Semidefinite Approximations of Reachable Sets for Discrete-time Polynomial Systems

Victor Magron, CNRS

Joint work with Pierre-Loïc Garoche (ONERA) Didier Henrion (LAAS) Xavier Thirioux (IRIT)

> SIAG 3 August 2017

The Problem

- Semialgebraic initial conditions $\mathbf{X}_0 := \{ \mathbf{x} \in \mathbb{R}^n : g_1^0(\mathbf{x}) \ge 0, \dots, g_{m_0}^0(\mathbf{x}) \ge 0 \}$
- Polynomial map $f : \mathbb{R}^n \to \mathbb{R}^n$, $\mathbf{x} \mapsto f(\mathbf{x}) := (f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$
- Set of admissible trajectories $\mathbf{X}^{\infty} := \{(\mathbf{x}_t)_{t \in \mathbb{N}} : \mathbf{x}_{t+1} = f(\mathbf{x}_t), \forall t \in \mathbb{N}, \mathbf{x}_0 \in \mathbf{X}_0\}$

- $\mathbf{X}^{\infty} = \bigcup_{t \in \mathbb{N}} f^t(\mathbf{X}_0) \subseteq \mathbf{X} \subset \mathbb{R}^n$ (box or ball)
- Tractable approximations of **X**[∞] ?

The Problem

Occurs in several contexts :

1 program analysis: fixpoint computation

```
toyprogram (x_1, x_2)
requires (0.25 \le x_1 \le 0.75 \&\& 0.25 \le x_2 \le 0.75);
while (x_1^2 + x_2^2 \le 1) {
       x_1 = x_1 + 2x_1x_2;
            x_2 = 0.5(x_2 - 2x_1^3);
      }
```

2 hybrid systems, biology: Neuron Model, Growth Model

3 control: integrator, Hénon map

Related work: LP relaxations

- Contractive methods based on LP relaxations and polyhedra projection [Bertsekas 72]
- 2 Extension to nonlinear systems [Harwood et al. 16]
- **3** Bernstein/Krivine-Handelman representations [Ben Sassiet al. 15, Ben Sassi et al. 12]

 \oplus LP relaxations \implies scalability

 \bigcirc Convex approximations of nonconvex sets \implies coarse

 \bigcirc No convergence guarantees (very often)

Related work: SDP relaxations

- Upper bounds of the volume of a semialgebraic set [Henrion et al. 09]
- 2 Tractable approximations of sets defined with quantifiers
 ∃, ∀ [Lasserre 15]
- 3 Semidefinite characterization of region of attraction [Henrion-Korda 14]
- Convex computation of maximum controlled invariant [Korda-Henrion-Jones 13]

Related work: SDP relaxations

- 5 SDP approximation of polynomial images of semialgebraic sets [M.-Henrion-Lasserre 15]
- $X_1 := f(X_0) \subseteq X$, with $X \subset \mathbb{R}^n$ a box or a ball \implies Discrete-time system with a single iteration
- V Approximation of image measure supports
 ⇒ certified SDP over approximations of X₁

 $\bullet \mathbf{X}_t := f^t(\mathbf{X}_0)$

 \bigcirc deg $f^t = d \times t \implies$ very expensive computation

 \bigcirc Would only approximate X_t and not X^{∞}

Victor Magron

Contribution

■ General framework to approximate X[∞]
 ⊕ No discretization is required

Contribution

- General framework to approximate X[∞]
 ⊕ No discretization is required
- Infinite-dimensional LP formulation
 i support of measures solving Liouville's Equation

- General framework to approximate X[∞]
 ⊕ No discretization is required
- Infinite-dimensional LP formulation
 i support of measures solving Liouville's Equation
- Finite-dimensional SDP relaxations

■ $\mathbf{X}^{\infty} \subseteq \mathbf{X}^r := {\mathbf{x} \in \mathbf{X} : w_r(\mathbf{x}) \ge 1}$ \oplus Strong convergence guarantees $\lim_{r\to\infty} \operatorname{vol}(\mathbf{X}^r \setminus \mathbf{X}^{\infty}) = 0$ \oplus Compute w_r by solving one semidefinite program

The Problem

Infinite LP Formulation for Polynomial Optimization

Infinite LP Formulation for Reachable Sets (RS)

Application Examples

Conclusion

What is Semidefinite Programming?

