Sparsity in Polynomial Optimization

Victor Magron (LAAS CNRS)

Aromath seminar
13 November 2022

Dense polynomial optimization

NP-hard NON CONVEX Problem $f_{\text {min }}=\inf f(\mathbf{x})$

Theory

(Primal)
$\inf \int f d \mu$

with μ proba $\Rightarrow \quad$ INFINITE-DIM
(Dual)
sup b
\Leftarrow with $\quad f-b \geqslant 0$

Dense polynomial optimization

NP-hard NON CONVEX Problem $f_{\text {min }}=\inf f(\mathbf{x})$

Practice

(Primal Relaxation)
moments $\int \mathbf{x}^{\alpha} d \mu$
finite number \Rightarrow FINITE-DIM $\quad \Leftarrow$ fixed degree
[Lasserre '01] Hierarchy of CONVEX Problems $\uparrow f_{\text {min }}$ Based on representing positive polynomials [Putinar '93]

Dense polynomial optimization

NP-hard NON CONVEX Problem $f_{\text {min }}=\inf f(\mathbf{x})$

Practice

(Primal Relaxation)
moments $\int \mathbf{x}^{\alpha} d \mu$
finite number \Rightarrow FINITE-DIM
(Dual Strengthening)
$f-b=$ sum of squares
\Leftarrow fixed degree
[Lasserre '01] Hierarchy of CONVEX Problems $\uparrow f_{\text {min }}$ Based on representing positive polynomials [Putinar '93]

Attracted a lot of attention in optimization, applied mathematics, quantum computing, engineering, theoretical computer science

Sparse polynomial optimization

Structure exploitation with "SPARSE" cost f and constraints

Sparse polynomial optimization

Structure exploitation with "SPARSE" cost f and constraints
Correlative sparsity: few variable products in f

Sparse polynomial optimization

Structure exploitation with "SPARSE" cost f and constraints
Correlative sparsity: few variable products in f
$\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$
1-2-3

Sparse polynomial optimization

Structure exploitation with "SPARSE" cost f and constraints
Correlative sparsity: few variable products in f
$\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Sparse polynomial optimization

Structure exploitation with "SPARSE" cost f and constraints
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Term sparsity: few terms in f

Sparse polynomial optimization

Structure exploitation with "SPARSE" cost f and constraints
Correlative sparsity: few variable products in f
$\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$
Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$

Sparse polynomial optimization

Structure exploitation with "SPARSE" cost f and constraints
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$
Ideal sparsity: constraints

Sparse polynomial optimization

Structure exploitation with "SPARSE" cost f and constraints
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$
Ideal sparsity: constraints

$\rightsquigarrow x_{1} x_{2}=x_{2} x_{3}=0$

Sparse polynomial optimization

Structure exploitation with "SPARSE" cost f and constraints
Correlative sparsity: few variable products in f
$\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$
Ideal sparsity: constraints

$\rightsquigarrow x_{1} x_{2}=x_{2} x_{3}=0$

Accuracy

Sparse polynomial optimization

Structure exploitation with "SPARSE" cost f and constraints
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$
Ideal sparsity: constraints

$\rightsquigarrow x_{1} x_{2}=x_{2} x_{3}=0$

Performance

Accuracy

Tons of applications: computer arithmetic, deep learning, entanglement, optimal power-flow, analysis of dynamical systems, matrix ranks

Where do we find sparse POPs?

Where do we find sparse POPs?

Everywhere!

Where do we find sparse POPs?

Everywhere!

Deep learning

\rightsquigarrow robustness, computer vision

Where do we find sparse POPs?

Everywhere!

Deep learning

\rightsquigarrow robustness, computer vision

Power systems

\rightsquigarrow AC optimal power-flow, stability

Where do we find sparse POPs?

Everywhere!

Deep learning

\rightsquigarrow robustness, computer vision

Power systems

\rightsquigarrow AC optimal power-flow, stability

Quantum Systems

\rightsquigarrow condensed matter, entanglement

Moment-SOS hierarchies

Correlative sparsity

Term sparsity

Ideal sparsity

Moment-SOS hierarchies

Correlative sparsity

Term sparsity

Ideal sparsity

Moment-SOS hierarchies: an example

NP hard General Problem: $f_{\text {min }}:=\min _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$
Semialgebraic set $\mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}$

Moment-SOS hierarchies: an example

NP hard General Problem: $f_{\min }:=\min _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$
Semialgebraic set $\mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}$
$\mathbf{X}=[0,1]^{2}=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}\left(1-x_{1}\right) \geqslant 0, \quad x_{2}\left(1-x_{2}\right) \geqslant 0\right\}$

Moment-SOS hierarchies: an example

NP hard General Problem: $f_{\min }:=\min _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$
Semialgebraic set $\mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}$
$\mathbf{X}=[0,1]^{2}=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}\left(1-x_{1}\right) \geqslant 0, \quad x_{2}\left(1-x_{2}\right) \geqslant 0\right\}$

$-\frac{1}{8}+\overbrace{\frac{1}{2}\left(x_{1}+x_{2}-\frac{1}{2}\right)^{2}}^{\sigma_{0}}+\overbrace{\frac{1}{2}}^{\sigma_{1}} \overbrace{x_{1}\left(1-x_{1}\right)}^{g_{1}}+\overbrace{\frac{1}{2}}^{\sigma_{2}} \overbrace{x_{2}\left(1-x_{2}\right)}^{g_{2}}$

Moment-SOS hierarchies: an example

NP hard General Problem: $f_{\min }:=\min _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$
Semialgebraic set $\mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}$
$\mathbf{X}=[0,1]^{2}=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}\left(1-x_{1}\right) \geqslant 0, \quad x_{2}\left(1-x_{2}\right) \geqslant 0\right\}$

$-\frac{1}{8}+\overbrace{\frac{1}{2}\left(x_{1}+x_{2}-\frac{1}{2}\right)^{2}}^{\sigma_{0}}+\overbrace{\frac{1}{2}}^{\sigma_{1}} \overbrace{x_{1}\left(1-x_{1}\right)}^{g_{1}}+\overbrace{\frac{1}{2}}^{\sigma_{2}} \overbrace{x_{2}\left(1-x_{2}\right)}^{g_{2}}$
Sums of squares (SOS) σ_{j}

Moment-SOS hierarchies: an example

NP hard General Problem: $f_{\text {min }}:=\min _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$
Semialgebraic set $\mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}$
$\mathbf{X}=[0,1]^{2}=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}\left(1-x_{1}\right) \geqslant 0, \quad x_{2}\left(1-x_{2}\right) \geqslant 0\right\}$

$-\frac{1}{8}+\overbrace{\frac{1}{2}\left(x_{1}+x_{2}-\frac{1}{2}\right)^{2}}^{\sigma_{0}}+\overbrace{\frac{1}{2}}^{\sigma_{1}} \overbrace{x_{1}\left(1-x_{1}\right)}^{g_{1}}+\overbrace{\frac{1}{2}}^{g_{2}} \overbrace{x_{2}\left(1-x_{2}\right)}^{g_{2}}$
Sums of squares (SOS) σ_{j}
Quadratic module: $\mathcal{M}(\mathbf{X})_{d}=\left\{\sigma_{0}+\sum_{j} \sigma_{j} g_{j}, \operatorname{deg} \sigma_{j} g_{j} \leqslant 2 d\right\}$

Moment-SOS hierarchies

Hierarchy of SDP relaxations:
$\lambda_{d}:=\sup _{\lambda}\left\{\lambda: f-\lambda \in \mathcal{M}(\mathbf{X})_{d}\right\}$

Moment-SOS hierarchies

Hierarchy of SDP relaxations:
$\lambda_{d}:=\sup _{\lambda}\left\{\lambda: f-\lambda \in \mathcal{M}(\mathbf{X})_{d}\right\}$
\checkmark Convergence guarantees $\lambda_{d} \uparrow f_{\text {min }}$ [Lasserre '01] when $N-\sum x_{i}^{2} \in \mathcal{M}(\mathbf{X})$ for some $N>0$

