= \sup \\
& \quad \lambda \\
& \text { s.t. } f(x)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall x \in \mathcal{D}_{S}
\end{aligned}
$$

$\mathcal{M}(S)$ Archimedean quadratic module: $N-\sum_{i} x_{i}^{2} \succcurlyeq 0$
Theorem: NC Putinar's representation [Helton-McCullough 02]
$f \succcurlyeq 0$ on $\mathcal{D}_{S} \Longrightarrow f+\varepsilon \in \mathcal{M}(S)$, for all $\varepsilon>0$

NC variant of Lasserre's Hierarchy for $\lambda_{\text {min }}$:
" replace " $f-\lambda \mathbf{1} \succcurlyeq 0$ on \mathcal{D}_{S} " by $f-\lambda \mathbf{1} \in \mathcal{M}(S)_{r}$
$f-\lambda \mathbf{1}=\sum_{i} h_{i}^{\star} h_{i}+\sum_{s} \sum_{i} t_{s i}^{\star} s t_{s i}$ with h_{i}, $t_{s i}$ of bounded degrees

Sparse eigenvalue optimization

Self-adjoint noncommutative (NC) variables $x=\left(x_{1}, \ldots, x_{n}\right)$
Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)

Sparse eigenvalue optimization

Self-adjoint noncommutative (NC) variables $x=\left(x_{1}, \ldots, x_{n}\right)$
Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)
BAD NEWS: there is no sparse analog!
[Klep Magron Povh '21] sparse f SOS $\nRightarrow f$ is a sparse SOS

Sparse eigenvalue optimization

Self-adjoint noncommutative (NC) variables $x=\left(x_{1}, \ldots, x_{n}\right)$
Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)
BAD NEWS: there is no sparse analog! sparse f SOS $\nRightarrow f$ is a sparse SOS
[Klep Magron Povh '21]
Take $f=\left(x_{1}+x_{2}+x_{3}\right)^{2}$

Sparse eigenvalue optimization

Self-adjoint noncommutative (NC) variables $x=\left(x_{1}, \ldots, x_{n}\right)$
Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)
BAD NEWS: there is no sparse analog! sparse f SOS $\nRightarrow f$ is a sparse SOS
[Klep Magron Povh '21]
Take $f=\left(x_{1}+x_{2}+x_{3}\right)^{2}$

Good news: there is an NC analog of the sparse Putinar's Positivstellensatz!

Sparse eigenvalue optimization

Self-adjoint noncommutative (NC) variables $x=\left(x_{1}, \ldots, x_{n}\right)$
Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)
BAD NEWS: there is no sparse analog! sparse f SOS $\nRightarrow f$ is a sparse SOS
[Klep Magron Povh '21]
Take $f=\left(x_{1}+x_{2}+x_{3}\right)^{2}$

Good news: there is an NC analog of the sparse Putinar's Positivstellensatz! Based on GNS construction \& amalgamation [Blackadar '78, Voiculescu '85]

Sparse eigenvalue optimization

Self-adjoint noncommutative (NC) variables $x=\left(x_{1}, \ldots, x_{n}\right)$

Theorem [Helton \& McCullough '02]

$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)
BAD NEWS: there is no sparse analog! sparse f SOS $\nRightarrow f$ is a sparse SOS
[Klep Magron Povh '21]
Take $f=\left(x_{1}+x_{2}+x_{3}\right)^{2}$

GOOD NEWS: there is an NC analog of the sparse Putinar's Positivstellensatz! Based on GNS construction \& amalgamation [Blackadar '78, Voiculescu '85]

Theorem: Sparse NC Positivstellensatz [Klep Magron Povh '21]

$f=\sum_{k} f_{k}, f_{k}$ depends on $x\left(I_{k}\right)$
$f>0$ on \mathcal{D}_{S}
Each g_{j} depends on some I_{k}
RIP holds for $\left(I_{k}\right)$
Ball constraints for each $x\left(I_{k}\right)$

$$
f=\sum_{k, i}\left(s_{k i}^{\star} s_{k i}+\sum_{j \in J_{k}} t_{j i}{ }^{\star} g_{j} t_{j i}\right)
$$

$s_{k i}$ "sees" vars in I_{k}
$t_{j i}$ "sees" vars from g_{j}

Sparse eigenvalue optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{1}-2 x_{4}-x_{5}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{x: x_{i}^{2}=x_{i}, x_{i} x_{j}=x_{j} x_{i}\right.$ if $\left.i \in\{1,2,3\}, j \in\{4,5,6\}\right\}$

Sparse eigenvalue optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{1}-2 x_{4}-x_{5}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{x: x_{i}^{2}=x_{i}, x_{i} x_{j}=x_{j} x_{i}\right.$ if $\left.i \in\{1,2,3\}, j \in\{4,5,6\}\right\}$
${ }^{\prime \prime} I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, x_{k+3}\right\}$

Sparse eigenvalue optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{1}-2 x_{4}-x_{5}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on

$$
\begin{aligned}
& \left\{x: x_{i}^{2}=x_{i}, x_{i} x_{j}=x_{j} x_{i} \text { if } i \in\{1,2,3\}, j \in\{4,5,6\}\right\} \\
& \text { 杵 } I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, x_{k+3}\right\} \\
& \text { level sparse dense [Pál \& Vértesi '18] } \\
& 20.2550008 \\
& 0.2509397
\end{aligned}
$$

