Large-scale noncommutative optimization & applications to quantum information

Victor Magron, MAC Team

Workshop Technologies Quantiques, LAAS 10 March 2021

General idea

Verification/analysis of quantum systems

... CAST AS CERTIFIED OPTIMIZATION \rightsquigarrow SOLVE **OFFLINE** Input: linear (LP) \checkmark semidefinite (SDP) polynomial \checkmark Output: value + certificate

Victor Magron

Large-scale noncommutative POP & quantum information

Entanglement in quantum mechanics

 \rightarrow upper bounds for violation levels of Bell inequalities

Conditional probabilities p(i, j) generated by Alice & Bob after performing measurements on a shared entangled state

Entanglement in quantum mechanics

 \rightarrow upper bounds for violation levels of Bell inequalities

Conditional probabilities p(i, j) generated by Alice & Bob after performing measurements on a shared entangled state "In the classical world" $\rightarrow \sum c_{i,j}p(i, j) \leq C$

Entanglement in quantum mechanics

 \rightarrow upper bounds for violation levels of Bell inequalities

Conditional probabilities p(i, j) generated by Alice & Bob after performing measurements on a shared entangled state "In the classical world" $\rightarrow \sum c_{i,j}p(i, j) \leq C$

 $p(i, j) = \mathbf{v} x_i y_j \mathbf{v}$ for unit \mathbf{v} & self-adjoint (projection) x_i, y_j Finding violation \rightarrow solving a **maximal** eigenvalue problem!

Entanglement in quantum mechanics

 \rightarrow upper bounds for violation levels of Bell inequalities

Conditional probabilities p(i, j) generated by Alice & Bob after performing measurements on a shared entangled state "In the classical world" $\rightarrow \sum c_{i,j}p(i,j) \leq C$

 $p(i, j) = \mathbf{v} x_i y_j \mathbf{v}$ for unit \mathbf{v} & self-adjoint (projection) x_i, y_j Finding violation \rightarrow solving a **maximal** eigenvalue problem!

[Pozas et al 19] extension \rightarrow identify correlations not attainable in entanglement-swapping scenario (quantum teleportation)

quantum physics operators x_i, y_j satisfy causal constraints:

trace
$$(x_1x_2y_1y_2) - \text{trace}(x_1x_2) \text{trace}(y_1y_2) = 0.$$

Victor Magron

Large-scale noncommutative POP & quantum information

Ground-state energy \Leftrightarrow minimal eigenvalue of an Hamiltonian

$$H = \sum_{\langle i,j \rangle} \left(x_i \, x_j + y_i \, y_j + z_i \, z_j \right)$$

Ground-state energy \Leftrightarrow minimal eigenvalue of an Hamiltonian

$$H = \sum_{\langle i,j \rangle} \left(x_i \, x_j + y_i \, y_j + z_i \, z_j \right)$$

spin states (x_i, y_i, z_i) , constraints Lattices: 1D 2D Kagome First neighbors interactions : $H = \sum_{i=1}^{n} x_i x_{i+1} + y_i y_{i+1} + z_i z_{i+1}$

Ground-state energy \Leftrightarrow minimal eigenvalue of an Hamiltonian

$$H = \sum_{\langle i,j \rangle} \left(x_i \, x_j + y_i \, y_j + z_i \, z_j \right)$$

spin states (x_i, y_i, z_i) , constraints Lattices: 1D 2D Kagome First neighbors interactions : $H = \sum_{i=1}^{n} x_i x_{i+1} + y_i y_{i+1} + z_i z_{i+1}$

periodic boundary conditions \Rightarrow n+1=1

Ground-state energy \Leftrightarrow minimal eigenvalue of an Hamiltonian

$$H = \sum_{\langle i,j \rangle} \left(x_i \, x_j + y_i \, y_j + z_i \, z_j \right)$$

spin states (x_i, y_i, z_i) , constraints Lattices: 1D 2D Kagome First neighbors interactions : $H = \sum_{i=1}^{n} x_i x_{i+1} + y_i y_{i+1} + z_i z_{i+1}$

periodic boundary conditions \Rightarrow n+1=1

Existing \pm efficient techniques: quantum Monte Carlo & variational algorithms \Rightarrow **upper bounds** on minimal energy