Linear Programming (LP):

 $\min_{\mathbf{z}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{z} \\ \text{s.t.} \quad \mathbf{A} \mathbf{z} \ge \mathbf{d} \ .$

Linear cost c

• Linear inequalities " $\sum_i A_{ij} z_j \ge d_i$ "

Polyhedron

What is Semidefinite Programming?

Semidefinite Programming (SDP):

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z} \\ \text{s.t.} \quad \sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} \ .$$

- Symmetric matrices **F**₀, **F**_{*i*}
- Linear matrix inequalities "F ≽ 0" (F has nonnegative eigenvalues)

Spectrahedron

What is Semidefinite Programming?

Semidefinite Programming (SDP):

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{z} \\ \text{s.t.} \quad \sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} \quad , \quad \mathbf{A} \mathbf{z} = \mathbf{d} \quad .$$

- Symmetric matrices **F**₀, **F**_{*i*}
- Linear matrix inequalities "F ≽ 0" (F has nonnegative eigenvalues)

Spectrahedron

Applications of SDP

- Combinatorial optimization
- Control theory
- Matrix completion
- Unique Games Conjecture (Khot '02) : "A single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems." (Barak and Steurer survey at ICM'14)
- Solving polynomial optimization (Lasserre '01)

Polynomial Optimization

• Semialgebraic set $\mathbf{X} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_l(\mathbf{x}) \ge 0\}$

•
$$p^* := \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$$
: NP hard

Sums of squares
$$\Sigma[\mathbf{x}]$$

e.g. $x_1^2 - 2x_1x_2 + x_2^2 = (x_1 - x_2)^2$

• Quadratic module

$$Q(\mathbf{X}) := \left\{ \sigma_0(\mathbf{x}) + \sum_{j=1}^l \sigma_j(\mathbf{x}) g_j(\mathbf{x}), \text{ with } \sigma_j \in \Sigma[\mathbf{x}] \right\}$$

$$\bullet \overleftarrow{V} \quad f \in \mathcal{Q}(\mathbf{X}) \Longrightarrow \forall \mathbf{x} \in \mathbf{X}, f(\mathbf{x}) \ge 0$$

Infinite LP Reformulation

- **Borel** σ -algebra $\mathcal{B}(\mathbf{X})$ (generated by the open sets of \mathbf{X})
- *M*₊(X): set of Borel measures supported on X. If µ ∈ *M*₊(X) then
 µ : B → [0,∞), µ(Ø) = 0

2 $\mu(\bigcup_i B_i) = \sum_i \mu(B_i)$, for any disjoint countable $(B_i) \subset \mathcal{B}(\mathbf{X})$

3 Lebesgue **Volume** of $B \in \mathcal{B}(\mathbf{X})$

$$\operatorname{vol} B := \int_{\mathbf{X}} \lambda_B$$
, with $\lambda_B(d\mathbf{x}) := \mathbf{1}_B(\mathbf{x}) d\mathbf{x}$

• supp μ is the smallest set **X** such that $\mu(\mathbb{R}^n \setminus \mathbf{X}) = 0$

Victor Magron

Infinite LP Reformulation

$$f^* = \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) = \inf_{\mu \in \mathcal{M}_+(\mathbf{X})} \int_{\mathbf{X}} f d\mu$$

Primal-dual Moment-SOS [Lasserre 01]

• Let $(\mathbf{x}^{\alpha})_{\alpha \in \mathbb{N}^n}$ be the monomial basis

Definition

A sequence **z** has a representing measure on **X** if there exists a finite measure μ supported on **X** such that

$$\mathbf{z}_{lpha} = \int_{\mathbf{X}} \mathbf{x}^{lpha} \mu(d\mathbf{x}), \quad \forall \, lpha \in \mathbb{N}^n$$

Primal-dual Moment-SOS [Lasserre 01]

• $\mathcal{M}_+(\mathbf{X})$: space of probability measures supported on \mathbf{X}

• $Q(\mathbf{X})$: quadratic module

Polynomial Optimization Problems (POP)