Sparse eigenvalue optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{1}-2 x_{4}-x_{5}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on

$$
\begin{aligned}
& \left\{x: x_{i}^{2}=x_{i}, x_{i} x_{j}=x_{j} x_{i} \text { if } i \in\{1,2,3\}, j \in\{4,5,6\}\right\} \\
& \ddot{\theta}^{-} I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, x_{k+3}\right\} \\
& \text { level sparse dense [Pál \& Vértesi '18] } \\
& 20.2550008 \\
& 0.2509397 \\
& 30.2511592
\end{aligned}
$$

Sparse eigenvalue optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{1}-2 x_{4}-x_{5}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on

$$
\begin{aligned}
& \left\{x: x_{i}^{2}=x_{i}, x_{i} x_{j}=x_{j} x_{i} \text { if } i \in\{1,2,3\}, j \in\{4,5,6\}\right\} \\
& \text { थ̈- } I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, x_{k+3}\right\}
\end{aligned}
$$

$$
\text { level sparse } \quad \text { dense [Pál \& Vértesi '18] }
$$

$$
20.2550008
$$

$$
0.2509397
$$

30.2511592
0.2508756

3'
0.2508754 (1 day)

Sparse eigenvalue optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{1}-2 x_{4}-x_{5}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on

$$
\begin{aligned}
& \left\{x: x_{i}^{2}=x_{i}, x_{i} x_{j}=x_{j} x_{i} \text { if } i \in\{1,2,3\}, j \in\{4,5,6\}\right\} \\
& I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, x_{k+3}\right\} \\
& \text { level sparse dense [Pál \& Vértesi '18] } \\
& 20.2550008 \\
& 0.2509397 \\
& 30.2511592 \\
& 0.2508756 \\
& \text { 3' } \\
& 0.2508754 \text { (1 day) } \\
& 4 \quad 0.2508917
\end{aligned}
$$

Sparse eigenvalue optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{1}-2 x_{4}-x_{5}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{x: x_{i}^{2}=x_{i}, x_{i} x_{j}=x_{j} x_{i}\right.$ if $\left.i \in\{1,2,3\}, j \in\{4,5,6\}\right\}$
芦 $I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, x_{k+3}\right\}$
level sparse dense [Pál \& Vértesi '18]
20.2550008
0.2509397
30.2511592
0.2508756

3'
0.2508754 (1 day)
$4 \quad 0.2508917$
50.2508763

Sparse eigenvalue optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(x_{4}+x_{5}+x_{6}\right)+x_{2}\left(x_{4}+x_{5}-x_{6}\right)+x_{3}\left(x_{4}-x_{5}\right)-x_{1}-2 x_{4}-x_{5}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{x: x_{i}^{2}=x_{i}, x_{i} x_{j}=x_{j} x_{i}\right.$ if $\left.i \in\{1,2,3\}, j \in\{4,5,6\}\right\}$
杵 $I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, x_{k+3}\right\}$
level sparse dense [Pál \& Vértesi '18]
20.2550008
0.2509397
30.2511592
0.2508756
0.2508754 (1 day)
$4 \quad 0.2508917$
50.2508763
$6 \quad 0.2508753977180$
(1 hour)

Performance

Accuracy

What is noncommutative optimization?

Eigenvalue optimization

Trace optimization

SDP hierarchies

Polynomial Bell inequalities

Trace optimization

$$
\begin{aligned}
\operatorname{tr}_{\min }= & \inf \left\{\operatorname{tr}(f(x)): x \in D_{S}\right\} \\
= & \sup \quad m \\
& \text { s.t. } \quad \operatorname{tr}(f(x)-m) \geqslant 0, \quad \forall x \in \mathcal{D}_{S}
\end{aligned}
$$

Trace optimization

$$
\begin{aligned}
\operatorname{tr}_{\min }= & \inf \left\{\operatorname{tr}(f(x)): x \in D_{S}\right\} \\
= & \text { sup } \\
\text { s.t. } & \operatorname{tr}(f(x)-m) \geqslant 0, \quad \forall x \in \mathcal{D}_{S}
\end{aligned}
$$

$\operatorname{tr}_{\text {min }}^{\mathrm{II}_{1}}=$ minimal trace over the union of type $-\mathrm{II}_{1} \mathrm{vN}$ algebras
". Disproving Connes' embedding conjecture: $\operatorname{tr}_{\min }^{\mathrm{II}_{1}}<\operatorname{tr}_{\text {min }}$

Trace optimization

$$
\begin{aligned}
\operatorname{tr}_{\min }= & \inf \left\{\operatorname{tr}(f(x)): x \in D_{S}\right\} \\
= & \text { sup } \\
\text { s.t. } & \operatorname{tr}(f(x)-m) \geqslant 0, \quad \forall x \in \mathcal{D}_{S}
\end{aligned}
$$

$\operatorname{tr}_{\text {min }}^{\mathrm{II}_{1}}=$ minimal trace over the union of type $-\mathrm{II}_{1} \mathrm{vN}$ algebras
'r' Disproving Connes' embedding conjecture: $\operatorname{tr}_{\min }^{\mathrm{II}_{1}}<\operatorname{tr}_{\text {min }}$