Moment-SOS hierarchies

Hierarchy of SDP relaxations:
$\lambda_{d}:=\sup _{\lambda}\left\{\lambda: f-\lambda \in \mathcal{M}(\mathbf{X})_{d}\right\}$
\checkmark Convergence guarantees $\lambda_{d} \uparrow f_{\text {min }}$ [Lasserre '01] when $N-\sum x_{i}^{2} \in \mathcal{M}(\mathbf{X})$ for some $N>0$
\checkmark Can be computed with SDP solvers (CSDP, SDPA, MOSEK)

Moment-SOS hierarchies

Hierarchy of SDP relaxations:
$\lambda_{d}:=\sup _{\lambda}\left\{\lambda: f-\lambda \in \mathcal{M}(\mathbf{X})_{d}\right\}$
\checkmark Convergence guarantees $\lambda_{d} \uparrow f_{\text {min }}$ [Lasserre '01] when $N-\sum x_{i}^{2} \in \mathcal{M}(\mathbf{X})$ for some $N>0$
\checkmark Can be computed with SDP solvers (CSDP, SDPA, MOSEK)
X "No Free Lunch" Rule: $\binom{n+2 d}{n}$ SDP variables

Moment-SOS hierarchies

Correlative sparsity

Term sparsity

Ideal sparsity

Correlative sparsity

- Exploit few links between variables [Lasserre, Waki et al. '06] $x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right)$

Chordal graph after adding edge $(3,5)$

Correlative sparsity

- Exploit few links between variables [Lasserre, Waki et al. '06] $x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right)$

Chordal graph after adding edge $(3,5)$
maximal cliques I_{k}

$$
I_{1}=\{1,4\}
$$

$$
I_{2}=\{1,2,3,5\}
$$

$$
I_{3}=\{1,3,5,6\}
$$

Dense SDP: 210 vars
Average size $\kappa \leadsto \kappa^{2 d}$ vars Sparse SDP: 115 vars

Correlative sparsity

Theorem [Griewank Toint '84]

Chordal graph G with maximal cliques I_{1}, I_{2}
$Q_{G} \succcurlyeq 0$ with nonzero entries at edges of G
$\Longrightarrow Q_{G}=P_{1}{ }^{T} Q_{1} P_{1}+P_{2}^{T} Q_{2} P_{2}$ with $Q_{k} \succcurlyeq 0$ indexed by I_{k}

Correlative sparsity

Theorem [Griewank Toint '84]

Chordal graph G with maximal cliques I_{1}, I_{2}
$Q_{G} \succcurlyeq 0$ with nonzero entries at edges of G
$\Longrightarrow Q_{G}=P_{1}{ }^{T} Q_{1} P_{1}+P_{2}^{T} Q_{2} P_{2}$ with $Q_{k} \succcurlyeq 0$ indexed by I_{k}

Sparse $f=f_{1}+f_{2}$ where f_{k} involves only variables in I_{k}

Correlative sparsity

Theorem [Griewank Toint '84]

Chordal graph G with maximal cliques I_{1}, I_{2} $Q_{G} \succcurlyeq 0$ with nonzero entries at edges of G $\Longrightarrow Q_{G}=P_{1}{ }^{T} Q_{1} P_{1}+P_{2}^{T} Q_{2} P_{2}$ with $Q_{k} \succcurlyeq 0$ indexed by I_{k}

Sparse $f=f_{1}+f_{2}$ where f_{k} involves only variables in I_{k}

Theorem: Sparse Putinar's representation [Lasserre '06]

$f>0$ on $\left\{\mathbf{x}: g_{j}(\mathbf{x}) \geqslant 0\right\}$ chordal graph G with cliques $I_{k} \Longrightarrow$ ball constraints for each $\mathbf{x}\left(I_{k}\right)$

$$
f=\sigma_{01}+\sigma_{02}+\sum_{j} \sigma_{j} g_{j}
$$

$\overline{\mathrm{SOS}} \sigma_{0 k}$ "sees" vars in I_{k}
σ_{j} "sees" vars from g_{j}

Application to robustness of neural networks

[SIAM News March '21]

"Yet DL has an Achilles' heel. Current implementations can be highly unstable, meaning that a certain small perturbation to the input of a trained neural network can cause substantial change in its output. This phenomenon is both a nuisance and a major concern for the safety and robustness of DL-based systems in critical applications—like healthcare-where reliable computations are essential"

Application to robustness of neural networks

ReLU (left) \& its "semialgebraicity" (right)

$$
u=\max \{x, 0\}
$$

$$
u(u-x)=0, u \geq x, u \geq 0
$$

Application to robustness of neural networks

"̈' "Direct" certification of a classifier with 1 hidden layer

$$
\begin{array}{ll}
\max _{\mathbf{x}, \mathbf{z}} & \left(\mathbf{C}^{i,:}-\mathbf{C}^{k,:}\right) \mathbf{z} \\
\text { s.t. } & \left\{\begin{array}{l}
\mathrm{z}=\operatorname{ReLU}(\mathbf{A x}+\mathbf{b}) \\
\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq \epsilon
\end{array}\right.
\end{array}
$$

Application to robustness of neural networks

" "Direct" certification of a classifier with 1 hidden layer

$$
\begin{array}{ll}
\max _{\mathbf{x}, \mathbf{z}} & \left(\mathbf{C}^{i,:}-\mathbf{C}^{k,:}\right) \mathbf{z} \\
\text { s.t. } & \left\{\begin{array}{l}
\mathbf{z}=\operatorname{ReLU}(\mathbf{A x}+\mathbf{b}) \\
\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq \epsilon
\end{array}\right.
\end{array}
$$

" Monotone equilibrium networks [Winston Kolter '20]

$$
\mathbf{z}=\operatorname{ReLU}(\mathbf{A x}+\mathbf{b}) \rightarrow \mathbf{z}=\operatorname{ReLU}(\mathbf{W} \mathbf{z}+\mathbf{A} \mathbf{x}+\mathbf{b})
$$

Application to robustness of neural networks

"Direct" certification of a classifier with 1 hidden layer

$$
\begin{array}{ll}
\max _{\mathbf{x}, \mathbf{z}} & \left(\mathbf{C}^{i,:}-\mathbf{C}^{k,:}\right) \mathbf{z} \\
\text { s.t. } & \left\{\begin{array}{l}
\mathbf{z}=\operatorname{ReLU}(\mathbf{A x}+\mathbf{b}) \\
\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq \epsilon
\end{array}\right.
\end{array}
$$

" Monotone equilibrium networks [Winston Kolter '20]

$$
\mathbf{z}=\operatorname{ReLU}(\mathbf{A x}+\mathbf{b}) \rightarrow \mathbf{z}=\operatorname{ReLU}(\mathbf{W} \mathbf{z}+\mathbf{A} \mathbf{x}+\mathbf{b})
$$

- "Indirect" with Lipschitz constant/ellipsoid approximation

Application to robustness of neural networks

"̈\%" "Direct" certification of a classifier with 1 hidden layer

$$
\begin{aligned}
\max _{x, z} & \left(\mathbf{C}^{i, i}-\mathbf{C}^{k, i}\right) \mathbf{z} \\
\text { s.t. } & \left\{\begin{array}{l}
\mathbf{z}=\operatorname{ReLU}(\mathbf{A x}+\mathbf{b}) \\
\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq \epsilon
\end{array}\right.
\end{aligned}
$$

学 Monotone equilibrium networks [Winston Kolter '20]

$$
z=\operatorname{ReLU}(\mathbf{A} x+\mathbf{b}) \rightarrow \mathbf{z}=\operatorname{ReLU}(\mathbf{W} z+\mathbf{A} x+\mathbf{b})
$$

" "Indirect" with Lipschitz constant/ellipsoid approximation

Go between 1ST \& 2ND stair in SPARSE hierarchy

Trained $(784,500)$ network

MNIST classifier [Raghunathan et al. '18]