 $\mathcal{Q}(\mathbf{X})$ Archimedean: $\exists N > 0 \text{ s.t. } N - \|\mathbf{x}\|_2^2 \in \mathcal{Q}(\mathbf{X}) \implies$

Primal-dual Moment-SOS [Lasserre 01]

Finite moment sequences z of measures in $\mathcal{M}_+(X)$

■ Truncated quadratic module

$$Q_r(\mathbf{X}) := \left\{ \sigma_0 + \sum_{j=1}^l \sigma_j g_j, \deg(g_j \sigma_j) \leq 2r, \sigma_j \in \Sigma[\mathbf{x}] \right\}$$

Polynomial Optimization Problems (POP)

• F_0, F_α symmetric real matrices, cost vector *c*

Primal-dual pair of semidefinite programs:

$$(SDP) \begin{cases} \mathcal{P}: & \inf_{z} \quad \sum_{\alpha} c_{\alpha} \mathbf{z}_{\alpha} \\ & \text{s.t.} \quad \sum_{\alpha} F_{\alpha} \mathbf{z}_{\alpha} - F_{0} \geq 0 \\ \mathcal{D}: & \sup_{\mathbf{Y}} \quad \text{Trace} \left(F_{0} \mathbf{Y}\right) \\ & \text{s.t.} \quad \text{Trace} \left(F_{\alpha} \mathbf{Y}\right) = c_{\alpha} \quad , \quad \mathbf{Y} \geq 0 \end{cases}$$

■ Freely available SDP solvers (CSDP, SDPA, SEDUMI)

The Problem

Infinite LP Formulation for Polynomial Optimization

Infinite LP Formulation for Reachable Sets (RS)

Application Examples

Conclusion

- Let $\mu_0 \in \mathcal{M}_+(\mathbf{X}_0)$
- **Pushforward** $f_{\#} : \mathcal{M}_+(\mathbf{X}_0) \to \mathcal{M}_+(\mathbf{X})$:

 $f_{\text{\#}}\,\mu_0(\mathbf{A}) := \mu_0(\{\mathbf{x} \in \mathbf{X}_0 : f(\mathbf{x}) \in \mathbf{A}\})\,, \quad \forall \mathbf{A} \in \mathcal{B}(\mathbf{X})$

• $f_{\#} \mu_0$ is the **image measure** of μ_0 under *f*

• Let $\mu_0 \in \mathcal{M}_+(\mathbf{X}_0)$ and

 $\mu_1 := f_\# \mu_0$

. . .

$$\mu_t := f_{\#} \mu_{t-1}$$
$$\nu_t := \sum_{i=0}^{t-1} \mu_i = \sum_{i=0}^{t-1} f_{\#}^i \mu_0$$

• The measures μ_t , ν_t , μ_0 satisfy **Liouville's Equation**:

$$\mu_t + \nu_t = f_{\#} \nu_t + \mu_0$$

- Let $\mu_t := \lambda_{\mathbf{X}_t}$: Lebesgue measure on $\mathbf{X}_t = f^t(\mathbf{X}_0)$
- $\exists \mu_{0,t} \in \mathcal{M}_+(\mathbf{X}_0)$ s.t. $\mu_t = f_{\#}^t \mu_{0,t}$ $\implies \mu_t$ satisfies Liouville's Equation.

- Let $\mu_t := \lambda_{\mathbf{X}_t}$: Lebesgue measure on $\mathbf{X}_t = f^t(\mathbf{X}_0)$
- $\exists \mu_{0,t} \in \mathcal{M}_+(\mathbf{X}_0)$ s.t. $\mu_t = f_{\#}^t \mu_{0,t}$ $\implies \mu_t$ satisfies Liouville's Equation.
- Let $\lambda_{\mathbf{X}^T}$: Lebesgue measure restriction on $\mathbf{X}^T := \bigcup_{t=0}^T \mathbf{X}_t$ $\implies \lambda_{\mathbf{X}^T}$ satisfies **Liouville's Equation** by superposition