Converging hierarchy with cyclic quadratic modules: "̈ replace " $\operatorname{tr}(f-m) \geqslant 0$ on $\mathcal{D}_{S}^{\mathrm{II}_{1} "}$ by $f-m \mathbf{1} \in \mathcal{M}^{\text {cyc }}(S)_{r}$
$\mathcal{M}^{\text {cyc }}(S)_{r}=$ polynomials with same trace as some from $\mathcal{M}(S)_{r}$

Trace optimization

$$
\begin{aligned}
\operatorname{tr}_{\min }= & \inf \left\{\operatorname{tr}(f(x)): x \in D_{S}\right\} \\
= & \sup \quad m \\
\text { s.t. } & \operatorname{tr}(f(x)-m) \geqslant 0, \quad \forall x \in \mathcal{D}_{S}
\end{aligned}
$$

$\operatorname{tr}_{\min }^{\mathrm{II}_{1}}=$ minimal trace over the union of type $-\mathrm{II}_{1} \mathrm{vN}$ algebras
" Disproving Connes' embedding conjecture: $\operatorname{tr}_{\min }^{\mathrm{II}_{1}}<\operatorname{tr}_{\text {min }}$
Converging hierarchy with cyclic quadratic modules:当 replace " $\operatorname{tr}(f-m) \geqslant 0$ on $\mathcal{D}_{S}^{\mathrm{I}_{1}}$ " by $f-m \mathbf{1} \in \mathcal{M}^{\text {cyc }}(S)_{r}$
$\mathcal{M}^{\text {cyc }}(S)_{r}=$ polynomials with same trace as some from $\mathcal{M}(S)_{r}$ How to extend it to sums of trace products T ?

Kadison-Dubois representation theorem

$\chi_{\mathcal{M}}:=\left\{\varphi: \mathbf{T} \rightarrow \mathbb{R} \mid \varphi\right.$ homomorphism, $\left.\varphi(\mathcal{M}) \subseteq \mathbb{R}_{\geqslant 0,} \varphi(1)=1\right\}$

Kadison-Dubois representation theorem

$\chi_{\mathcal{M}}:=\left\{\varphi: \mathbf{T} \rightarrow \mathbb{R} \mid \varphi\right.$ homomorphism, $\left.\varphi(\mathcal{M}) \subseteq \mathbb{R}_{\geqslant 0,} \varphi(1)=1\right\}$
Theorem: Kadison-Dubois [Marshall 08]
Given an Archimedean quadratic module $\mathcal{M} \subseteq \mathbf{T} \& f \in \mathrm{~T}$:

$$
\forall \varphi \in \chi_{\mathcal{M}} \quad \varphi(f) \geqslant 0 \quad \Leftrightarrow \quad \forall \varepsilon>0 \quad f+\varepsilon \in \mathcal{M}
$$

Representation of positive elements of T

For $S \subseteq \mathrm{~T}$, "augment" S with traces of hermitian squares:

$$
S(N)=S \cup\left\{\operatorname{tr}\left(p p^{\star}\right) \mid p \in \mathbb{R}\langle\underline{x}\rangle\right\} \cup\left\{N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right) \mid k \in \mathbb{N}\right\} \subseteq \mathrm{T}
$$

Representation of positive elements of T

For $S \subseteq \mathrm{~T}$, "augment" S with traces of hermitian squares:

$$
S(N)=S \cup\left\{\operatorname{tr}\left(p p^{\star}\right) \mid p \in \mathbb{R}\langle\underline{x}\rangle\right\} \cup\left\{N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right) \mid k \in \mathbb{N}\right\} \subseteq \mathrm{T}
$$

Elements of $\mathcal{M}(S(N))$ are

$$
p_{1}^{2} s \quad p_{2}^{2}\left(N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right)\right) \quad \operatorname{tr}\left(a a^{\star}\right)
$$

for $s \in S, p_{i} \in \mathbf{T}, a \in \mathbb{T}$

Representation of positive elements of T

For $S \subseteq T$, "augment" S with traces of hermitian squares:

$$
S(N)=S \cup\left\{\operatorname{tr}\left(p p^{\star}\right) \mid p \in \mathbb{R}\langle\underline{x}\rangle\right\} \cup\left\{N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right) \mid k \in \mathbb{N}\right\} \subseteq \mathrm{T}
$$

Elements of $\mathcal{M}(S(N))$ are

$$
p_{1}^{2} s \quad p_{2}^{2}\left(N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right)\right) \quad \operatorname{tr}\left(a a^{\star}\right)
$$

for $s \in S, p_{i} \in \mathrm{~T}, a \in \mathbb{T}$
Lemma [Klep-M.-Volcic 20]
$\mathcal{M}(S(N))$ is archimedean

Representation of positive elements of T

For $S \subseteq T$, "augment" S with traces of hermitian squares:

$$
S(N)=S \cup\left\{\operatorname{tr}\left(p p^{\star}\right) \mid p \in \mathbb{R}\langle\underline{x}\rangle\right\} \cup\left\{N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right) \mid k \in \mathbb{N}\right\} \subseteq \mathrm{T}
$$