Trained $(784,500)$ network

MNIST classifier [Raghunathan et al. '18]
Shor: relaxation given by 1 ST stair in the hierarchy LipOpt: LP based method
Sampling: lower bound given by 10^{4} random samples

Trained $(784,500)$ network

MNIST classifier [Raghunathan et al. '18]
Shor: relaxation given by 1ST stair in the hierarchy LipOpt: LP based method
Sampling: lower bound given by 10^{4} random samples

	Sparse		Shor	LipOpt	Sampling
Bound	14.56	<17.85	Out of RAM	9.69	
Time	12246	>2869	Out of RAM	-	

Trained $(784,500)$ network

MNIST classifier [Raghunathan et al. '18]
Shor: relaxation given by 1 ST stair in the hierarchy LipOpt: LP based method
Sampling: lower bound given by 10^{4} random samples

	Sparse		Shor	LipOpt	Sampling
Bound	14.56	<17.85	Out of RAM	9.69	
Time	12246	$>$	2869	Out of RAM	-

Performance

Accuracy

Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables $x=\left(x_{1}, \ldots, x_{n}\right)$
Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)

Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables $x=\left(x_{1}, \ldots, x_{n}\right)$
Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)
BAD NEWS: there is no sparse analog!
[Klep Magron Povh '21] sparse f SOS $\nRightarrow f$ is a sparse SOS

Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables $x=\left(x_{1}, \ldots, x_{n}\right)$
Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)
BAD NEWS: there is no sparse analog! sparse f SOS $\nRightarrow f$ is a sparse SOS
[Klep Magron Povh '21]
Take $f=\left(x_{1}+x_{2}+x_{3}\right)^{2}$

Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables $x=\left(x_{1}, \ldots, x_{n}\right)$ Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)
BAD NEWS: there is no sparse analog! sparse f SOS $\nRightarrow f$ is a sparse SOS
[Klep Magron Povh '21]
Take $f=\left(x_{1}+x_{2}+x_{3}\right)^{2}$

Good news: there is an NC analog of the sparse Putinar's Positivstellensatz!

Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables $x=\left(x_{1}, \ldots, x_{n}\right)$

Theorem [Helton \& McCullough '02]

$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! sparse f SOS $\nRightarrow f$ is a sparse SOS
[Klep Magron Povh '21]
Take $f=\left(x_{1}+x_{2}+x_{3}\right)^{2}$

Good news: there is an NC analog of the sparse Putinar's Positivstellensatz! Based on GNS construction \& amalgamation [Blackadar '78, Voiculescu '85]

Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables $x=\left(x_{1}, \ldots, x_{n}\right)$

Theorem [Helton \& McCullough '02]

$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! sparse f SOS $\nRightarrow f$ is a sparse SOS
[Klep Magron Povh '21]
Take $f=\left(x_{1}+x_{2}+x_{3}\right)^{2}$

Good news: there is an NC analog of the sparse Putinar's Positivstellensatz! Based on GNS construction \& amalgamation [Blackadar '78, Voiculescu '85]

Theorem: Sparse NC Positivstellensatz [Klep Magron Povh '21]

$f=\sum_{k} f_{k}, f_{k}$ depends on $x\left(I_{k}\right)$
$f>0$ on $\left\{\mathbf{x}: g_{j}(\mathbf{x}) \geqslant 0\right\}$
chordal graph with cliques I_{k} ball constraints for each $\mathbf{x}\left(I_{k}\right)$
$f=\sum_{k, i}\left(s_{k i}^{\star} s_{k i}+\sum_{j \in J_{k}} t_{j i}{ }^{\star} g_{j} t_{j i}\right)$
$s_{k i}$ "sees" vars in I_{k}
$t_{j i}$ "sees" vars from g_{j}

Application to violation of Bell inequalities

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=a_{1}\left(b_{1}+b_{2}+b_{3}\right)+a_{2}\left(b_{1}+b_{2}-b_{3}\right)+a_{3}\left(b_{1}-b_{2}\right)-a_{1}-2 b_{1}-b_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{a, b: a_{i}^{2}=a_{i} \quad b_{i}^{2}=b_{i} \quad a_{i} b_{j}=b_{j} a_{i}\right\}$

Application to violation of Bell inequalities

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=a_{1}\left(b_{1}+b_{2}+b_{3}\right)+a_{2}\left(b_{1}+b_{2}-b_{3}\right)+a_{3}\left(b_{1}-b_{2}\right)-a_{1}-2 b_{1}-b_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{a, b: a_{i}^{2}=a_{i} \quad b_{i}^{2}=b_{i} \quad a_{i} b_{j}=b_{j} a_{i}\right\}$
当 $I_{k} \rightarrow\left\{a_{k}, b_{1}, b_{2}, b_{3}\right\}$

Application to violation of Bell inequalities

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=a_{1}\left(b_{1}+b_{2}+b_{3}\right)+a_{2}\left(b_{1}+b_{2}-b_{3}\right)+a_{3}\left(b_{1}-b_{2}\right)-a_{1}-2 b_{1}-b_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{a, b: a_{i}^{2}=a_{i} \quad b_{i}^{2}=b_{i} \quad a_{i} b_{j}=b_{j} a_{i}\right\}$
$\ddot{\nabla} I_{k} \rightarrow\left\{a_{k}, b_{1}, b_{2}, b_{3}\right\}$
level sparse
dense [Pál \& Vértesi '18]
20.2550008
0.2509397

Application to violation of Bell inequalities

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=a_{1}\left(b_{1}+b_{2}+b_{3}\right)+a_{2}\left(b_{1}+b_{2}-b_{3}\right)+a_{3}\left(b_{1}-b_{2}\right)-a_{1}-2 b_{1}-b_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{a, b: a_{i}^{2}=a_{i} \quad b_{i}^{2}=b_{i} \quad a_{i} b_{j}=b_{j} a_{i}\right\}$
单 $I_{k} \rightarrow\left\{a_{k}, b_{1}, b_{2}, b_{3}\right\}$
level sparse
dense [Pál \& Vértesi '18]
2
0.2550008
0.2509397
30.2511592
0.2508756

Application to violation of Bell inequalities

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=a_{1}\left(b_{1}+b_{2}+b_{3}\right)+a_{2}\left(b_{1}+b_{2}-b_{3}\right)+a_{3}\left(b_{1}-b_{2}\right)-a_{1}-2 b_{1}-b_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{a, b: a_{i}^{2}=a_{i} \quad b_{i}^{2}=b_{i} \quad a_{i} b_{j}=b_{j} a_{i}\right\}$
单 $I_{k} \rightarrow\left\{a_{k}, b_{1}, b_{2}, b_{3}\right\}$

level	sparse	dense [Pál \& Vérte
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3		0.2508754 (1 day)

Application to violation of Bell inequalities

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=a_{1}\left(b_{1}+b_{2}+b_{3}\right)+a_{2}\left(b_{1}+b_{2}-b_{3}\right)+a_{3}\left(b_{1}-b_{2}\right)-a_{1}-2 b_{1}-b_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{a, b: a_{i}^{2}=a_{i} \quad b_{i}^{2}=b_{i} \quad a_{i} b_{j}=b_{j} a_{i}\right\}$
单 $I_{k} \rightarrow\left\{a_{k}, b_{1}, b_{2}, b_{3}\right\}$
level sparse
20.2550008
30.2511592

3 '
$4 \quad 0.2508917$
dense [Pál \& Vértesi '18]
0.2509397
0.2508756
0.2508754 (1 day)

Application to violation of Bell inequalities

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=a_{1}\left(b_{1}+b_{2}+b_{3}\right)+a_{2}\left(b_{1}+b_{2}-b_{3}\right)+a_{3}\left(b_{1}-b_{2}\right)-a_{1}-2 b_{1}-b_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{a, b: a_{i}^{2}=a_{i} \quad b_{i}^{2}=b_{i} \quad a_{i} b_{j}=b_{j} a_{i}\right\}$
单 $I_{k} \rightarrow\left\{a_{k}, b_{1}, b_{2}, b_{3}\right\}$
level sparse
20.2550008
30.2511592

