Certified Optimization for System Verification

Victor Magron, CNRS

3 Avril 2018

ENS Cachan, LSV Seminar

Personal Background

- 2008 2010: Master at Tokyo University
 HIERARCHICAL DOMAIN DECOMPOSITION METHODS
- 2010 2013: PhD at Inria Saclay LIX/CMAP
 FORMAL PROOFS FOR NONLINEAR OPTIMIZATION (S. Gaubert, B. Werner)
- 2014 Jan-Sept: Postdoc at LAAS-CNRS
 MOMENT-SOS APPLICATIONS (D. Henrion, J.B. Lasserre)
- 2014 2015: Postdoc at Imperial College
 ROUDOFF ERRORS WITH POLYNOMIAL OPTIMIZATION (G. Constantinides and A. Donaldson)

```
■ 2015 – 2018: CR CNRS-Verimag (Tempo Team)
```

Certified Optimization for System Verification

Research Field

CERTIFIED OPTIMIZATION Input: linear problem (LP), geometric, semidefinite (SDP) Output: value + numerical/symbolic/formal certificate

Research Field

CERTIFIED OPTIMIZATION Input: linear problem (LP), geometric, semidefinite (SDP) Output: value + numerical/symbolic/formal certificate

VERIFICATION OF CRITICAL SYSTEMS

Safety of embedded software/hardware Mathematical formal proofs biology, robotics, analysers, ...

Research Field

CERTIFIED OPTIMIZATION Input: linear problem (LP), geometric, semidefinite (SDP) Output: value + numerical/symbolic/formal certificate

VERIFICATION OF CRITICAL SYSTEMS

Safety of embedded software/hardware Mathematical formal proofs

biology, robotics, analysers, ...

Efficient certification for nonlinear systems

- Certified optimization of polynomial systems analysis / synthesis / control
- Efficiency

symmetry reduction, sparsity

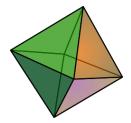
Certified approximation algorithms

convergence, error analysis

What is Semidefinite Optimization?

Linear Programming (LP):

 $\min_{\mathbf{z}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{z} \\ \text{s.t.} \quad \mathbf{A} \mathbf{z} \ge \mathbf{d} \ .$



Linear cost c

• Linear inequalities " $\sum_i A_{ij} z_j \ge d_i$ "

Polyhedron

What is Semidefinite Optimization?

Semidefinite Programming (SDP):

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z} \\ \text{s.t.} \quad \sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} \ .$$

- Symmetric matrices **F**₀, **F**_{*i*}
- Linear matrix inequalities "F ≽ 0" (F has nonnegative eigenvalues)

Spectrahedron

What is Semidefinite Optimization?

Semidefinite Programming (SDP):

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{z} \\ \text{s.t.} \quad \sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} \quad , \quad \mathbf{A} \mathbf{z} = \mathbf{d} \quad .$$

- Symmetric matrices **F**₀, **F**_{*i*}
- Linear matrix inequalities "F ≽ 0" (F has nonnegative eigenvalues)

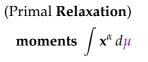
Spectrahedron

Applications of SDP

- Combinatorial optimization
- Control theory
- Matrix completion
- Unique Games Conjecture (Khot '02) : "A single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems." (Barak and Steurer survey at ICM'14)
- Solving polynomial optimization (Lasserre '01)

Theoretical approach for polynomial optimization

Practical approach for polynomial optimization



(Dual Strengthening)

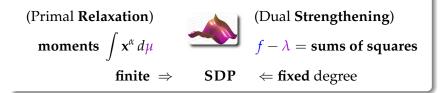
$$f - \lambda =$$
 sums of squares

finite \Rightarrow

SDP

 \Leftarrow **fixed** degree

Practical approach for polynomial optimization



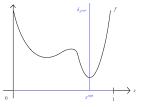
Hierarchy of **SDP** \uparrow *f*^{*}

 $\begin{array}{ll} \text{degree } 2k \\ n \text{ vars} \end{array} \Rightarrow \binom{n+2k}{n} \text{ SDP VARIABLES} \end{array}$

Lasserre's hierarchy

Cast polynomial optimization as *infinite-dimensional* LP over measures [Lasserre 01]