Victor Magron

Large-scale noncommutative POP & quantum information

Polynomials in symmetric **matrix** variables x_i, y_j

Polynomials in symmetric **matrix** variables x_i, y_j

I₃₃₂₂ Bell inequality:

 $f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$ with $x_1x_2 \neq x_2x_1$

Polynomials in symmetric **matrix** variables x_i, y_j

I₃₃₂₂ Bell inequality:

 $f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$ with $x_1x_2 \neq x_2x_1$

Constraints **K** = { $(x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i$ }

Polynomials in symmetric **matrix** variables x_i, y_j

I₃₃₂₂ Bell inequality:

 $f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$ with $x_1x_2 \neq x_2x_1$

Constraints **K** = {
$$(x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i$$
}

MINIMAL EIGENVALUE OPTIMIZATION

 $\lambda_{\min} = \inf \left\{ \langle f(x, y) \mathbf{v}, \mathbf{v} \rangle : (x, y) \in \mathbf{K}, \|\mathbf{v}\| = 1 \right\}$

Victor Magron

Polynomials in symmetric **matrix** variables x_i, y_j

I₃₃₂₂ Bell inequality:

 $f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$ with $x_1x_2 \neq x_2x_1$

Constraints **K** = {
$$(x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i$$
}

MINIMAL EIGENVALUE OPTIMIZATION

$$\lambda_{\min} = \inf \left\{ \langle f(x, y) \mathbf{v}, \mathbf{v} \rangle : (x, y) \in \mathbf{K}, \|\mathbf{v}\| = 1 \right\}$$

= sup λ
s.t. $f(x, y) - \lambda \mathbf{I} \succeq 0, \quad \forall (x, y) \in \mathbf{K}$

Victor Magron

Large-scale noncommutative POP & quantum information

Sums of squares hierarchies

NP-hard NON CONVEX Problem $f^* = \inf f(\mathbf{x})$

Sums of squares hierarchies

NP-hard NON CONVEX Problem $f^* = \inf f(\mathbf{x})$

MODELING POWER

$$f = x^{2} - 2xy + 3y^{2} - 2x^{2}y + 2x^{2}y^{2} - 2yz + 6z^{2} + 18y^{2}z - 54yz^{2} + 142y^{2}z^{2}$$

MODELING POWER

$$f = x^{2} - 2xy + 3y^{2} - 2x^{2}y + 2x^{2}y^{2} - 2yz + 6z^{2} + 18y^{2}z - 54yz^{2} + 142y^{2}z^{2}$$

$$f = \begin{pmatrix} 1 & x & y & z & xy & yz \end{pmatrix} \underbrace{Q}_{\geq 0} \begin{pmatrix} 1 \\ x \\ y \\ z \\ xy \\ yz \end{pmatrix}$$

MODELING POWER

$$\begin{aligned} f &= x^2 - 2xy + 3y^2 - 2x^2y + 2x^2y^2 - 2yz \\ &+ 6z^2 + 18y^2z - 54yz^2 + 142y^2z^2 \\ f &= \begin{pmatrix} 1 & x & y & z & xy & yz \end{pmatrix} \underbrace{Q}_{\geqslant 0} \begin{pmatrix} 1 \\ x \\ y \\ z \\ xy \\ yz \end{pmatrix} \end{aligned}$$