- Let $\mu_t := \lambda_{\mathbf{X}_t}$: Lebesgue measure on $\mathbf{X}_t = f^t(\mathbf{X}_0)$
- $\exists \mu_{0,t} \in \mathcal{M}_+(\mathbf{X}_0)$ s.t. $\mu_t = f_{\#}^t \mu_{0,t}$ $\implies \mu_t$ satisfies Liouville's Equation.
- Let $\lambda_{\mathbf{X}^T}$: Lebesgue measure restriction on $\mathbf{X}^T := \bigcup_{t=0}^T \mathbf{X}_t$ $\implies \lambda_{\mathbf{X}^T}$ satisfies **Liouville's Equation** by superposition $\lambda_{\mathbf{X}^T} + \nu^T = f_{\#} \nu^T + u_0^T$

 ν^T average **occupation measure**: measures time spent in \mathbf{X}^T

Infinite Dimensional LP Formulation

Volume Assumption

Define
$$\mathbf{Y}^0 := \mathbf{X}^0$$
 and $\mathbf{Y}^t := \mathbf{X}_t \setminus \mathbf{X}^{t-1}$.

$$\lim_{T\to\infty}\sum_{t=0}^{T}t\operatorname{vol}\mathbf{Y}^{t}\leqslant\infty.$$

Infinite Dimensional LP Formulation

Volume Assumption

Define
$$\mathbf{Y}^0 := \mathbf{X}^0$$
 and $\mathbf{Y}^t := \mathbf{X}_t \setminus \mathbf{X}^{t-1}$.

$$\lim_{T\to\infty}\sum_{t=0}^T t \operatorname{vol} \mathbf{Y}^t \leqslant \infty.$$

Lemma

Under Volume Assumption, $\lambda_{\mathbf{X}^{\infty}}$ satisfies Liouville's Equation

Infinite Dimensional LP Formulation

Volume Assumption

Define
$$\mathbf{Y}^0 := \mathbf{X}^0$$
 and $\mathbf{Y}^t := \mathbf{X}_t \setminus \mathbf{X}^{t-1}$.

$$\lim_{T\to\infty}\sum_{t=0}^T t \operatorname{vol} \mathbf{Y}^t \leqslant \infty.$$

Lemma

Under Volume Assumption, $\lambda_{\mathbf{X}^{\infty}}$ satisfies Liouville's Equation

Proof

$$\lambda_{\mathbf{X}^T} = \sum_{t=0}^T \lambda_{\mathbf{Y}^t} \to \lambda_{\mathbf{X}^\infty} \text{ as } T \to \infty$$

$$\mu_t + \nu_t = f_{\#} \nu_t + \mu_{0,t} \implies \nu^T := \sum_{t=0}^T \nu_t \text{ has mass}$$

$$\leq \sum_{t=0}^T t \text{ vol } \mathbf{Y}^t$$

Infinite Primal LP for RS Characterization

$$p^{T} := \sup_{\mu_{0}, \mu, \nu} \int_{\mathbf{X}} \mu$$

s.t. $\int_{\mathbf{X}} \nu \leq T \operatorname{vol} \mathbf{X},$
 $\mu + \nu = f_{\#} \nu + \mu_{0},$
 $\mu \leq \lambda_{\mathbf{X}},$
 $\mu_{0} \in \mathcal{M}_{+}(\mathbf{X}_{0}), \quad \mu, \nu \in \mathcal{M}_{+}(\mathbf{X}).$

Infinite Primal LP for RS Characterization

$$p^{T} := \sup_{\mu_{0}, \mu, \nu} \quad \int_{\mathbf{X}} \mu$$

s.t.
$$\int_{\mathbf{X}} \nu \leqslant T \operatorname{vol} \mathbf{X},$$
$$\mu + \nu = f_{\#} \nu + \mu_{0},$$
$$\mu \leqslant \lambda_{\mathbf{X}},$$
$$\mu_{0} \in \mathcal{M}_{+}(\mathbf{X}_{0}), \quad \mu, \nu \in \mathcal{M}_{+}(\mathbf{X}).$$

Lemma

Optimal solution μ^{*} := λ_{S^T} for some S^T s.t. X^T ⊆ S^T ⊆ X̄[∞]
 Under Volume Assumption, S^T = X̄[∞]