3'
$4 \quad 0.2508917$
50.2508763
dense [Pál \& Vértesi '18]
0.2509397
0.2508756
0.2508754 (1 day)

Application to violation of Bell inequalities

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=a_{1}\left(b_{1}+b_{2}+b_{3}\right)+a_{2}\left(b_{1}+b_{2}-b_{3}\right)+a_{3}\left(b_{1}-b_{2}\right)-a_{1}-2 b_{1}-b_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{a, b: a_{i}^{2}=a_{i} \quad b_{i}^{2}=b_{i} \quad a_{i} b_{j}=b_{j} a_{i}\right\}$
单 $I_{k} \rightarrow\left\{a_{k}, b_{1}, b_{2}, b_{3}\right\}$
level sparse
20.2550008
30.2511592

3'
$4 \quad 0.2508917$
50.2508763
$6 \quad 0.2508753977180$
(1 hour)

Performance

vs

Accuracy

Application to violation of Bell inequalities

CLASSICAL WORLD

$$
\psi^{*}\left(A_{1} \otimes B_{1}+A_{1} \otimes B_{2}+A_{2} \otimes B_{1}-A_{2} \otimes B_{2}\right) \psi \leqslant 2
$$

for separable states $\psi \in \mathbb{R}^{k} \otimes \mathbb{R}^{k}$ and self-adjoint matrices A_{j}, B_{j} satisfying $A_{i}^{2}=B_{j}^{2}=I$

Application to violation of Bell inequalities

CLASSICAL WORLD

$$
\psi^{*}\left(A_{1} \otimes B_{1}+A_{1} \otimes B_{2}+A_{2} \otimes B_{1}-A_{2} \otimes B_{2}\right) \psi \leqslant 2
$$

for separable states $\psi \in \mathbb{R}^{k} \otimes \mathbb{R}^{k}$ and self-adjoint matrices A_{j}, B_{j} satisfying $A_{i}^{2}=B_{j}^{2}=I$

TSIRELSON'S BOUND for maximally entangled states
$\psi=\frac{1}{\sqrt{k}} \sum_{j=1}^{k} e_{j} \otimes e_{j} \in \mathbb{R}^{k} \otimes \mathbb{R}^{k}$

Application to violation of Bell inequalities

CLASSICAL WORLD

$$
\psi^{*}\left(A_{1} \otimes B_{1}+A_{1} \otimes B_{2}+A_{2} \otimes B_{1}-A_{2} \otimes B_{2}\right) \psi \leqslant 2
$$

for separable states $\psi \in \mathbb{R}^{k} \otimes \mathbb{R}^{k}$ and self-adjoint matrices A_{j}, B_{j} satisfying $A_{i}^{2}=B_{j}^{2}=I$

TSIRELSON'S BOUND for maximally entangled states
$\psi=\frac{1}{\sqrt{k}} \sum_{j=1}^{k} e_{j} \otimes e_{j} \in \mathbb{R}^{k} \otimes \mathbb{R}^{k} \Longrightarrow \psi^{*}(X \otimes Y) \psi=\operatorname{tr}(X Y)$

Application to violation of Bell inequalities

Classical world

$$
\psi^{*}\left(A_{1} \otimes B_{1}+A_{1} \otimes B_{2}+A_{2} \otimes B_{1}-A_{2} \otimes B_{2}\right) \psi \leqslant 2
$$

for separable states $\psi \in \mathbb{R}^{k} \otimes \mathbb{R}^{k}$ and self-adjoint matrices A_{j}, B_{j} satisfying $A_{i}^{2}=B_{j}^{2}=I$

TSIRELSON'S BOUND for maximally entangled states

$$
\psi=\frac{1}{\sqrt{k}} \sum_{j=1}^{k} e_{j} \otimes e_{j} \in \mathbb{R}^{k} \otimes \mathbb{R}^{k} \Longrightarrow \psi^{*}(X \otimes Y) \psi=\operatorname{tr}(X Y)
$$

$$
2 \rightarrow 2 \sqrt{2}=\operatorname{tr}_{\max }\left\{a_{1} b_{1}+a_{1} b_{2}+a_{2} b_{1}-a_{2} b_{2}: a_{j}^{2}=b_{j}^{2}=1\right\}
$$

Application to violation of Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS

$$
\operatorname{cov}_{\psi}(X, Y):=\psi^{*}(X \otimes Y) \psi-\psi^{*}(X \otimes I) \psi \cdot \psi^{*}(I \otimes Y) \psi
$$

Application to violation of Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS

$$
\begin{aligned}
& \operatorname{cov}_{\psi}(X, Y):=\psi^{*}(X \otimes Y) \psi-\psi^{*}(X \otimes I) \psi \cdot \psi^{*}(I \otimes Y) \psi \\
& \quad \operatorname{cov}_{\psi}\left(A_{1}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{2}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}_{\psi}\left(A_{2}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{2}, B_{2}\right)-\operatorname{cov}_{\psi}\left(A_{2}, B_{3}\right) \leqslant \frac{9}{2} \\
& +\operatorname{cov}_{\psi}\left(A_{3}, B_{1}\right)-\operatorname{cov}_{\psi}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

for separable states but ...

Application to violation of Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS

$$
\begin{aligned}
& \operatorname{cov}_{\psi}(X, Y):=\psi^{*}(X \otimes Y) \psi-\psi^{*}(X \otimes I) \psi \cdot \psi^{*}(I \otimes Y) \psi \\
& \quad \operatorname{cov}_{\psi}\left(A_{1}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{2}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}_{\psi}\left(A_{2}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{2}, B_{2}\right)-\operatorname{cov}_{\psi}\left(A_{2}, B_{3}\right) \leqslant \frac{9}{2} \\
& +\operatorname{cov}_{\psi}\left(A_{3}, B_{1}\right)-\operatorname{cov}_{\psi}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

for separable states but ... 5 for one maximally entangled state

Application to violation of Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS

$$
\begin{aligned}
& \operatorname{cov}_{\psi}(X, Y):=\psi^{*}(X \otimes Y) \psi-\psi^{*}(X \otimes I) \psi \cdot \psi^{*}(I \otimes Y) \psi \\
& \quad \operatorname{cov}_{\psi}\left(A_{1}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{2}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}_{\psi}\left(A_{2}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{2}, B_{2}\right)-\operatorname{cov}_{\psi}\left(A_{2}, B_{3}\right) \leqslant \frac{9}{2} \\
& +\operatorname{cov}_{\psi}\left(A_{3}, B_{1}\right)-\operatorname{cov}_{\psi}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

for separable states but ... 5 for one maximally entangled state

2nd dense SDP relaxation of the corresponding trace problem outputs 5

Application to violation of Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS

$$
\begin{aligned}
& \operatorname{cov}_{\psi}(X, Y):=\psi^{*}(X \otimes Y) \psi-\psi^{*}(X \otimes I) \psi \cdot \psi^{*}(I \otimes Y) \psi \\
& \quad \operatorname{cov}_{\psi}\left(A_{1}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{2}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}_{\psi}\left(A_{2}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{2}, B_{2}\right)-\operatorname{cov}_{\psi}\left(A_{2}, B_{3}\right) \leqslant \frac{9}{2} \\
& +\operatorname{cov}_{\psi}\left(A_{3}, B_{1}\right)-\operatorname{cov}_{\psi}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

for separable states but ... 5 for one maximally entangled state

- 2nd dense SDP relaxation of the corresponding trace problem outputs $5=$ max value for all maximal entangled states