MODELING POWER

$$f = x^{2} - 2xy + 3y^{2} - 2x^{2}y + 2x^{2}y^{2} - 2yz$$

$$+ 6z^{2} + 18y^{2}z - 54yz^{2} + 142y^{2}z^{2}$$

$$f = \begin{pmatrix} 1 \quad x \quad y \quad z \quad xy \quad yz \end{pmatrix} \underbrace{Q}_{\geq 0} \begin{pmatrix} 1 \\ x \\ y \\ z \\ xy \\ yz \end{pmatrix}$$

$$\overleftarrow{f} = \text{sum of squares} \Rightarrow \inf f \ge 0$$

VLARGE-SCALE Polynomial Optimization

Optimal Powerflow $n \simeq 10^3$ [Josz et al 16] < 1% optimal solution [Magron & Wang 21]

 $130 + 20j \leq 130 + 20j$

Roundoff Error $n \simeq 10^2$ [Magron et al 17]

Contribution: modeling & scalability

MODELING

Symmetric NC variables x, y & sums of product traces

$$f = xyx^2 - \text{trace}(y) \text{trace}(xy) \text{trace}(x^2y)yx$$

ϔ minimal eigenvalue/trace

Contribution: modeling & scalability

MODELING

Symmetric NC variables x, y & sums of product traces

$$f = xyx^2 - \text{trace}(y) \text{trace}(xy) \text{trace}(x^2y)yx$$

- ϔ minimal eigenvalue/trace
- Proteus Grant: Bilateral French-Slovenian (PHC)

Contribution: modeling & scalability

MODELING

Symmetric NC variables x, y & sums of product traces

$$f = xyx^2 - \text{trace}(y) \text{trace}(xy) \text{trace}(x^2y)yx$$

- ϔ minimal eigenvalue/trace
- Proteus Grant: Bilateral French-Slovenian (PHC)

SCALABILITY

Large-scale sparse NC problems with $n = 10^2 - 10^3$ variables

 \overleftarrow{V} Software libraries NCTSSOS \Rightarrow condensed matter

VEXTENSIVE USE OF HPC CLUSTER PECALUL AT LAAS

Large-scale noncommutative POP & quantum information

Contribution: modeling & scalability

Sparse Polynomial Optimization

Ongoing collaborations

Theorem [Griewank-Toint 84]

Chordal graph G with maximal cliques C_1, C_2

 $Q_{G} \geq 0$ with nonzero entries at edges of G

 $\implies Q_{G} = P_{C_{1}}^{T}Q_{1}P_{C_{1}} + P_{C_{2}}^{T}Q_{2}P_{C_{2}}$ with $Q_{k} \succeq 0$ indexed by C_{k}

Theorem [Griewank-Toint 84]

Chordal graph G with maximal cliques C_1, C_2

 $Q_{G} \geq 0$ with nonzero entries at edges of G

 $\implies Q_G = P_{C_1}^T Q_1 P_{C_1} + P_{C_2}^T Q_2 P_{C_2}$ with $Q_k \succeq 0$ indexed by C_k

Sparse $f = f_1 + f_2$ where f_k involves **only** variables in C_k

Theorem [Griewank-Toint 84]

Chordal graph G with maximal cliques C_1, C_2

 $Q_{G} \succcurlyeq 0$ with nonzero entries at edges of G

 $\implies Q_{G} = P_{C_{1}}^{T}Q_{1}P_{C_{1}} + P_{C_{2}}^{T}Q_{2}P_{C_{2}}$ with $Q_{k} \succeq 0$ indexed by C_{k}

Sparse $f = f_1 + f_2$ where f_k involves **only** variables in C_k

Theorem: Sparse sums of squares [Waki 06]

f sum of squares + chordal graph G with cliques C_k

 \implies $f = \sigma_1 + \sigma_2$ with σ_k sum of squares involving vars in C_k

Sparse Examples

Generalized Rosenbrock function:

$$f = 1 + \sum_{i=1}^{n-1} \left(100(x_{i+1} - x_i^2)^2 + (1 - x_{i+1})^2 \right)$$

 $\mathbf{V} C_k = \{k, k+1\}$

Sparse Examples

Generalized Rosenbrock function:

$$f = 1 + \sum_{i=1}^{n-1} \left(100(x_{i+1} - x_i^2)^2 + (1 - x_{i+1})^2 \right)$$