The LP can be cast as follows:

$$p^{T} = \sup_{x} \langle x, c \rangle_{1}$$

s.t. $\mathcal{A} x = b$,
 $x \in E_{1}^{+}$,

The LP can be cast as follows:

$$v^{T} = \sup_{x} \langle x, c \rangle_{1}$$

s.t. $\mathcal{A} x = b$,
 $x \in E_{1}^{+}$,

with

•
$$E_1 := \mathcal{M}(\mathbf{X}_0) \times \mathcal{M}(\mathbf{X})^3$$
 $F_1 := \mathcal{C}(\mathbf{X}_0) \times \mathcal{C}(\mathbf{X})^3$

• $x = (\mu_0, \mu, \hat{\mu}, \nu, a)$ c = (0, 1, 0, 0, 0) $b = (T \operatorname{vol} \mathbf{X}, 0, \lambda_{\mathbf{X}})$

• the linear operator $\mathcal{A} : E_1 \to E_2$ given by

$$\mathcal{A}(\mu_0,\mu,\hat{\mu},\nu,a) := \begin{bmatrix} \int_{\mathbf{X}} \nu + a \\ \mu + \nu - f_{\#} \nu - \mu_0 \\ \mu + \hat{\mu} \end{bmatrix}$$

Victor Magron

with

•
$$y := (u, v, w) \in \mathbb{R} \times \mathcal{C}(\mathbf{X})^2$$

• $\mathcal{A}'(u, v, w) := \begin{bmatrix} -v \\ w + v \\ w \\ u + v - v \circ f \\ -v \end{bmatrix}$

Victor Magron

SDP Approximations of Reachable Sets

•

Dual LP Primal LP $d^{T} := \inf_{u,v,w} \left(\int w(\mathbf{x}) + Tu \right) \lambda_{\mathbf{X}}(d\mathbf{x})$ $p^T := \sup_{\mu_0, \mu, \nu} \quad \int_{\mathbf{X}} \mu$ s.t. $v \in \mathcal{C}_+(\mathbf{X}_0)$, s.t. $\int_{\mathbf{x}} \nu \leq T \operatorname{vol} \mathbf{X}$, $w-v-1 \in \mathcal{C}_+(\mathbf{X})$, $u+\nu=f_{\#}\nu+\mu_0,$ $w \in \mathcal{C}_+(\mathbf{X})$, $\mu \leq \lambda_{\mathbf{X}}$, $u + v \circ f - v \in \mathcal{C}_+(\mathbf{X})$, $\mu_0 \in \mathcal{M}_+(\mathbf{X}_0)$, $u \ge 0$. $\mu, \nu \in \mathcal{M}_+(\mathbf{X})$. $u \in \mathbb{R}, v, w \in \mathcal{C}(\mathbf{X})$.

Lemma

1 $p^T = d^T$ and \exists minimizing sequence (u_k, v_k, w_k) for dual LP. 2 $u_k = 0 \implies$ Volume Assumption $\implies p^T = d^T = \operatorname{vol} \overline{\mathbf{X}}^{\infty}$

Strong Convergence Properties

Strengthening of the dual LP:

$$d_r^T := \inf_{u,v,w} \sum_{\beta \in \mathbb{N}_{2r}^n} w_\beta z_\beta^{\mathbf{X}} + uT z_0^{\mathbf{X}}$$

s.t. $v \in \mathcal{Q}_r(\mathbf{X}_0)$,
 $w - v - 1 \in \mathcal{Q}_r(\mathbf{X})$,
 $u + v \circ f - v \in \mathcal{Q}_{rd}(\mathbf{X})$,
 $w \in \mathcal{Q}_r(\mathbf{X})$,
 $u \in \mathbb{R}^+$.

Strong Convergence Properties

Theorem

Assume that \mathbf{X}^0 , \mathbf{S}^T , $\mathbf{X} \setminus \mathbf{S}^T$ have nonempty interior.

1 No duality gap between primal and dual SDP: $p_r^T = d_r^T$.

Theorem

Assume that \mathbf{X}^0 , \mathbf{S}^T , $\mathbf{X} \setminus \mathbf{S}^T$ have nonempty interior.