Application to violation of Bell inequalities

COVARIANCES OF QUANTUM CORRELATIONS

$$
\begin{aligned}
& \operatorname{cov}_{\psi}(X, Y):=\psi^{*}(X \otimes Y) \psi-\psi^{*}(X \otimes I) \psi \cdot \psi^{*}(I \otimes Y) \psi \\
& \operatorname{cov}_{\psi}\left(A_{1}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{2}\right)+\operatorname{cov}_{\psi}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}_{\psi}\left(A_{2}, B_{1}\right)+\operatorname{cov}_{\psi}\left(A_{2}, B_{2}\right)-\operatorname{cov}_{\psi}\left(A_{2}, B_{3}\right) \leqslant \frac{9}{2} \\
& +\operatorname{cov}_{\psi}\left(A_{3}, B_{1}\right)-\operatorname{cov}_{\psi}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

for separable states but ... 5 for one maximally entangled state

2nd dense SDP relaxation of the corresponding trace problem outputs $5=$ max value for all maximal entangled states

- \quad - 2nd sparse SDP gives 5 too ... 10 times faster

Moment-SOS hierarchies

Correlative sparsity

Term sparsity

Ideal sparsity

Term sparsity: unconstrained

$f=4 x_{1}^{4} x_{2}^{6}+x_{1}^{2}-x_{1} x_{2}^{2}+x_{2}^{2}$
$\operatorname{spt}(f)=\{(4,6),(2,0),(1,2),(0,2)\}$

Newton polytope $\mathscr{B}=\operatorname{conv}(\operatorname{spt}(f))$

Squares in SOS decomposition $\subseteq \frac{\mathscr{B}}{2} \cap \mathbb{N}^{n}$ [Reznick '78]

$$
f=\left(\begin{array}{lllll}
x_{1} & x_{2} & x_{1} x_{2} & x_{1} x_{2}^{2} & x_{1}^{2} x_{2}^{3}
\end{array}\right) \underbrace{Q}_{\succcurlyeq 0}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1} x_{2} \\
x_{1} x_{2}^{2} \\
x_{1}^{2} x_{2}^{3}
\end{array}\right)
$$

Term sparsity: unconstrained

[Postdoc Wang '19-21] ANR Tremplin-ERC

\&OPS

$$
\begin{aligned}
f= & x_{1}^{2}-2 x_{1} x_{2}+3 x_{2}^{2}-2 x_{1}^{2} x_{2}+2 x_{1}^{2} x_{2}^{2}-2 x_{2} x_{3} \\
& +6 x_{3}^{2}+9 x_{2}^{2} x_{3}-45 x_{2} x_{3}^{2}+142 x_{2}^{2} x_{3}^{2}
\end{aligned}
$$

[Reznick '78] \rightarrow Newton polytope method

$$
\begin{gathered}
f=\left(\begin{array}{lll}
1 & x_{1} & x_{2} \\
\text { wn" entries in } Q
\end{array}\right.
\end{gathered}
$$

$\left.x_{3} x_{2}\right) \underbrace{Q}_{\succcurlyeq 0}\left(\begin{array}{c}1 \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{1} x_{2} \\ x_{2} x_{3}\end{array}\right)$

Term sparsity: unconstrained

[Postdoc Wang '19-21] ANR Tremplin-ERC

\&OPS

$$
\begin{aligned}
f= & x_{1}^{2}-2 x_{1} x_{2}+3 x_{2}^{2}-2 x_{1}^{2} x_{2}+2 x_{1}^{2} x_{2}^{2}-2 x_{2} x_{3} \\
& +6 x_{3}^{2}+9 x_{2}^{2} x_{3}-45 x_{2} x_{3}^{2}+142 x_{2}^{2} x_{3}^{2}
\end{aligned}
$$

[Reznick '78] \rightarrow Newton polytope method

$$
\begin{gathered}
f=\left(\begin{array}{lll}
1 & x_{1} & x_{2} \\
\text { wn" entries in } Q
\end{array}\right.
\end{gathered}
$$

Term sparsity pattern graph G

Term sparsity: unconstrained

[Postdoc Wang '19-21] ANR Tremplin-ERC

\&OPS

$$
\begin{aligned}
f= & x_{1}^{2}-2 x_{1} x_{2}+3 x_{2}^{2}-2 x_{1}^{2} x_{2}+2 x_{1}^{2} x_{2}^{2}-2 x_{2} x_{3} \\
& +6 x_{3}^{2}+9 x_{2}^{2} x_{3}-45 x_{2} x_{3}^{2}+142 x_{2}^{2} x_{3}^{2}
\end{aligned}
$$

[Reznick '78] \rightarrow Newton polytope method

$$
\begin{gathered}
f=\left(\begin{array}{lll}
1 & x_{1} & x_{2} \\
\text { wn" entries in } Q
\end{array}\right.
\end{gathered}
$$

$\rightsquigarrow \frac{6 \times 7}{2}=21$ "unknown" entries in Q

- Term sparsity pattern graph G + chordal extension G^{\prime}

Term sparsity: unconstrained

[Postdoc Wang '19-21] ANR Tremplin-ERC

\&OPS

$$
\begin{aligned}
f= & x_{1}^{2}-2 x_{1} x_{2}+3 x_{2}^{2}-2 x_{1}^{2} x_{2}+2 x_{1}^{2} x_{2}^{2}-2 x_{2} x_{3} \\
& +6 x_{3}^{2}+9 x_{2}^{2} x_{3}-45 x_{2} x_{3}^{2}+142 x_{2}^{2} x_{3}^{2}
\end{aligned}
$$

[Reznick '78] \rightarrow Newton polytope method

$$
\begin{gathered}
f=\left(\begin{array}{lll}
1 & x_{1} & x_{2} \\
\text { wn" entries in } Q
\end{array}\right.
\end{gathered}
$$

$\rightsquigarrow \frac{6 \times 7}{2}=21$ "unknown" entries in Q

تerm sparsity pattern graph G + chordal extension G^{\prime}

Replace Q by $Q_{G^{\prime}}$ with nonzero entries at edges of G^{\prime}
$\rightsquigarrow 6+9=15$ "unknown" entries in $Q_{G^{\prime}}$

Term sparsity: constrained

At step d of the hierarchy, tsp graph G has
Nodes $V=$ monomials of degree $\leqslant d$

Term sparsity: constrained

At step d of the hierarchy, tsp graph G has
Nodes $V=$ monomials of degree $\leqslant d$
Edges E with

$$
\{\alpha, \beta\} \in E \Leftrightarrow \alpha+\beta \in \operatorname{supp} f \bigcup \operatorname{supp} g_{j} \bigcup_{|\alpha| \leqslant d} 2 \alpha
$$

Term sparsity: constrained

At step d of the hierarchy, tsp graph G has
Nodes $V=$ monomials of degree $\leqslant d$
Edges E with

$$
\{\alpha, \beta\} \in E \Leftrightarrow \alpha+\beta \in \operatorname{supp} f \bigcup \operatorname{supp} g_{j} \bigcup^{\bigcup} 2 \alpha
$$

An example with $d=2$
$f=x_{1}^{4}+x_{1} x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} x_{4}^{2}$
$g_{1}=1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2} \quad g_{2}=1-x_{3} x_{4}$

Term sparsity: support extension

$$
\alpha^{\prime}+\beta^{\prime}=\alpha+\beta \text { and }(\alpha, \beta) \in E \Rightarrow\left(\alpha^{\prime}, \beta^{\prime}\right) \in E
$$

Term sparsity: constrained

At step d of the hierarchy, tsp graph G has
Nodes $V=$ monomials of degree $\leqslant d$

Term sparsity: constrained

At step d of the hierarchy, tsp graph G has
Nodes $V=$ monomials of degree $\leqslant d$
Edges E with

$$
\{\alpha, \beta\} \in E \Leftrightarrow \alpha+\beta \in \operatorname{supp} f \bigcup \operatorname{supp} g_{j} \bigcup_{|\alpha| \leqslant d} 2 \alpha
$$

\rightsquigarrow support extension

Term sparsity: constrained

At step d of the hierarchy, tsp graph G has
Nodes $V=$ monomials of degree $\leqslant d$
Edges E with

$$
\{\alpha, \beta\} \in E \Leftrightarrow \alpha+\beta \in \operatorname{supp} f \bigcup \operatorname{supp} g_{j} \bigcup_{|\alpha| \leqslant d} 2 \alpha
$$

\rightsquigarrow support extension \rightsquigarrow chordal extension G^{\prime}

Term sparsity: constrained

At step d of the hierarchy, tsp graph G has
Nodes $V=$ monomials of degree $\leqslant d$
Edges E with

$$
\{\alpha, \beta\} \in E \Leftrightarrow \alpha+\beta \in \operatorname{supp} f \bigcup \operatorname{supp} g_{j} \bigcup_{|\alpha| \leqslant d} 2 \alpha
$$

\rightsquigarrow support extension \rightsquigarrow chordal extension G^{\prime}

By iteratively performing support extension \& chordal extension

$$
G^{(1)}=G^{\prime} \subseteq \cdots \subseteq G^{(\ell)} \subseteq G^{(\ell+1)} \subseteq \cdots
$$

Two-level hierarchy of lower bounds for $f_{\text {min }}$, indexed by sparse order ℓ and relaxation order d

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]
The block structures converge to the one determined by the sign symmetries if the maximal chordal extension is used.

