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Dense polynomial optimization

NP-hard NON CONVEX Problem fmin = inf f (x)

Theory

(Primal) (Dual)

inf
∫

f dµ sup b

with µ proba ⇒ INFINITE-DIM ⇐ with f − b ⩾ 0

[Lasserre ’01] HIERARCHY of CONVEX PROBLEMS ↑ fmin
Based on representing positive polynomials [Putinar ’93]

Attracted a lot of attention in optimization, applied
mathematics, quantum computing, engineering, theoret-
ical computer science
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Sparse polynomial optimization

Structure exploitation with “SPARSE” cost f and constraints

Correlative sparsity: few variable products in f
⇝ f = x1x2 + x2x3 + · · ·+ x99x100

1 2 3 10099
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Term sparsity: few terms in f
⇝ f = x99

1 x2 + x1x100
2

Ideal sparsity: constraints
⇝ x1x2 = x2x3 = 0

PERFORMANCE VS ACCURACY

Tons of applications: computer arithmetic, deep learn-
ing, entanglement, optimal power-flow, analysis of dy-
namical systems, matrix ranks
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Moment-SOS hierarchies: an example

NP hard General Problem: fmin := min
x∈X

f (x)

Semialgebraic set X = {x ∈ Rn : gj(x) ⩾ 0}

X = [0, 1]2 = {x ∈ R2 : x1(1 − x1) ⩾ 0, x2(1 − x2) ⩾ 0}

f︷︸︸︷
x1x2 =

−1
8
+

σ0︷ ︸︸ ︷
1
2

(
x1 + x2 −

1
2

)2

+

σ1︷︸︸︷
1
2

g1︷ ︸︸ ︷
x1(1 − x1) +

σ2︷︸︸︷
1
2

g2︷ ︸︸ ︷
x2(1 − x2)

Sums of squares (SOS) σj

Quadratic module: M(X)d =
{

σ0 + ∑j σjgj, deg σj gj ⩽ 2d
}
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Moment-SOS hierarchies

Hierarchy of SDP relaxations:
λd := sup

λ

{
λ : f − λ ∈ M(X)d

}

✓ Convergence guarantees λd ↑ fmin [Lasserre ’01] when
N − ∑ x2

i ∈ M(X) for some N > 0

✓ Can be computed with SDP solvers (CSDP, SDPA, MOSEK)

✗ “No Free Lunch” Rule: (n+2d
n ) SDP variables
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Moment-SOS hierarchies

Correlative sparsity
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Correlative sparsity

Exploit few links between variables [Lasserre, Waki et al. ’06]
x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

Chordal graph after adding edge (3, 5)

6

4

5

1

23

maximal cliques Ik

Average size κ ; κ2d vars

I1 = {1, 4}
I2 = {1, 2, 3, 5}
I3 = {1, 3, 5, 6}
Dense SDP: 210 vars
Sparse SDP: 115 vars
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Correlative sparsity

Theorem [Griewank Toint ’84]

Chordal graph G with maximal cliques I1, I2
QG ≽ 0 with nonzero entries at edges of G
=⇒ QG = P1

TQ1P1 + P2
TQ2P2 with Qk ≽ 0 indexed by Ik

Sparse f = f1 + f2 where fk involves only variables in Ik

Theorem: Sparse Putinar’s representation [Lasserre ’06]

f > 0 on {x : gj(x) ⩾ 0}
chordal graph G with cliques Ik =⇒
ball constraints for each x(Ik)

f = σ01 + σ02 + ∑
j

σjgj

SOS σ0k “sees” vars in Ik
σj “sees” vars from gj
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Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton & McCullough ’02]

f ≽ 0 ⇔ f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f SOS ⇏ f is a sparse SOS Take f = (x1 + x2 + x3)