 $\mathbf{V} C_k = \{k, k+1\}$

I₃₃₂₂ Bell inequality:

$$f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$$

$$\forall C_k = \{x_1, x_2, x_3, y_k\}$$

Victor Magron

Large-scale noncommutative POP & quantum information

Exploiting term sparsity [Magron-Wang 20-21]

$$f = x^{2} - 2xy + 3y^{2} - 2x^{2}y + 2x^{2}y^{2} - 2yz + 6z^{2} + 18y^{2}z - 54yz^{2} + 142y^{2}z^{2}$$

$$f = \begin{pmatrix} 1 & x & y & z & xy & yz \end{pmatrix} \underbrace{Q}_{\geq 0} \begin{pmatrix} 1 \\ x \\ y \\ z \\ xy \\ yz \end{pmatrix}$$

$$\Rightarrow \frac{6 \times 7}{2} = 28 \text{ "unknown" entries in } Q$$

 \sim

Exploiting term sparsity [Magron-Wang 20-21]

$$f = x^{2} - 2xy + 3y^{2} - 2x^{2}y + 2x^{2}y^{2} - 2yz$$

$$+ 6z^{2} + 18y^{2}z - 54yz^{2} + 142y^{2}z^{2}$$

$$f = \begin{pmatrix} 1 & x & y & z & xy & yz \end{pmatrix} \underbrace{Q}_{\geq 0} \begin{pmatrix} 1 \\ x \\ y \\ z \\ xy \\ yz \end{pmatrix}$$

$$\rightsquigarrow \frac{6 \times 7}{2} = 28 \text{ "unknown" entries in } Q$$

$$\stackrel{(xy) = 1}{\longrightarrow} \underbrace{Q}_{= 2} \begin{pmatrix} 1 \\ x \\ y \\ z \\ xy \\ yz \end{pmatrix}$$

$$\stackrel{(yz)}{\checkmark} \text{Term sparsity pattern graph } G$$

Victor Magron

Exploiting term sparsity [Magron-Wang 20-21]

$$f = x^{2} - 2xy + 3y^{2} - 2x^{2}y + 2x^{2}y^{2} - 2yz$$

$$+ 6z^{2} + 18y^{2}z - 54yz^{2} + 142y^{2}z^{2}$$

$$f = \begin{pmatrix} 1 & x & y & z & xy & yz \end{pmatrix} \underbrace{Q}_{\models 0} \begin{pmatrix} 1 \\ x \\ y \\ z \\ xy \\ yz \end{pmatrix}$$

$$\rightsquigarrow \frac{6 \times 7}{2} = 28 \text{ "unknown" entries in } Q$$

$$\bigvee \text{ Term sparsity pattern graph } G$$

$$\bigcup \frac{xy}{x} \underbrace{Q}_{y} \underbrace{Q} \underbrace{Q}_{y} \underbrace{Q} \underbrace{Q}_{y} \underbrace$$