- **1** No duality gap between primal and dual SDP: $p_r^T = d_r^T$.
- **2** Dual SDP has optimal solution (u_r, v_r, w_r) :

$$\lim_{r\to\infty}\int_{\mathbf{X}}|w_r+u_rT-\mathbf{1}_{\mathbf{S}^T}|=0.$$

Theorem

Assume that \mathbf{X}^0 , \mathbf{S}^T , $\mathbf{X} \setminus \mathbf{S}^T$ have nonempty interior.

- **1** No duality gap between primal and dual SDP: $p_r^T = d_r^T$.
- **2** Dual SDP has optimal solution (u_r, v_r, w_r) :

$$\lim_{r\to\infty}\int_{\mathbf{X}}|w_r+u_rT-\mathbf{1}_{\mathbf{S}^T}|=0.$$

3 Let $\mathbf{X}_r^T := {\mathbf{x} \in \mathbf{X} : v_r(\mathbf{x}) + u_r T \ge 0} \supseteq \mathbf{X}^T$.

Theorem

Assume that \mathbf{X}^0 , \mathbf{S}^T , $\mathbf{X} \setminus \mathbf{S}^T$ have nonempty interior.

- **1** No duality gap between primal and dual SDP: $p_r^T = d_r^T$.
- **2** Dual SDP has optimal solution (u_r, v_r, w_r) :

$$\lim_{r\to\infty}\int_{\mathbf{X}}|w_r+u_rT-\mathbf{1}_{\mathbf{S}^T}|=0.$$

3 Let
$$\mathbf{X}_r^T := {\mathbf{x} \in \mathbf{X} : v_r(\mathbf{x}) + u_r T \ge 0} \supseteq \mathbf{X}^T$$
.
4 $u_r = 0 \Rightarrow$ Volume Assumption $\Rightarrow \lim_{r \to \infty} \operatorname{vol}(\mathbf{X}_r^{\infty} \setminus \mathbf{X}^{\infty}) = 0$.

The Problem

Infinite LP Formulation for Polynomial Optimization

Infinite LP Formulation for Reachable Sets (RS)

Application Examples

Conclusion

Trajectories from $X_0 := \{x \in \mathbb{R}^2 : (x_1 - \frac{1}{2})^2 + (x_2 - \frac{1}{2})^2 \leq \frac{1}{4}\}$ under $x_1^+ := \frac{1}{2}(x_1 + 2x_1x_2)$, $x_2^+ := \frac{1}{2}(x_2 - 2x_1^3)$, 0.8 0.6 0.4 0.2 > 0 0.2 -0.4 -0.6 -0.8 -1

 X_2^{∞}

Trajectories from $X_0 := \{x \in \mathbb{R}^2 : (x_1 - \frac{1}{2})^2 + (x_2 - \frac{1}{2})^2 \leq \frac{1}{4}\}$ under $x_1^+ := rac{1}{2}(x_1 + 2x_1x_2)$, $x_2^+ := rac{1}{2}(x_2 - 2x_1^3)$, 0.8 0.6 0.4 0 0. -0.4 -0.6 0.8

 X_3^∞

Trajectories from $X_0 := \{x \in \mathbb{R}^2 : (x_1 - \frac{1}{2})^2 + (x_2 - \frac{1}{2})^2 \leq \frac{1}{4}\}$ under $x_1^+ := rac{1}{2}(x_1 + 2x_1x_2)$, $x_2^+ := rac{1}{2}(x_2 - 2x_1^3)$, 0.8 0.6 0.4 -0.2 -0.4 -0.6 -0.8 -1 -0.5

 X_{4}^{∞}

Trajectories from $X_0 := \{x \in \mathbb{R}^2 : (x_1 - \frac{1}{2})^2 + (x_2 - \frac{1}{2})^2 \leq \frac{1}{4}\}$ under $x_1^+ := rac{1}{2}(x_1 + 2x_1x_2)$, $x_2^+ := rac{1}{2}(x_2 - 2x_1^3)$, 0.8 0.6 0.4 0 -0.4 -0.6 -0.8

Trajectories from $X_0 := \{x \in \mathbb{R}^2 : (x_1 - \frac{1}{2})^2 + (x_2 - \frac{1}{2})^2 \leq \frac{1}{4}\}$ under $x_1^+ := rac{1}{2}(x_1 + 2x_1x_2)$, $x_2^+ := \frac{1}{2}(x_2 - 2x_1^3)$, 0.8 0.6 0.4 0.2 x -0.2 -0.4 -0.6 -0.8