2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]
Theorem: Sparse NC Positivstellensatz [Klep Magron Povh ’21]

f = ∑k f k, f k depends on x(Ik)

f > 0 on {x : gj(x) ⩾ 0}
chordal graph with cliques Ik =⇒
ball constraints for each x(Ik)

f = ∑
k,i
(s⋆kiski + ∑

j∈Jk

tji
⋆gjtji)

ski “sees” vars in Ik
tji “sees” vars from gj
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Application to violation of Bell inequalities

I3322 Bell inequality (entanglement in quantum information)

f = x1(x4 + x5 + x6) + x2(x4 + x5 − x6) + x3(x4 − x5)− x1 − 2x4 − x5

Maximal violation levels → upper bounds on λmax of f on
{x : x2

i = xi, xixj = xjxi if i ∈ {1, 2, 3}, j ∈ {4, 5, 6}}

Ik → {x1, x2, x3, xk+3}
level sparse dense [Pál & Vértesi ’18]
2 0.2550008 0.2509397
3 0.2511592 0.2508756
3’ 0.2508754 (1 day)
4 0.2508917
5 0.2508763
6 0.2508753977180 (1 hour)

PERFORMANCE VS ACCURACY
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Moment-SOS hierarchies

Correlative sparsity

Term sparsity

Ideal sparsity



Term sparsity: unconstrained

f = 4x4
1x6

2 + x2
1 − x1x2

2 + x2
2

spt( f ) = {(4, 6), (2, 0), (1, 2), (0, 2)}

Newton polytope B = conv (spt( f ))

Squares in SOS decomposition ⊆ B
2 ∩ Nn

[Reznick ’78]

f =
(

x1 x2 x1x2 x1x2
2 x2

1x3
2

)
Q︸︷︷︸
≽0


x1

x2

x1x2

x1x2
2

x2
1x3

2
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Term sparsity: unconstrained

[Postdoc Wang ’19-21] ANR Tremplin-ERC

f = x2
1 − 2x1x2 + 3x2

2 − 2x2
1x2 + 2x2

1x2
2 − 2x2x3

+ 6x2
3 + 9x2

2x3 − 45x2x2
3 + 142x2

2x2
3

[Reznick ’78] → Newton polytope method

f =
(
1 x1 x2 x3 x2x1 x3x2

)
Q︸︷︷︸
≽0



1
x1
x2
x3

x1x2
x2x3

⇝ 6×7
2 = 21 “unknown” entries in Q

Replace Q by QG′ with nonzero entries at edges of G′

⇝ 6 + 9 = 15 “unknown” entries in QG′
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Term sparsity pattern graph G
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x1 x2 x3

x1x2 1 x2x3
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Term sparsity: constrained

At step d of the hierarchy, tsp graph G has

Nodes V = monomials of degree ⩽ d

Edges E with

{α, β} ∈ E ⇔ α + β ∈ supp f
⋃

supp gj
⋃

|α|⩽d

2α

An example with d = 2
f = x4

1 + x1x2
2 + x2x3 + x2

3x2
4

g1 = 1 − x2
1 − x2

2 − x2
3 g2 = 1 − x3x4

1

x2
1

x2
2

x2
3

x2
4

x1

x2x3x4 x1x2

x1x3 x1x4

x2x3

x2x4

x3x4
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Term sparsity: support extension

α′ + β′ = α + β and (α, β) ∈ E ⇒ (α′, β′) ∈ E

1 x1 x2 x3

x2x3 x1x3 x1x2

Victor Magron Sparse polynomial optimization: old and new 12 / 22
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At step d of the hierarchy, tsp graph G has

Nodes V = monomials of degree ⩽ d

Edges E with

{α, β} ∈ E ⇔ α + β ∈ supp f
⋃

supp gj
⋃

|α|⩽d

2α

⇝ support extension⇝ chordal extension G′

By iteratively performing support extension & chordal extension

G(1) = G′ ⊆ · · · ⊆ G(ℓ) ⊆ G(ℓ+1) ⊆ · · ·

Two-level hierarchy of lower bounds for fmin, indexed by
sparse order ℓ and relaxation order d
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Term sparsity