Elements of $\mathcal{M}(S(N))$ are

$$
p_{1}^{2} s \quad p_{2}^{2}\left(N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right)\right) \quad \operatorname{tr}\left(a a^{\star}\right)
$$

for $s \in S, p_{i} \in \mathrm{~T}, a \in \mathbb{T}$
Lemma [Klep-M.-Volcic 20]
$\mathcal{M}(S(N))$ is archimedean
Proof
By induction: \forall word $w, m \pm \operatorname{tr}(w) \in \mathcal{M}(S(N))$ for some $m>0$

$$
w=x_{j}^{2 k} \Longrightarrow N^{k}+1+2 \operatorname{tr}\left(x_{j}^{k}\right)=\left(N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right)\right)+\operatorname{tr}\left(\left(x_{j}^{k}+1\right)^{2}\right)
$$

Representation of positive elements of T

$$
S(N)=S \cup\left\{\operatorname{tr}\left(p p^{\star}\right) \mid p \in \mathbb{R}\langle\underline{x}\rangle\right\} \cup\left\{N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right) \mid k \in \mathbb{N}\right\} \subseteq \mathrm{T}
$$

Representation of positive elements of T

$$
\begin{gathered}
S(N)=S \cup\left\{\operatorname{tr}\left(p p^{\star}\right) \mid p \in \mathbb{R}(\underline{x})\right\} \cup\left\{N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right) \mid k \in \mathbb{N}\right\} \subseteq T \\
S[N]=S \cup\left\{N-x_{j}^{2}\right\} \subset \mathbb{T}
\end{gathered}
$$

Representation of positive elements of T

$$
\begin{gathered}
S(N)=S \cup\left\{\operatorname{tr}\left(p p^{\star}\right) \mid p \in \mathbb{R}\langle\underline{x}\rangle\right\} \cup\left\{N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right) \mid k \in \mathbb{N}\right\} \subseteq \mathrm{T} \\
S[N]=S \cup\left\{N-x_{j}^{2}\right\} \subset \mathbb{T}
\end{gathered}
$$

Theorem [Klep-M.-Volcic 20]
$f \geqslant 0$ on $\mathcal{D}_{S[N]}^{\mathrm{I}_{1}} \quad \Leftrightarrow \quad f+\varepsilon \in \mathcal{M}(S(N))$ for all $\varepsilon>0$

What is noncommutative optimization?

Eigenvalue optimization

Trace optimization

SDP hierarchies

Polynomial Bell inequalities

Tracial words \& moment matrices

\mathbb{T}-words $=\left\{\prod_{i} \operatorname{tr}\left(u_{i}\right) v: u_{i}, v\right.$ words $\}$ and T-words $\operatorname{tr}\left(x_{1}\right)^{2}$ is a T -word, $\operatorname{tr}\left(x_{1}\right) x_{1}$ is a \mathbb{T}-word

Tracial words \& moment matrices

\mathbb{T}-words $=\left\{\prod_{i} \operatorname{tr}\left(u_{i}\right) v: u_{i}, v\right.$ words $\}$ and T-words $\operatorname{tr}\left(x_{1}\right)^{2}$ is a \mathbb{T}-word, $\operatorname{tr}\left(x_{1}\right) x_{1}$ is a \mathbb{T}-word

- Tracial degree $=$ up to cyclic equivalence
$\mathbf{W}_{r}^{\mathbb{T}}=$ vector of \mathbb{T}-words of with tracial degree $\leqslant r$
$n=1$: $\mathbf{W}_{2}^{\mathbb{T}}$ contains $1, x_{1}, x_{1}^{2}, \operatorname{tr}\left(x_{1}\right), \operatorname{tr}\left(x_{1}^{2}\right), \operatorname{tr}\left(x_{1}\right) x_{1}$

Tracial words \& moment matrices

\mathbb{T}-words $=\left\{\prod_{i} \operatorname{tr}\left(u_{i}\right) v: u_{i}, v\right.$ words $\}$ and T-words $\operatorname{tr}\left(x_{1}\right)^{2}$ is a \mathbb{T}-word, $\operatorname{tr}\left(x_{1}\right) x_{1}$ is a \mathbb{T}-word
$\ddot{\theta}$ Tracial degree $=$ up to cyclic equivalence
$\mathbf{W}_{r}^{\mathbb{T}}=$ vector of \mathbb{T}-words of with tracial degree $\leqslant r$
$n=1: \mathbf{W}_{2}^{\mathbb{T}}$ contains $1, x_{1}, x_{1}^{2}, \operatorname{tr}\left(x_{1}\right), \operatorname{tr}\left(x_{1}^{2}\right), \operatorname{tr}\left(x_{1}\right) x_{1}$
Tracial moment matrix $\mathbf{M}_{r}^{\mathbb{T}}(L)$ for a linear functional $L: \mathrm{T} \rightarrow \mathbb{R}$:

- indexed by $\mathbf{W}_{r}^{\mathrm{T}}$

■ $\left(\mathbf{M}_{r}^{\mathbb{T}}(L)\right)_{u, v}=L\left(\operatorname{tr}\left(u^{\star} v\right)\right)$