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

The block structures converge to the one determined by the sign symmetries if the maximal chordal extension is used.
$f=1+x_{1}^{2} x_{2}^{4}+x_{1}^{4} x_{2}^{2}+x_{1}^{4} x_{2}^{4}-x_{1} x_{2}^{2}-3 x_{1}^{2} x_{2}^{2}$
Newton polytope $\rightsquigarrow \mathscr{B}=\left(\begin{array}{lllll}1 & x_{1} x_{2} & x_{1} x_{2}^{2} & x_{1}^{2} x_{2} & x_{1}^{2} x_{2}^{2}\end{array}\right)$

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

The block structures converge to the one determined by the sign symmetries if the maximal chordal extension is used.

$$
\begin{aligned}
& f=1+x_{1}^{2} x_{2}^{4}+x_{1}^{4} x_{2}^{2}+x_{1}^{4} x_{2}^{4}-x_{1} x_{2}^{2}-3 x_{1}^{2} x_{2}^{2} \\
& \text { Newton polytope } \rightsquigarrow \mathscr{B}=\left(\begin{array}{lllll}
1 & x_{1} x_{2} & x_{1} x_{2}^{2} & x_{1}^{2} x_{2} & x_{1}^{2} x_{2}^{2}
\end{array}\right)
\end{aligned}
$$

$$
x_{2} \mapsto-x_{2}
$$

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

The block structures converge to the one determined by the sign symmetries if the maximal chordal extension is used.
$f=1+x_{1}^{2} x_{2}^{4}+x_{1}^{4} x_{2}^{2}+x_{1}^{4} x_{2}^{4}-x_{1} x_{2}^{2}-3 x_{1}^{2} x_{2}^{2}$
Newton polytope $\rightsquigarrow \mathscr{B}=\left(\begin{array}{lllll}1 & x_{1} x_{2} & x_{1} x_{2}^{2} & x_{1}^{2} x_{2} & x_{1}^{2} x_{2}^{2}\end{array}\right)$
$x_{2} \mapsto-x_{2}$

Sign symmetries blocks

$$
\left(1 \begin{array}{lll}
1 & x_{1} x_{2}^{2} & x_{1}^{2} x_{2}^{2}
\end{array}\right) \quad\left(\begin{array}{ll}
x_{1} x_{2} & x_{1}^{2} x_{2}
\end{array}\right)
$$

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

The block structures converge to the one determined by the sign symmetries if the maximal chordal extension is used.
$f=1+x_{1}^{2} x_{2}^{4}+x_{1}^{4} x_{2}^{2}+x_{1}^{4} x_{2}^{4}-x_{1} x_{2}^{2}-3 x_{1}^{2} x_{2}^{2}$
Newton polytope $\rightsquigarrow \mathscr{B}=\left(\begin{array}{lllll}1 & x_{1} x_{2} & x_{1} x_{2}^{2} & x_{1}^{2} x_{2} & x_{1}^{2} x_{2}^{2}\end{array}\right)$
$x_{2} \mapsto-x_{2}$

Sign symmetries blocks
$\left(1 \quad x_{1} x_{2}^{2} \quad x_{1}^{2} x_{2}^{2}\right) \quad\left(\begin{array}{ll}x_{1} x_{2} & x_{1}^{2} x_{2}\end{array}\right)$
Term sparsity blocks
$\left(1 x_{1} x_{2}^{2} \quad x_{1}^{2} x_{2}^{2}\right) \quad\left(x_{1} x_{2}\right) \quad\left(x_{1}^{2} x_{2}\right)$

Term sparsity

-̈̈ convergence guarantees

Term sparsity

酋 convergence guarantees
handles Combo with correlative sparsity

Term sparsity

酋 CONVERGENCE GUARANTEES

- handles Combo with correlative sparsity

1 Partition the variables w.r.t. the maximal cliques of the csp graph

Term sparsity

"̈. CONVERGENCE GUARANTEES

- handles Combo with correlative sparsity

1 Partition the variables w.r.t. the maximal cliques of the csp graph
2 For each subsystem involving variables from one maximal clique, apply the iterative procedure to exploit term sparsity

Term sparsity

"̈. CONVERGENCE GUARANTEES

- \quad handles Combo with correlative sparsity

1 Partition the variables w.r.t. the maximal cliques of the csp graph
2 For each subsystem involving variables from one maximal clique, apply the iterative procedure to exploit term sparsity
\ddot{f} two-level hierarchy of lower bounds for $f_{\min }$: CS-TSSOS hierarchy

Term sparsity

- \because - CONVERGENCE GUARANTEES

- handles Combo with correlative sparsity

1 Partition the variables w.r.t. the maximal cliques of the csp graph
2 For each subsystem involving variables from one maximal clique, apply the iterative procedure to exploit term sparsity
曾 two-level hierarchy of lower bounds for $f_{\min }$: CS-TSSOS hierarchy
$\ddot{\theta}$ Julia library TSSOS \rightarrow solve problems with $n=10^{3}$

Term sparsity

- \because - CONVERGENCE GUARANTEES

$\ddot{\square}$ handles Combo with correlative sparsity
1 Partition the variables w.r.t. the maximal cliques of the csp graph
2 For each subsystem involving variables from one maximal clique, apply the iterative procedure to exploit term sparsity
埳 two-level hierarchy of lower bounds for $f_{\min }$: CS-TSSOS hierarchy
$\ddot{\theta}$ Julia library TSSOS \rightarrow solve problems with $n=10^{3}$
$\ddot{\square}$ choice of the CHORDAL EXTENSION: min / max

Application to AC optimal power-flow

Minimize active power injections of an alternating current transmission network under physical + operational constraints

Application to AC optimal power-flow

Minimize active power injections of an alternating current transmission network under physical + operational constraints

Artificial version of the control problem for electricity transmission network

Application to AC optimal power-flow

Network $=$ Graph with buses N, from edges E, to edges E^{R}

Application to AC optimal power-flow

Network = Graph with buses N, from edges E, to edges E^{R} Generators at bus $i=G_{i}$, with power demand \mathbf{S}_{i}^{d}
V_{i} and $S_{k}^{g}=$ voltage at bus i and power generation at generator k

Application to AC optimal power-flow

Network = Graph with buses N, from edges E, to edges E^{R} Generators at bus $i=G_{i}$, with power demand \mathbf{S}_{i}^{d}
V_{i} and $S_{k}^{g}=$ voltage at bus i and power generation at generator k

Kirchhoff law: $I_{i}=\sum_{(i, j) \in E_{i} \cup E_{i}^{R}} I_{i j}+I_{i}^{\text {gr }}$

Application to AC optimal power-flow

Network = Graph with buses N, from edges E, to edges E^{R} Generators at bus $i=G_{i}$, with power demand \mathbf{S}_{i}^{d}
V_{i} and $S_{k}^{g}=$ voltage at bus i and power generation at generator k