CONVERGENCE GUARANTEES

handles Combo with correlative sparsity

1 Partition the variables w.r.t. the maximal cliques of the csp graph

2 For each subsystem involving variables from one maximal
clique, apply the iterative procedure to exploit term sparsity

two-level hierarchy of lower bounds for fmin: CS-TSSOS hierarchy

Julia library TSSOS → solve problems with n = 103

choice of the CHORDAL EXTENSION: min / max
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Application to AC optimal power-flow

Minimize active power injections of an alternating current
transmission network under physical + operational constraints

Artificial version of the control problem for electricity
transmission network
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Application to AC optimal power-flow

Network = Graph with buses N, from edges E, to edges ER

Generators at bus i = Gi, with power demand Sd
i

Vi and Sg
k = voltage at bus i and power generation at generator k

Kirchhoff law: Ii = ∑(i,j)∈Ei∪ER
i

Iij + Igr
i

Ohm law:

(
Iij

Iji

)
= Yij

(
Vi

Vj

)
Relation power-voltage-current: ∑k∈Gi

Sg
k − Sd

i = Vi Ii
⋆

⇝ leads to power-flow equations
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Application to AC optimal power-flow

mb: maximal block size
gap: the optimality gap w.r.t. local optimal solution

n m
CS (d = 2) CS-TSSOS (d = 2, ℓ = 1)

mb time gap mb time gap

1112 4613
231 3114 0.85% 39 46.6 0.86%
496 − − 31 410 0.25%

4356 18257 378 − − 27 934 0.51%
6698 29283 1326 − − 76 1886 0.47%
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Moment-SOS hierarchies

Correlative sparsity

Term sparsity

Ideal sparsity



Ideal sparsity

fmin = min{ f (x1, x2) : x1x2 = 0}

= sup{λ : f (x1, x2)− λ ⩾ 0 whenever x1x2 = 0}

= sup{λ : f (x1, 0)− λ ⩾ 0 , f (0, x2)− λ ⩾ 0}

replace f (x1, 0)− λ ⩾ 0 by f (x1, 0)− λ = σ1(x1) with SOS σ1

Generalization to ideal constraints {xixj = 0 ∀(i, j) ∈ E}
⇝ max. cliques of the graph with vertices {1, . . . , n} & edges E

Theorem [Korda-Laurent-M-Steenkamp ’22]

Ideal-sparse hierarchies provide better bounds than the dense ones

ACCURACY
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⇝ max. cliques of the graph with vertices {1, . . . , n} & edges E

Theorem [Korda-Laurent-M-Steenkamp ’22]

Ideal-sparse hierarchies provide better bounds than the dense ones

ACCURACY
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Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r s.t.

A =
r

∑
ℓ=1

aℓaℓT for aℓ ⩾ 0

r is called the completely positive rank

✗ hard to compute
✓ Relax/convexify with a linear program over measures

r ⩾ inf
µ
{
∫

KA

1dµ :
∫

KA

xixjdµ = Aij (i, j ∈ V) , supp(µ) ⊆ KA}

KA = {x :
√

Aiixi − xi ⩾ 0 , Aij − xixj ⩾ 0 (i, j) ∈ EA ,
xixj = 0 (i, j) ∈ EA , A − xxT ≽ 0}
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Application to matrix ranks

Random instances, order 2

PERFORMANCE AND ACCURACY
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Conclusion and perspectives

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
large-scale polynomials

FAST IMPLEMENTATION IN JULIA: TSSOS

Combine correlative & term sparsity⇝ solves problems with
thousand variables
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Take-away

Why should you do polynomial optimization?

powerful & accurate MODELING tool for many applications

EFFICIENCY guaranteed on structured applications: deep
learning, quantum information, energy networks
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Thank you for your attention!
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