Tracial words \& moment matrices

\mathbb{T}-words $=\left\{\prod_{i} \operatorname{tr}\left(u_{i}\right) v: u_{i}, v\right.$ words $\}$ and T -words $\operatorname{tr}\left(x_{1}\right)^{2}$ is a T -word, $\operatorname{tr}\left(x_{1}\right) x_{1}$ is a \mathbb{T}-word
$\ddot{\forall}$ Tracial degree $=$ up to cyclic equivalence
$\mathbf{W}_{r}^{\mathbb{T}}=$ vector of \mathbb{T}-words of with tracial degree $\leqslant r$
$n=1$: $\mathbf{W}_{2}^{\mathbb{T}}$ contains $1, x_{1}, x_{1}^{2}, \operatorname{tr}\left(x_{1}\right), \operatorname{tr}\left(x_{1}^{2}\right), \operatorname{tr}\left(x_{1}\right) x_{1}$
Tracial moment matrix $\mathbf{M}_{r}^{\mathbb{T}}(L)$ for a linear functional $L: T \rightarrow \mathbb{R}$:

- indexed by $\mathbf{W}_{r}^{\mathbb{T}}$
- $\left(\mathbf{M}_{r}^{\mathbb{T}}(L)\right)_{u, v}=L\left(\operatorname{tr}\left(u^{\star} v\right)\right)$

Trace localizing matrix $\mathbf{M}_{r}^{\mathbb{T}}(s L)$ for $s \in \mathbb{T}$:

- indexed by $\mathbf{W}_{r}^{\mathrm{T}}$
- $\left(\mathbf{M}_{r}^{\mathbb{T}}(s L)\right)_{u, v}=L\left(\operatorname{tr}\left(u^{\star} s v\right)\right)$

SDP hierarchy for T

Reminder:

$$
S(N)=S \cup\left\{\operatorname{tr}\left(p p^{\star}\right) \mid p \in \mathbb{R}\langle\underline{x}\rangle\right\} \cup\left\{N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right) \mid k \in \mathbb{N}\right\} \subseteq \mathrm{T}
$$

SDP hierarchy for T

Reminder:

$$
\begin{gathered}
S(N)=S \cup\left\{\operatorname{tr}\left(p p^{\star}\right) \mid p \in \mathbb{R}\langle\underline{x}\rangle\right\} \cup\left\{N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right) \mid k \in \mathbb{N}\right\} \subseteq \mathrm{T} \\
S[N]=S \cup\left\{N-x_{j}^{2}\right\} \subset \mathbb{T}
\end{gathered}
$$

SDP hierarchy for T

Reminder:

$$
\begin{gathered}
S(N)=S \cup\left\{\operatorname{tr}\left(p p^{\star}\right) \mid p \in \mathbb{R}\langle\underline{x}\rangle\right\} \cup\left\{N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right) \mid k \in \mathbb{N}\right\} \subseteq \mathrm{T} \\
S[N]=S \cup\left\{N-x_{j}^{2}\right\} \subset \mathbb{T}
\end{gathered}
$$

Trace minimization: $f_{\min }^{\mathrm{II}_{1}}=\inf \left\{f(x): x \in \mathcal{D}_{S[N]}^{\mathrm{II}_{1}}\right\}$

SDP hierarchy for T

Reminder:

$$
\begin{gathered}
S(N)=S \cup\left\{\operatorname{tr}\left(p p^{\star}\right) \mid p \in \mathbb{R}\langle\underline{x}\rangle\right\} \cup\left\{N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right) \mid k \in \mathbb{N}\right\} \subseteq \mathrm{T} \\
S[N]=S \cup\left\{N-x_{j}^{2}\right\} \subset \mathbb{T}
\end{gathered}
$$

Trace minimization: $f_{\min }^{\mathrm{II}_{1}}=\inf \left\{f(x): x \in \mathcal{D}_{S[N]}^{\mathrm{II}_{1}}\right\}$

$$
\mathcal{M}(S(N))_{r}=\left\{\sum_{i} p_{i}^{2} s_{i}: s_{i} \in S(N), p_{i} \in \mathrm{~T}, \operatorname{deg}\left(p_{i}^{2} s_{i}\right) \leq 2 r\right\}
$$

Elements of $\mathcal{M}(S(N))_{r}$ are

$$
p_{1}^{2} s \quad p_{2}^{2}\left(N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right)\right) \quad \operatorname{tr}\left(a a^{\star}\right)
$$

for $s \in S, p_{i} \in \mathrm{~T}, a \in \mathbb{T}$

SDP hierarchy for T

Lower bounds hierarchy: $f_{r}=\sup \left\{m \mid f-m \in \mathcal{M}(S(N))_{r}\right\}$

SDP hierarchy for T

Lower bounds hierarchy: $f_{r}=\sup \left\{m \mid f-m \in \mathcal{M}(S(N))_{r}\right\}$ Dual with moment matrices:

$$
\begin{array}{rl}
\inf _{\text {linear } L} & L(f) \\
\text { s.t. } & \left(\mathbf{M}_{r}^{\mathbb{T}}(L)\right)_{u, v}=\left(\mathbf{M}_{r}^{\mathbb{T}}(L)\right)_{w, z} \quad \text { whenever } \operatorname{tr}\left(u^{\star} v\right)=\operatorname{tr}\left(w^{\star} z\right) \\
& \left(\mathbf{M}_{r}^{\mathbb{T}}(L)\right)_{1,1}=1 \\
& \mathbf{M}_{r}^{\mathbb{T}}(L) \succcurlyeq 0, \\
& \mathbf{M}_{r-r_{s}}^{\top}(s L) \succcurlyeq 0, \quad \text { for all } s \in S \\
& \mathbf{M}_{r-k}^{\top}\left(\left(N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right)\right) L\right) \succcurlyeq 0
\end{array}
$$