 \rightarrow 6 + 9 = 15 "unknown" entries in Q_G

 \rightarrow upper bounds on λ_{\max} of f on **K**

 \rightarrow upper bounds on λ_{\max} of f on K

I3322 Bell inequality

$$\mathbf{K} = \{(x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i\}$$

 \rightarrow upper bounds on λ_{\max} of f on K

I3322 Bell inequality

$$\mathbf{K} = \{ (x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i \}$$

$$\forall C_k \to \{ x_1, x_2, x_3, y_k \}$$

 \rightarrow upper bounds on λ_{\max} of f on ${f K}$

 I_{3322} Bell inequality

$$\mathbf{K} = \{ (x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i \}$$

$$\forall C_k \to \{ x_1, x_2, x_3, y_k \}$$

level	sparse	dense [Pál-Vértesi 18]
2	0.2550008	0.2509397

 \rightarrow upper bounds on λ_{\max} of f on ${f K}$

 I_{3322} Bell inequality

$$\mathbf{K} = \{ (x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i \}$$

$$\forall C_k \to \{ x_1, x_2, x_3, y_k \}$$

level	sparse	dense [Pál-Vértesi 18]
2	0.2550008	0.2509397
3	0.2511592	0.2508756

 \rightarrow upper bounds on λ_{\max} of f on ${f K}$

 I_{3322} Bell inequality

$$\mathbf{K} = \{ (x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i \}$$

$$\forall C_k \to \{ x_1, x_2, x_3, y_k \}$$

level	sparse	dense [Pál-Vértesi 18]
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3'		0.2508754

 \rightarrow upper bounds on λ_{\max} of f on ${f K}$

 I_{3322} Bell inequality

 $f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$

$$\mathbf{K} = \{ (x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i \}$$

$$\forall C_k \to \{ x_1, x_2, x_3, y_k \}$$

level	sparse	dense [Pál-Vértesi 18]
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3'		0.25087 <mark>5</mark> 4
	0.05000/7	

4 0.2508917

 \rightarrow upper bounds on λ_{\max} of f on ${f K}$

 I_{3322} Bell inequality

 $f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$

$$\mathbf{K} = \{ (x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i \}$$

$$\forall C_k \to \{ x_1, x_2, x_3, y_k \}$$

level	sparse	dense [Pál-Vértesi 18]
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3'		0.25087 <mark>5</mark> 4
4	0.2508917	

5 0.25087<mark>63</mark>

 \rightarrow upper bounds on λ_{\max} of f on ${f K}$

 I_{3322} Bell inequality

$$\mathbf{K} = \{ (x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i \}$$

$$\forall C_k \to \{ x_1, x_2, x_3, y_k \}$$

level	sparse	dense [Pál-Vértesi 18]
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3'		0.25087 <mark>54</mark>
4	0.2508917	

- 5 0.25087<mark>63</mark>
- 6 0.2508753977180 !!!!!

An example from condensed matter

Dense d = 4, $n = 10^2 \Rightarrow 10^{19}$ variables (solvers handle $\simeq 10^4$)

An example from condensed matter

Dense d = 4, $n = 10^2 \Rightarrow 10^{19}$ variables (solvers handle $\simeq 10^4$) **Sparse** solved in $\simeq 1$ hour on PFCALCUL at LAAS

EFFICIENT tool, new applications of correlative/term sparsity

 \bigvee Sparsity for trace polynomials \rightsquigarrow Werner witnesses

EFFICIENT tool, new applications of correlative/term sparsity Symmetric noncommutative problems? ϔ Sparsity for trace polynomials 🛶 Werner witnesses

APPLICATIONS IN QUANTUM PHYSICS

- Quantum games: number of mutually unbiased bases in dim 6. Ϋ symmetric **OPEN FOR SEVERAL DECADES!**
- Ground state energy of hamiltonians
- Inflation for quantum correlations
- Werner witnesses

- Y symmetric & sparse
- Y symmetric & sparse
- Y symmetric & sparse

Ongoing collaborations

Wini-symposium accepted with I. Klep Computational aspects of commutative and noncommutative positive polynomials at EUROPEAN CONGRESS OF MATHEMATICIANS

Thank you for your attention!

https://homepages.laas.fr/vmagron

- Wang & Magron. Exploiting Term-Sparsity in Noncommutative Polynomial Optimization. arxiv:2010.06956 NCTSS0S
- Wang, Magron, Lasserre & Mai. CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization. arxiv:2005.02828 TSS0S
- Wang, Magron & Lasserre. Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension. SIAM Optim, arxiv:1912.08899
- Wang, Magron & Lasserre. TSSOS: a moment-SOS hierarchy that exploits term sparsity. SIAM Optim, arxiv:1912.08899
 - Klep, Magron & Povh. Sparse Noncommutative Polynomial Optimization. Math Prog. A, arxiv:1909.00569 NCSOStools