Kirchhoff law: $I_{i}=\sum_{(i, j) \in E_{i} \cup E_{i}^{R}} I_{i j}+I_{i}^{\text {gr }}$

Ohm law: $\binom{I_{i j}}{I_{j i}}=\mathbf{Y}_{i j}\binom{V_{i}}{V_{j}}$

Application to AC optimal power-flow

Network = Graph with buses N, from edges E, to edges E^{R} Generators at bus $i=G_{i}$, with power demand \mathbf{S}_{i}^{d}
V_{i} and $S_{k}^{g}=$ voltage at bus i and power generation at generator k

Kirchhoff law: $I_{i}=\sum_{(i, j) \in E_{i} \cup E_{i}^{R}} I_{i j}+I_{i}^{\text {gr }}$

Ohm law: $\binom{I_{i j}}{I_{j i}}=\mathbf{Y}_{i j}\binom{V_{i}}{V_{j}}$
Relation power-voltage-current: $\sum_{k \in G_{i}} S_{k}^{g}-\mathbf{S}_{i}^{d}=V_{i} I_{i}{ }^{\star}$

Application to AC optimal power-flow

Network = Graph with buses N, from edges E, to edges E^{R} Generators at bus $i=G_{i}$, with power demand \mathbf{S}_{i}^{d}
V_{i} and $S_{k}^{g}=$ voltage at bus i and power generation at generator k

Kirchhoff law: $I_{i}=\sum_{(i, j) \in E_{i} \cup E_{i}^{R}} I_{i j}+I_{i}^{\text {gr }}$

Ohm law: $\binom{I_{i j}}{I_{j i}}=\mathbf{Y}_{i j}\binom{V_{i}}{V_{j}}$
Relation power-voltage-current: $\sum_{k \in G_{i}} S_{k}^{g}-\mathbf{S}_{i}^{d}=V_{i} I_{i}{ }^{\star}$
\rightsquigarrow leads to power-flow equations

Application to AC optimal power-flow

mb: maximal block size
gap: the optimality gap w.r.t. local optimal solution

n	m	CS $(d=2)$			CS-TSSOS $(d=2, \ell=1)$		
		mb	time	gap	mb	time	gap
1112	4613	231	3114	0.85%	39	46.6	0.86%
		496	-	-	31	410	0.25%
4356	18257	378	-	-	27	934	0.51%
6698	29283	1326	-	-	76	1886	0.47%

Moment-SOS hierarchies

Correlative sparsity

Term sparsity

Ideal sparsity

Ideal sparsity

$$
f_{\min }=\inf \left\{f\left(x_{1}, x_{2}\right): x_{1} x_{2}=0\right\}
$$

Ideal sparsity

$$
\begin{gathered}
f_{\min }=\inf \left\{f\left(x_{1}, x_{2}\right): x_{1} x_{2}=0\right\} \\
=\sup \left\{\lambda: f\left(x_{1}, x_{2}\right)-\lambda \geqslant 0 \text { whenever } x_{1} x_{2}=0\right\}
\end{gathered}
$$

Ideal sparsity

$$
\begin{gathered}
f_{\min }=\inf \left\{f\left(x_{1}, x_{2}\right): x_{1} x_{2}=0\right\} \\
=\sup \left\{\lambda: f\left(x_{1}, x_{2}\right)-\lambda \geqslant 0 \text { whenever } x_{1} x_{2}=0\right\} \\
=\sup \left\{\lambda: f\left(x_{1}, 0\right)-\lambda \geqslant 0, \quad f\left(0, x_{2}\right)-\lambda \geqslant 0\right\}
\end{gathered}
$$

Ideal sparsity

$$
\begin{gathered}
f_{\min }=\inf \left\{f\left(x_{1}, x_{2}\right): x_{1} x_{2}=0\right\} \\
=\sup \left\{\lambda: f\left(x_{1}, x_{2}\right)-\lambda \geqslant 0 \text { whenever } x_{1} x_{2}=0\right\} \\
=\sup \left\{\lambda: f\left(x_{1}, 0\right)-\lambda \geqslant 0, \quad f\left(0, x_{2}\right)-\lambda \geqslant 0\right\}
\end{gathered}
$$

$\ddot{\circ}$ replace $f\left(x_{1}, 0\right)-\lambda \geqslant 0$ by $f\left(x_{1}, 0\right)-\lambda=\sigma_{1}\left(x_{1}\right)$ with SOS σ_{1}

Ideal sparsity

$$
\begin{gathered}
f_{\min }=\inf \left\{f\left(x_{1}, x_{2}\right): x_{1} x_{2}=0\right\} \\
=\sup \left\{\lambda: f\left(x_{1}, x_{2}\right)-\lambda \geqslant 0 \text { whenever } x_{1} x_{2}=0\right\} \\
=\sup \left\{\lambda: f\left(x_{1}, 0\right)-\lambda \geqslant 0, \quad f\left(0, x_{2}\right)-\lambda \geqslant 0\right\}
\end{gathered}
$$

郘 replace $f\left(x_{1}, 0\right)-\lambda \geqslant 0$ by $f\left(x_{1}, 0\right)-\lambda=\sigma_{1}\left(x_{1}\right)$ with SOS σ_{1}

General ideal constraints $x_{i} x_{j}=0 \quad \forall(i, j) \in \bar{E}$

Ideal sparsity

$$
\begin{gathered}
f_{\min }=\inf \left\{f\left(x_{1}, x_{2}\right): x_{1} x_{2}=0\right\} \\
=\sup \left\{\lambda: f\left(x_{1}, x_{2}\right)-\lambda \geqslant 0 \text { whenever } x_{1} x_{2}=0\right\} \\
=\sup \left\{\lambda: f\left(x_{1}, 0\right)-\lambda \geqslant 0, \quad f\left(0, x_{2}\right)-\lambda \geqslant 0\right\}
\end{gathered}
$$

"̈' replace $f\left(x_{1}, 0\right)-\lambda \geqslant 0$ by $f\left(x_{1}, 0\right)-\lambda=\sigma_{1}\left(x_{1}\right)$ with $\operatorname{SOS} \sigma_{1}$

General ideal constraints $x_{i} x_{j}=0 \quad \forall(i, j) \in \bar{E}$
\rightsquigarrow max. cliques of the graph with vertices $\{1, \ldots, n\}$ \& edges E

Ideal sparsity

$$
\begin{gathered}
f_{\min }=\inf \left\{f\left(x_{1}, x_{2}\right): x_{1} x_{2}=0\right\} \\
=\sup \left\{\lambda: f\left(x_{1}, x_{2}\right)-\lambda \geqslant 0 \text { whenever } x_{1} x_{2}=0\right\} \\
=\sup \left\{\lambda: f\left(x_{1}, 0\right)-\lambda \geqslant 0, \quad f\left(0, x_{2}\right)-\lambda \geqslant 0\right\}
\end{gathered}
$$

"̈' replace $f\left(x_{1}, 0\right)-\lambda \geqslant 0$ by $f\left(x_{1}, 0\right)-\lambda=\sigma_{1}\left(x_{1}\right)$ with $\operatorname{SOS} \sigma_{1}$
General ideal constraints $x_{i} x_{j}=0 \quad \forall(i, j) \in \bar{E}$ \rightsquigarrow max. cliques of the graph with vertices $\{1, \ldots, n\}$ \& edges E

Theorem [Korda-Laurent-Magron-Steenkamp '22]

Ideal-sparse hierarchies provide better bounds than the dense ones

Accuracy

Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r s.t.

$$
A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{T} \quad \text { for } a_{\ell} \geqslant 0
$$

r is called the completely positive rank

Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r s.t.

$$
A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{T} \quad \text { for } a_{\ell} \geqslant 0
$$

r is called the completely positive rank
x hard to compute

Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r s.t.