SDP hierarchy for T

Lower bounds hierarchy: $f_{r}=\sup \left\{m \mid f-m \in \mathcal{M}(S(N))_{r}\right\}$ Dual with moment matrices:
$\inf _{\text {linear } L} L(f)$
s.t. $\quad\left(\mathbf{M}_{r}^{\mathbb{T}}(L)\right)_{u, v}=\left(\mathbf{M}_{r}^{\mathbb{T}}(L)\right)_{w, z} \quad$ whenever $\operatorname{tr}\left(u^{\star} v\right)=\operatorname{tr}\left(w^{\star} z\right)$
$\left(\mathbf{M}_{r}^{\mathbb{T}}(L)\right)_{1,1}=1$
$\mathbf{M}_{r}^{\mathbb{T}}(L) \succcurlyeq 0$,
$\mathbf{M}_{r-r_{s}}^{\top}(s L) \succcurlyeq 0, \quad$ for all $s \in S$
$\mathbf{M}_{r-k}^{\top}\left(\left(N^{k}-\operatorname{tr}\left(x_{j}^{2 k}\right)\right) L\right) \succcurlyeq 0$

Theorem [Klep-M.-Volcic 20]

There is no duality gap and $f_{r} \rightarrow f_{\text {min }}^{\mathrm{II}_{1}}$ as $r \rightarrow \infty$

SDP hierarchy for \mathbb{T}

$S \subset$ Sym \mathbb{T}
$\ddot{\nabla}$ Reduction from the general trace setting to the pure trace

$$
\widetilde{S}=\left\{\operatorname{tr}\left(a s a^{\star}\right) \mid s \in S, a \in \mathbb{T}\right\} \subset T
$$

SDP hierarchy for \mathbb{T}

$S \subset$ Sym \mathbb{T}
$\ddot{\theta}$ Reduction from the general trace setting to the pure trace

$$
\begin{gathered}
\widetilde{S}=\left\{\operatorname{tr}\left(a s a^{\star}\right) \mid s \in S, a \in \mathbb{T}\right\} \subset \mathrm{T} \\
\mathcal{M}(\widetilde{S}(N))_{r}=\left\{\sum_{i} p_{i}^{2} s_{i}, p_{i} \in \mathrm{~T}, \operatorname{deg}\left(p_{i}^{2} s_{i}\right) \leq 2 r\right\}
\end{gathered}
$$

Lower bounds hierarchy: $\widetilde{f}_{r}=\sup \left\{m \mid f-m \in \mathcal{M}(\widetilde{S}(N))_{r}\right\}$

SDP hierarchy for \mathbb{T}

$S \subset$ Sym T
Reduction from the general trace setting to the pure trace

$$
\begin{gathered}
\widetilde{S}=\left\{\operatorname{tr}\left(a s a^{\star}\right) \mid s \in S, a \in \mathbb{T}\right\} \subset \mathrm{T} \\
\mathcal{M}(\widetilde{S}(N))_{r}=\left\{\sum_{i} p_{i}^{2} s_{i}, p_{i} \in \mathrm{~T}, \operatorname{deg}\left(p_{i}^{2} s_{i}\right) \leq 2 r\right\}
\end{gathered}
$$

Lower bounds hierarchy: $\widetilde{f}_{r}=\sup \left\{m \mid f-m \in \mathcal{M}(\widetilde{S}(N))_{r}\right\}$

Theorem [Klep-M.-Volcic 20]

There is no duality gap and $\widetilde{f}_{r} \rightarrow f_{\min }^{\mathrm{II}_{1}}$ as $r \rightarrow \infty$

What is noncommutative optimization?

Eigenvalue optimization

Trace optimization

SDP hierarchies

Polynomial Bell inequalities

Polynomial Bell inequalities

Classical world

$$
\psi^{*}\left(A_{1} \otimes B_{1}+A_{1} \otimes B_{2}+A_{2} \otimes B_{1}-A_{2} \otimes B_{2}\right) \psi \leqslant 2
$$

for separable states $\psi \in \mathbb{R}^{k} \otimes \mathbb{R}^{k}$ and matrices A_{j}, B_{j} satisfying

$$
A_{j}^{*}=A_{j}, A_{j}^{2}=I, B_{j}^{*}=B_{j}, B_{j}^{2}=I
$$

Polynomial Bell inequalities

Classical world

$$
\psi^{*}\left(A_{1} \otimes B_{1}+A_{1} \otimes B_{2}+A_{2} \otimes B_{1}-A_{2} \otimes B_{2}\right) \psi \leqslant 2
$$

for separable states $\psi \in \mathbb{R}^{k} \otimes \mathbb{R}^{k}$ and matrices A_{j}, B_{j} satisfying $A_{j}^{*}=A_{j}, A_{j}^{2}=I, B_{j}^{*}=B_{j}, B_{j}^{2}=I$