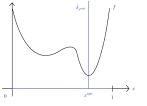
$$f^{\star} := \inf_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x}) = \inf_{\mu \in \mathcal{M}_{+}(\mathbf{K})} \int_{\mathbf{K}} f(\mathbf{x}) d\mu$$



Lasserre's hierarchy

Cast polynomial optimization as *infinite-dimensional* LP over measures [Lasserre 01]

$$f^{\star} := \inf_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x}) = \inf_{\mu \in \mathcal{M}_{+}(\mathbf{K})} \int_{\mathbf{K}} f(\mathbf{x}) d\mu$$



 \rightsquigarrow Regions of attraction [Henrion-Korda 14]

→ Maximum invariants [Korda et al 13]

→ **Reachable sets** [Magron et al 17]

Victor Magron

Certified Optimization for System Verification

■ Prove **polynomial inequalities** with SDP:

$$f(a,b) := a^2 - 2ab + b^2 \ge 0 \ .$$

Find z s.t.
$$f(a,b) = \begin{pmatrix} a & b \end{pmatrix} \underbrace{\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix}}_{\geq 0} \begin{pmatrix} a \\ b \end{pmatrix}$$
.

Find z s.t. $a^2 - 2ab + b^2 = z_1a^2 + 2z_2ab + z_3b^2$ (A z = d)

■ Choose a cost **c** e.g. (1,0,1) and solve:

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z}$$
s.t.
$$\sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} , \quad \mathbf{A} \mathbf{z} = \mathbf{d} .$$

• Solution
$$\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \succeq 0$$
 (eigenvalues 0 and 2)

•
$$a^2 - 2ab + b^2 = \begin{pmatrix} a & b \end{pmatrix} \underbrace{\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}}_{\geq 0} \begin{pmatrix} a \\ b \end{pmatrix} = (a - b)^2.$$

■ Solving SDP ⇒ Finding SUMS OF SQUARES certificates

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

• Semialgebraic set $\mathbf{K} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0\}$

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

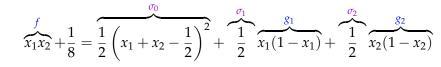
• Semialgebraic set $\mathbf{K} := {\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0}$

$$= [0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0 \}$$

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

• Semialgebraic set $\mathbf{K} := {\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0}$

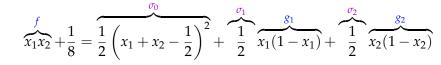
 $\blacksquare := [0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0 \}$



NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

• Semialgebraic set $\mathbf{K} := {\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0}$

 $\blacksquare := [0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0 \}$



Sums of squares (SOS) σ_i

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

• Semialgebraic set $\mathbf{K} := {\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0}$

 $\blacksquare := [0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0 \}$

$$\underbrace{\frac{f}{x_1x_2} + \frac{1}{8} = \underbrace{\frac{\sigma_0}{1}}_{2} \left(x_1 + x_2 - \frac{1}{2}\right)^2}_{q_1} + \underbrace{\frac{\sigma_1}{1}}_{2} \underbrace{\frac{g_1}{x_1(1 - x_1)} + \underbrace{\frac{\sigma_2}{1}}_{2} \underbrace{\frac{g_2}{x_2(1 - x_2)}}_{q_2(1 - x_2)}}_{q_2(1 - x_2)}$$

Sums of squares (SOS) σ_i

Bounded degree:

$$Q_k(\mathbf{K}) := \left\{ \sigma_0 + \sum_{j=1}^m \sigma_j g_j, \text{ with } \deg \sigma_j g_j \leq 2k \right\}$$

Victor Magron

Certified Optimization for System Verification

• Hierarchy of SDP relaxations:

$$\lambda_k := \sup_{\lambda} \left\{ \lambda : f - \lambda \in \mathcal{Q}_k(\mathbf{K}) \right\}$$

- Convergence guarantees $\lambda_k \uparrow f^*$ [Lasserre 01]
- Can be computed with SDP solvers (CSDP, SDPA)
- "No Free Lunch" Rule: $\binom{n+2k}{n}$ SDP variables

SDP for Nonlinear Optimization

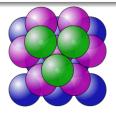
SDP for Characterizing Values/Curves/Sets

Exact Polynomial Optimization

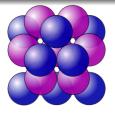
Conclusion

Kepler Conjecture (1611):