-0.5 0 0.5 X

 X_6^∞

Trajectories from $X_0 := \{x \in \mathbb{R}^2 : (x_1 - \frac{1}{2})^2 + (x_2 - \frac{1}{2})^2 \leq \frac{1}{4}\}$ under $x_1^+ := \frac{1}{2}(x_1 + 2x_1x_2)$, $x_2^+ := \frac{1}{2}(x_2 - 2x_1^3)$, 0.8 0.6 0.4 0.2 -0.2 -0.4 0. -0.8

 X_7^{∞}

SDP Approximations of Reachable Sets

0.5

 X_5^{∞}

 X_5^{∞} with $c_1 = -0.7$ and $c_2 = 0.2$

Victor Magron

Trajectories from $\mathbf{X}_0 := \{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2^2 \leq 0.1^2\}$ under

$$x_1^+ := x_1^2 - x_2^2 + c_1$$
,
 $x_2^+ := 2x_1x_2 + c_2$,

$$\mathbf{X}_5^{\infty}$$
 with $c_1 = -0.7$ and $c_2 = -0.2$

Victor Magron

 X_5^{∞} with $c_1 = -0.9$ and $c_2 = 0.2$

Victor Magron

Trajectories from $\mathbf{X}_0 := {\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2^2 \leq 0.1^2}$ under

 X_5^{∞} with $c_1 = -0.9$ and $c_2 = -0.2$

Victor Magron

The Problem

Infinite LP Formulation for Polynomial Optimization

Infinite LP Formulation for Reachable Sets (RS)

Application Examples

Conclusion

⊕ Certified Approximation of the whole reachable set X[∞]
 ⊖ Computational complexity: $\binom{n+2rd}{n}$ SDP variables
 ⊕ Structure sparsity can be exploited

Further research:

- Volume Assumption: $\lim_{T\to\infty} \sum_{t=0}^{T} t \operatorname{vol} \mathbf{Y}^t \leq \infty$ always true?
- finite time, continuous setting? **V**Use previous framework approximating:
 - 1 region of attraction

 - 2 maximum controlled invariant

Bibliography

- V. Magron, D. Henrion, and J.-B. Lasserre. Semidefinite Approximations of Projections and Polynomial Images of SemiAlgebraic Sets. *SIAM Journal on Optimization*, 25(4):2143–2164, 2015.
- M. A. Ben Sassi, S. Sankaranarayanan, X. Chen, and E. Ábrahám. Linear relaxations of polynomial positivity for polynomial Lyapunov function synthesis. *IMA Journal of Mathematical Control and Information*, 2015.

- M. A. Ben Sassi, R. Testylier, T. Dang, and A. Girard. Reachability analysis of polynomial systems using linear programming relaxations. *ATVA 2012*, pages 137–151.
- D. Bertsekas. Infinite time reachability of state-space regions by using feedback control. *IEEE Transactions on Automatic Control*, 17(5):604–613, Oct 1972.
- S. M. Harwood and P. I. Barton. Efficient polyhedral enclosures for the reachable set of nonlinear control systems. *Mathematics of Control, Signals, and Systems*, 28(1):1–33, 2016.
- D. Henrion and M. Korda. Convex Computation of the Region of Attraction of Polynomial Control Systems. Automatic Control, IEEE Transactions on, 59(2):297–312, 2014.
- D. Henrion, J. Lasserre, and C. Savorgnan. Approximate Volume and Integration for Basic Semialgebraic Sets. *SIAM Review*, 51(4):722–743, 2009.
- M. Korda, D. Henrion, and C. N. Jones. Convex computation of the maximum controlled invariant set for discrete-time polynomial control systems. In *Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on*, pages 7107–7112, Dec 2013.

Thank you for your attention!

 V. Magron, P.-L. Garoche, D. Henrion and X. Thirioux. Semidefinite Approximations of Reachable Sets for Discrete-time Polynomial Systems. arxiv.org/abs/1703.05085

```
http://www-verimag.imag.fr/~magron
```