TSIRELSON'S BOUND for maximally entangled states $\psi=\frac{1}{\sqrt{k}} \sum_{j=1}^{k} e_{j} \otimes e_{j} \in \mathbb{R}^{k} \otimes \mathbb{R}^{k}$

Polynomial Bell inequalities

CLASSICAL WORLD

$$
\psi^{*}\left(A_{1} \otimes B_{1}+A_{1} \otimes B_{2}+A_{2} \otimes B_{1}-A_{2} \otimes B_{2}\right) \psi \leqslant 2
$$

for separable states $\psi \in \mathbb{R}^{k} \otimes \mathbb{R}^{k}$ and matrices A_{j}, B_{j} satisfying $A_{j}^{*}=A_{j}, A_{j}^{2}=I, B_{j}^{*}=B_{j}, B_{j}^{2}=I$

TSIRELSON'S BOUND for maximally entangled states $\psi=\frac{1}{\sqrt{k}} \sum_{j=1}^{k} e_{j} \otimes e_{j} \in \mathbb{R}^{k} \otimes \mathbb{R}^{k} \Longrightarrow \psi^{*}(X \otimes Y) \psi=\operatorname{tr}(X Y)$

Polynomial Bell inequalities

Classical world

$$
\psi^{*}\left(A_{1} \otimes B_{1}+A_{1} \otimes B_{2}+A_{2} \otimes B_{1}-A_{2} \otimes B_{2}\right) \psi \leqslant 2
$$

for separable states $\psi \in \mathbb{R}^{k} \otimes \mathbb{R}^{k}$ and matrices A_{j}, B_{j} satisfying $A_{j}^{*}=A_{j}, A_{j}^{2}=I, B_{j}^{*}=B_{j}, B_{j}^{2}=I$

TSIRELSON'S BOUND for maximally entangled states

$$
\psi=\frac{1}{\sqrt{k}} \sum_{j=1}^{k} e_{j} \otimes e_{j} \in \mathbb{R}^{k} \otimes \mathbb{R}^{k} \Longrightarrow \psi^{*}(X \otimes Y) \psi=\operatorname{tr}(X Y)
$$

$$
2 \rightarrow 2 \sqrt{2}=\operatorname{tr}_{\max }\left\{a_{1} b_{1}+a_{1} b_{2}+a_{2} b_{1}-a_{2} b_{2}: a_{j}^{2}=b_{j}^{2}=1\right\}
$$

Polynomial Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS

$$
\operatorname{cov}_{\psi}(X, Y):=\psi^{*}(X \otimes Y) \psi-\psi^{*}(X \otimes I) \psi \cdot \psi^{*}(I \otimes Y) \psi
$$

Polynomial Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS

$$
\begin{aligned}
& \operatorname{cov}_{\psi}(X, Y):=\psi^{*}(X \otimes Y) \psi-\psi^{*}(X \otimes I) \psi \cdot \psi^{*}(I \otimes Y) \psi \\
& \quad \operatorname{cov}_{\psi}\left(A_{1}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{2}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}_{\psi}\left(A_{2}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{2}, B_{2}\right)-\operatorname{cov}_{\psi}\left(A_{2}, B_{3}\right) \leqslant \frac{9}{2} \\
& +\operatorname{cov}_{\psi}\left(A_{3}, B_{1}\right)-\operatorname{cov}_{\psi}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

for separable states but ...

Polynomial Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS

$$
\begin{aligned}
& \operatorname{cov}_{\psi}(X, Y):=\psi^{*}(X \otimes Y) \psi-\psi^{*}(X \otimes I) \psi \cdot \psi^{*}(I \otimes Y) \psi \\
& \quad \operatorname{cov}_{\psi}\left(A_{1}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{2}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}_{\psi}\left(A_{2}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{2}, B_{2}\right)-\operatorname{cov}_{\psi}\left(A_{2}, B_{3}\right) \leqslant \frac{9}{2} \\
& +\operatorname{cov}_{\psi}\left(A_{3}, B_{1}\right)-\operatorname{cov}_{\psi}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

for separable states but ... 5 for one maximally entangled state

Polynomial Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS

$$
\begin{aligned}
& \operatorname{cov}_{\psi}(X, Y):=\psi^{*}(X \otimes Y) \psi-\psi^{*}(X \otimes I) \psi \cdot \psi^{*}(I \otimes Y) \psi \\
& \quad \operatorname{cov}_{\psi}\left(A_{1}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{2}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}_{\psi}\left(A_{2}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{2}, B_{2}\right)-\operatorname{cov}_{\psi}\left(A_{2}, B_{3}\right) \leqslant \frac{9}{2} \\
& +\operatorname{cov}_{\psi}\left(A_{3}, B_{1}\right)-\operatorname{cov}_{\psi}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

for separable states but ... 5 for one maximally entangled state

- 2nd dense SDP relaxation of the corresponding trace problem outputs 5

Polynomial Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS

$$
\begin{aligned}
& \operatorname{cov}_{\psi}(X, Y):=\psi^{*}(X \otimes Y) \psi-\psi^{*}(X \otimes I) \psi \cdot \psi^{*}(I \otimes Y) \psi \\
& \quad \operatorname{cov}_{\psi}\left(A_{1}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{2}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}_{\psi}\left(A_{2}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{2}, B_{2}\right)-\operatorname{cov}_{\psi}\left(A_{2}, B_{3}\right) \leqslant \frac{9}{2} \\
& +\operatorname{cov}_{\psi}\left(A_{3}, B_{1}\right)-\operatorname{cov}_{\psi}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

for separable states but ... 5 for one maximally entangled state

- 2nd dense SDP relaxation of the corresponding trace problem outputs $5=$ max value for all maximal entangled states