The maximal density of sphere packings in 3D-space is $\frac{\pi}{\sqrt{18}}$



Face-centered cubic Packing



Hexagonal Compact Packing

- The proof of T. Hales (1998) contains mathematical and computational parts
- Computation: check thousands of nonlinear inequalities
- Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture

- The proof of T. Hales (1998) contains mathematical and computational parts
- Computation: check thousands of nonlinear inequalities
- Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture
- Project Completion on August 2014 by the Flyspeck team

Multivariate Polynomials:

$$\Delta \mathbf{x} := x_1 x_4 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) + x_2 x_5 (x_1 - x_2 + x_3 + x_4 - x_5 + x_6) + x_3 x_6 (x_1 + x_2 - x_3 + x_4 + x_5 - x_6) - x_2 (x_3 x_4 + x_1 x_6) - x_5 (x_1 x_3 + x_4 x_6)$$

■ Semialgebraic functions: composition of polynomials with | · |, √, +, -, ×, /, sup, inf, ...

$$p(\mathbf{x}) := \partial_4 \Delta \mathbf{x} \qquad q(\mathbf{x}) := 4x_1 \Delta \mathbf{x}$$
$$r(\mathbf{x}) := p(\mathbf{x}) / \sqrt{q(\mathbf{x})}$$

$$l(\mathbf{x}) := -\frac{\pi}{2} + 1.6294 - 0.2213 \left(\sqrt{x_2} + \sqrt{x_3} + \sqrt{x_5} + \sqrt{x_6} - 8.0\right) + 0.913 \left(\sqrt{x_4} - 2.52\right) + 0.728 \left(\sqrt{x_1} - 2.0\right)$$

■ Transcendental functions *T*: composition of semialgebraic functions with arctan, exp, sin, +, -, ×,...

■ Feasible set **K** := [4, 6.3504]³ × [6.3504, 8] × [4, 6.3504]²

Lemma₉₉₂₂₆₉₉₀₂₈ from Flyspeck:

$$\forall \mathbf{x} \in \mathbf{K}, \arctan\left(\frac{p(\mathbf{x})}{\sqrt{q(\mathbf{x})}}\right) + l(\mathbf{x}) \ge 0$$

Formal proofs for Global Optimization:

- Bernstein polynomial methods [Zumkeller's PhD 08]
- SMT methods [Gao et al. 12]
- Interval analysis and Sums of squares

Interval analysis

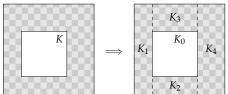
- Certified interval arithmetic in CoQ [Melquiond 12]
- Taylor methods in HOL Light [Solovyev thesis 13]
 Formal verification of floating-point operations
- robust but subject to the Curse of Dimensionality

Existing Formal Frameworks

Lemma9922699028 from Flyspeck:

$$\forall \mathbf{x} \in \mathbf{K}, \arctan\left(\frac{\partial_4 \Delta \mathbf{x}}{\sqrt{4x_1 \Delta \mathbf{x}}}\right) + l(\mathbf{x}) \ge 0$$

- Dependency issue using Interval Calculus:
 - One can bound $\partial_4 \Delta \mathbf{x} / \sqrt{4x_1 \Delta \mathbf{x}}$ and $l(\mathbf{x})$ separately
 - Too coarse lower bound: -0.87
 - Subdivide **K** to prove the inequality



Sums of squares (SOS) techniques

- Formalized in HOL-LIGHT [Harrison 07] COQ [Besson 07]
- Precise methods but scalability and robustness issues (numerical)
- powerful: global optimality certificates without branching
 <u>but</u>
 - not so robust: handles moderate size problems
 - Restricted to polynomials

Caprasse Problem:

$$\forall \mathbf{x} \in [-0.5, 0.5]^4, -x_1 x_3^3 + 4x_2 x_3^2 x_4 + 4x_1 x_3 x_4^2 + 2x_2 x_4^3 + 4x_1 x_3 + 4x_3^2 - 10x_2 x_4 - 10x_4^2 + 5.1801 \ge 0.$$

- Decompose the polynomial as SOS of degree at most 4
- Gives a nonnegative bound!