$$
A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{T} \quad \text { for } a_{\ell} \geqslant 0
$$

r is called the completely positive rank
x hard to compute
\checkmark Relax/convexify with a linear program over measures

$$
r \geqslant \inf _{\mu}\left\{\int_{K_{A}} 1 d \mu: \int_{K_{A}} x_{i} x_{j} d \mu=A_{i j}(i, j \in V), \quad \operatorname{supp}(\mu) \subseteq K_{A}\right\}
$$

Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r s.t.

$$
A=\sum_{\ell=1}^{r} a_{\ell} a_{\ell}^{T} \quad \text { for } a_{\ell} \geqslant 0
$$

r is called the completely positive rank
x hard to compute
\checkmark Relax/convexify with a linear program over measures

$$
\begin{gathered}
r \geqslant \inf _{\mu}\left\{\int_{K_{A}} 1 d \mu: \int_{K_{A}} x_{i} x_{j} d \mu=A_{i j}(i, j \in V), \quad \operatorname{supp}(\mu) \subseteq K_{A}\right\} \\
K_{A}=\left\{\mathbf{x}: \sqrt{A_{i i}} x_{i}-x_{i} \geqslant 0, \quad A_{i j}-x_{i} x_{j} \geqslant 0(i, j) \in E_{A},\right. \\
\left.x_{i} x_{j}=0(i, j) \in \bar{E}_{A}, \quad A-\mathbf{x x}^{T} \succcurlyeq 0\right\}
\end{gathered}
$$

Application to matrix ranks

Random instances, order 2

Application to matrix ranks

Random instances, order 2

Application to matrix ranks

Random instances, order 2

Performance

AND
Accuracy

Conclusion

SPARSITY EXPLOItING CONVERGING HIERARCHIES to minimize polynomials, eigenvalue/trace, joint spectral radius

Conclusion

SPARSITY EXPLOItING CONVERGING HIERARCHIES to minimize polynomials, eigenvalue/trace, joint spectral radius

FASt implementation in Julia: TSSOS, NCTSSOS, SparseJSR

Conclusion

SPARSITY EXPLOItING CONVERGING HIERARCHIES to minimize polynomials, eigenvalue/trace, joint spectral radius

FASt implementation in Julia: TSSOS, NCTSSOS, SparseJSR
Combine correlative \& term sparsity for problems with $n=10^{3}$

Further topics

Correlative sparsity: convergence rate?

Further topics

Correlative sparsity: convergence rate?

Term sparsity: (smart) solution extraction

Further topics

Correlative sparsity: convergence rate?

Term sparsity: (smart) solution extraction

Ideal sparsity: tensor ranks?

Further topics

Correlative sparsity: convergence rate?

Term sparsity: (smart) solution extraction
Ideal sparsity: tensor ranks?
Numerical conditioning of sparse SDP relaxations?

Further topics

Correlative sparsity: convergence rate?

Term sparsity: (smart) solution extraction
Ideal sparsity: tensor ranks?
Numerical conditioning of sparse SDP relaxations?
棠 Tons of applications!

Take-away and advertisement

Why should you do polynomial optimization?

Take-away and advertisement

Why should you do polynomial optimization?
坃 powerful \& accurate MODELING tool for many applications

Take-away and advertisement

Why should you do polynomial optimization?
酋 powerful \& accurate MODELING tool for many applications
"̈̈- EFFICIENCY guaranteed on structured applications: deep learning, quantum information, energy networks

Take-away and advertisement

Why should you do polynomial optimization?
powerful \& accurate MODELING tool for many applications

- EFFICIENCY guaranteed on structured applications: deep learning, quantum information, energy networks

Complementary symmetry exploiting framework on Thursday by Tobias

Thank you for your attention!

https://homepages.laas.fr/vmagron

Magron \& Wang. Sparse polynomial optimization: theory and practice. To appear in Series on Optimization and Its Applications, World Scientific Press, 2022

Korda, Laurent, Magron \& Steenkamp. Exploiting ideal-sparsity in the generalized moment problem with application to matrix factorization ranks, arxiv:2209.09573

Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM Comp., 1972

Griewank \& Toint. Numerical experiments with partially separable optimization problems. Numerical analysis, 1984

Agler, Helton, McCullough \& Rodman. Positive semidefinite matrices with a given sparsity pattern. Linear algebra \& its applications, 1988

References

Blair \＆Peyton．An introduction to chordal graphs and clique trees．Graph theory \＆sparse matrix computation， 1993

Vandenberghe \＆Andersen．Chordal graphs and semidefinite optimization．Foundations \＆Trends in Optim．， 2015

Lasserre．Convergent SDP－relaxations in polynomial optimization with sparsity．SIAM Optim．， 2006

Waki，Kim，Kojima \＆Muramatsu．Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity．SIAM Optim．， 2006

Magron，Constantinides，\＆Donaldson．Certified Roundoff Error Bounds Using Semidefinite Programming． Trans．Math．Softw．， 2017

Magron．Interval Enclosures of Upper Bounds of Roundoff Errors Using Semidefinite Programming．Trans． Math．Softw．， 2018

Josz \＆Molzahn．Lasserre hierarchy for large scale polynomial optimization in real and complex variables． SIAM Optim．， 2018

Weisser，Lasserre \＆Toh．Sparse－BSOS：a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity．Math．Program．， 2018

Chen，Lasserre，Magron \＆Pauwels．A sublevel Moment－SOS hierarchy for polynomial optimization， Computational Optimization and Applications， 2022

References

Chen, Lasserre, Magron \& Pauwels. Semialgebraic Optimization for Bounding Lipschitz Constants of ReLU Networks. NeurIPS 2020

Chen, Lasserre, Magron \& Pauwels. Semialgebraic Representation of Monotone Deep Equilibrium Models and Applications to Certification. NeuRIPS 2021
Mai, Lasserre \& Magron. A sparse version of Reznick's Positivstellensatz, Math OR, 2022
Tacchi, Weisser, Lasserre \& Henrion. Exploiting sparsity for semi-algebraic set volume computation. Foundations of Comp. Math., 2021

Tacchi, Cardozo, Henrion \& Lasserre. Approximating regions of attraction of a sparse polynomial differential system. IFAC, 2020

Schlosser \& Korda. Sparse moment-sum-of-squares relaxations for nonlinear dynamical systems with guaranteed convergence. arxiv:2012.05572

Zheng \& Fantuzzi. Sum-of-squares chordal decomposition of polynomial matrix inequalities.
arxiv:2007.11410

References

Klep, Magron \& Povh. Sparse Noncommutative Polynomial Optimization. Math Prog. A, arxiv:1909.00569 NCSOStools

Reznick. Extremal PSD forms with few terms. Duke mathematical journal, 1978
Wang, Magron \& Lasserre. TSSOS: A Moment-SOS hierarchy that exploits term sparsity. SIAM Optim., 2021 TSSOS

Wang, Magron \& Lasserre. Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension. SIAM Optim., 2021

Wang, Magron, Lasserre \& Mai. CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization. Trans. Math. Soft., 2022

Magron \& Wang. TSSOS: a Julia library to exploit sparsity for large-scale polynomial optimization, MEGA, 2021

Parrilo \& Jadbabaie. Approximation of the joint spectral radius using sum of squares. Linear Algebra \& its Applications, 2008

Wang, Maggio \& Magron. SparseJSR: A fast algorithm to compute joint spectral radius via sparse sos decompositions. ACC 2021

References

Vreman, Pazzaglia, Wang, Magron \& Maggio. Stability of control systems under extended weakly-hard constraints. arxiv:2101.11312

Wang \& Magron. Exploiting Sparsity in Complex Polynomial Optimization. arxiv:2103.12444
Wang \& Magron. Exploiting term sparsity in Noncommutative Polynomial Optimization. Computational Optimization \& Applications, arxiv:2010.06956

NCTSSOS
Navascués, Pironio \& Acín. A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New Journal of Physics, 2008

Klep, Magron \& Volčič. Optimization over trace polynomials. Annales Henri Poincaré, 2021