Polynomial Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS

$$
\begin{aligned}
& \operatorname{cov}_{\psi}(X, Y):=\psi^{*}(X \otimes Y) \psi-\psi^{*}(X \otimes I) \psi \cdot \psi^{*}(I \otimes Y) \psi \\
& \quad \operatorname{cov}_{\psi}\left(A_{1}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{2}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}_{\psi}\left(A_{2}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{2}, B_{2}\right)-\operatorname{cov}_{\psi}\left(A_{2}, B_{3}\right) \leqslant \frac{9}{2} \\
& +\operatorname{cov}_{\psi}\left(A_{3}, B_{1}\right)-\operatorname{cov}_{\psi}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

for separable states but ... 5 for one maximally entangled state

- 2nd dense SDP relaxation of the corresponding trace problem outputs $5=$ max value for all maximal entangled states
- 2nd sparse SDP gives also $5 \ldots 10$ times faster

Conclusion and perspectives

CONVERGING HIERARCHIES to minimize pure trace polynomials

Conclusion and perspectives

CONVERGING HIERARCHIES to minimize pure trace polynomials Implementation available in github:TSSOS

Conclusion and perspectives

CONVERGING HIERARCHIES to minimize pure trace polynomials Implementation available in github:TSSOS

Hierarchy for minimal eigenvalue problem, degree bounds?

Conclusion and perspectives

CONVERGING HIERARCHIES to minimize pure trace polynomials Implementation available in github:TSSOS

Hierarchy for minimal eigenvalue problem, degree bounds?
Exploiting SYMMETRY of cost and constraints?

Conclusion and perspectives

CONVERGING HIERARCHIES to minimize pure trace polynomials
Implementation available in github:TSSOS
Hierarchy for minimal eigenvalue problem, degree bounds?
Exploiting SYMMETRY of cost and constraints?
Trace polynomials for [Werner 89] witnesses symmetric \& sparse

Conclusion and perspectives

CONVERGING HIERARCHIES to minimize pure trace polynomials
Implementation available in github:TSSOS
Hierarchy for minimal eigenvalue problem, degree bounds?
Exploiting SYMMETRY of cost and constraints?
Trace polynomials for [Werner 89] witnesses symmetric \& sparse

Thank you for your attention!

Klep, M. \& Volčič. Optimization over trace polynomials. Annales Henri Poincaré, arXiv:2101.05167

- Huber, Klep, M. \& Volčič. Dimension-free entanglement detection in multipartite Werner states. Communications in Mathematical Physics, arXiv:2108.08720
(M \& Wang. Sparse polynomial optimization: theory and practice. To appear in Series on Optimization and Its Applications, World Scientific Press, 2022

Thank you for your attention！

囯 Bell．On the Einstein Podolsky Rosen paradox．Physics Physique Fizika， 1964
通
Werner．Quantum states with Einstein－Podolsky－Rosen correlations admitting a hidden－variable model．Phys．Rev．A， 1989
围 Navascués，Pironio \＆Acín．A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations．New Journal of Physics， 2008
圊
Klep \＆Schweighofer．Connes＇embedding conjecture and sums of hermitian squares．Advances in Mathematics， 2008
俥 Cafuta，Klep \＆Povh．NCSOStools：a computer algebra system for symbolic and numerical computation with noncommutative polynomials． Optimization methods and Software， 2011

目Burgdorf，Cafuta，Klep \＆Povh．The tracial moment problem and trace－optimization of polynomials．Mathematical programming， 2013

Burgdorf，Klep \＆Povh．Optimization of polynomials in non－commuting variables．Springer， 2016

Thank you for your attention!

显
Klep, Spenko \& Volcic. Positive trace polynomials and the universal Procesi-Schacher conjecture. Proceedings of the London Mathematical Society, 2018

TKlep, Pascoe \& Volcic. Positive univariate trace polynomials. Journal of Algebra, 2021
Huber. Positive maps and trace polynomials from the symmetric group. Journal of Mathematical Physics, 2021

Klep, Magron \& Povh. Sparse Noncommutative Polynomial Optimization. Mathematical programming, 2021 NCSOStools NCTSSOS
國 Beckermann, Putinar, Saff \& Stylianopoulos. Perturbations of Christoffel-Darboux Kernels: Detection of Outliers. Foundations of Computational Mathematics, 2021
 Huber, Klep, Magron \& Volcic. Dimension-free entanglement detection in multipartite Werner states, arxiv:2108.08720

Klep \& Magron \& Volcic. Optimization over trace polynomials. Annales Institut Henri Poincaré, 2022Belinschi, Magron \& Vinnikov. Noncommutative Christoffel-Darboux Kernels, Transactions of the AMS, 2022