Approximation theory: Chebyshev/Taylor models

- mandatory for non-polynomial problems
- hard to combine with SOS techniques (degree of approximation)

Can we develop a new approach with both keeping the respective strength of interval and precision of SOS?

Proving Flyspeck Inequalities is challenging: medium-size and tight

Contribution: Publications and Software

- M., Allamigeon, Gaubert, Werner. Formal Proofs for Nonlinear Optimization, Journal of Formalized Reasoning 8(1):1–24, 2015.
- Hales, Adams, Bauer, Dang, Harrison, Hoang, Kaliszyk, M., Mclaughlin, Nguyen, Nguyen, Nipkow, Obua, Pleso, Rute, Solovyev, Ta, Tran, Trieu, Urban, Vu & Zumkeller, Forum of Mathematics, Pi, 5 2017

Software Implementation NLCertify:

15 000 lines of OCAML code

4000 lines of COQ code

M. NLCertify: A Tool for Formal Nonlinear Optimization, *ICMS*, 2014.

SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets Semialgebraic Maxplus Optimization Roundoff Error Bounds Pareto Curves Polynomial Images of Semialgebraic Sets

Reachable Sets of Polynomial Systems

Invariant Measures of Polynomial Systems

Exact Polynomial Optimization

Conclusion

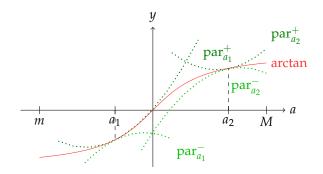
- Given **K** a compact set and *f* a transcendental function, bound $f^* = \inf_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$ and prove $f^* \ge 0$
 - f is under-approximated by a semialgebraic function f_{sa}
 - Reduce the problem *f*^{*}_{sa} := inf_{x∈K}*f*_{sa}(**x**) to a polynomial optimization problem (POP)

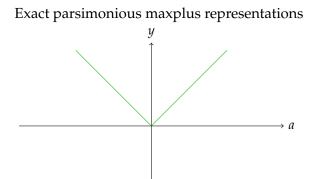
- Initially introduced to solve Optimal Control Problems [Fleming-McEneaney 00]
- Curse of dimensionality reduction [McEaneney Kluberg, Gaubert-McEneaney-Qu 11, Qu 13].
 Allowed to solve instances of dim up to 15 (inaccessible by grid methods)
- In our context: approximate transcendental functions

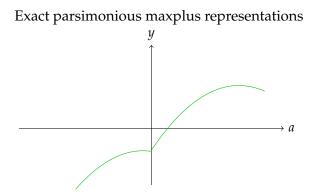
Maxplus Approximation

Definition

Let $\gamma \ge 0$. A function $\phi : \mathbb{R}^n \to \mathbb{R}$ is said to be γ -semiconvex if the function $\mathbf{x} \mapsto \phi(\mathbf{x}) + \frac{\gamma}{2} \|\mathbf{x}\|_2^2$ is convex.







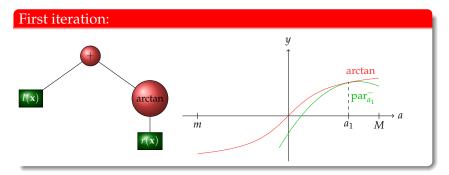
Abstract syntax tree representations of multivariate transcendental functions:

- leaves are semialgebraic functions of *A*
- nodes are univariate functions of \mathcal{D} or binary operations

• For the "Simple" Example from Flyspeck:

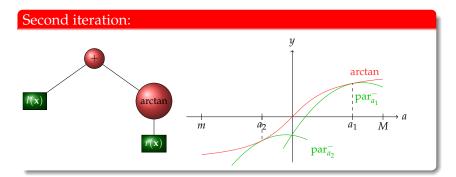


Maxplus Optimization Algorithm



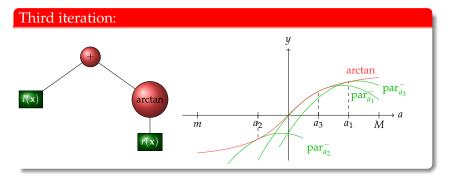
1 control point $\{a_1\}$: $m_1 = -4.7 \times 10^{-3} < 0$

Maxplus Optimization Algorithm



2 control points $\{a_1, a_2\}$: $m_2 = -6.1 \times 10^{-5} < 0$

Maxplus Optimization Algorithm



3 control points $\{a_1, a_2, a_3\}$: $m_3 = 4.1 \times 10^{-6} > 0$

OK!

SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets Semialgebraic Maxplus Optimization Roundoff Error Bounds

Pareto Curves

Polynomial Images of Semialgebraic Sets Reachable Sets of Polynomial Systems Invariant Measures of Polynomial Systems

Exact Polynomial Optimization

Conclusion

Exact:

$$f(\mathbf{x}) := x_1 x_2 + x_3 x_4$$

Floating-point:
 f(x, e) := [x_1x_2(1 + e_1) + x_3x_4(1 + e_2)](1 + e_3)
 x ∈ X, |e_i| ≤ 2^{-p} p = 24 (single) or 53 (double)

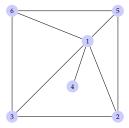
Input: exact $f(\mathbf{x})$, floating-point $\hat{f}(\mathbf{x}, \mathbf{e})$ **Output:** Bounds for $f - \hat{f}$

- 1: Error $r(\mathbf{x}, \mathbf{e}) := f(\mathbf{x}) \hat{f}(\mathbf{x}, \mathbf{e}) = \sum_{\alpha} r_{\alpha}(\mathbf{e}) \mathbf{x}^{\alpha}$
- 2: Decompose $r(\mathbf{x}, \mathbf{e}) = l(\mathbf{x}, \mathbf{e}) + h(\mathbf{x}, \mathbf{e})$, *l* linear in **e**
- 3: Bound $h(\mathbf{x}, \mathbf{e})$ with interval arithmetic
- 4: Bound $l(\mathbf{x}, \mathbf{e})$ with SPARSE SUMS OF SQUARES

Sparse SDP Optimization [Waki, Lasserre 06]

Correlative sparsity pattern (csp) of vars

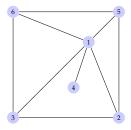
 $x_2x_5 + x_3x_6 - x_2x_3 - x_5x_6 + x_1(-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$



Sparse SDP Optimization [Waki, Lasserre 06]

Correlative sparsity pattern (csp) of vars

 $x_2x_5 + x_3x_6 - x_2x_3 - x_5x_6 + x_1(-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$



1 Maximal cliques
$$C_1, \ldots, C_l$$

2 Average size $\kappa \rightsquigarrow \binom{\kappa+2k}{\kappa}$ vars

 $C_1 := \{1, 4\}$ $C_2 := \{1, 2, 3, 5\}$ $C_3 := \{1, 3, 5, 6\}$ Dense SDP: 210 vars Sparse SDP: 115 vars

Certified Optimization for System Verification

$$l(\mathbf{x}, \mathbf{e}) = \sum_{i=1}^{m} s_i(\mathbf{x}) e_i$$

Maximal cliques correspond to $\{\mathbf{x}, e_1\}, \ldots, \{\mathbf{x}, e_m\}$

M., Constantinides, Donaldson. Certified Roundoff Error Bounds Using Semidefinite Programming, *Trans. Math. Soft.*, 2016

SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets

Semialgebraic Maxplus Optimization Roundoff Error Bounds

Pareto Curves

Polynomial Images of Semialgebraic Sets Reachable Sets of Polynomial Systems Invariant Measures of Polynomial Systems

Exact Polynomial Optimization

Conclusion

Bicriteria Optimization Problems

• Let $f_1, f_2 \in \mathbb{R}[\mathbf{x}]$ two conflicting criteria

• Let $\mathbf{S} := {\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0}$ a semialgebraic set

$$(\mathbf{P})\left\{\min_{\mathbf{x}\in\mathbf{S}}(f_1(\mathbf{x})f_2(\mathbf{x}))^{\top}\right\}$$

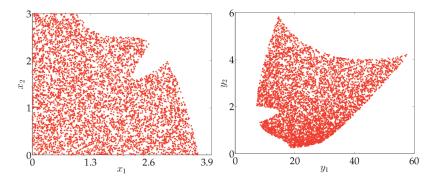
Assumption

The image space \mathbb{R}^2 is partially ordered in a natural way (\mathbb{R}^2_+ is the ordering cone).

Bicriteria Optimization Problems

$$\begin{split} g_1 &:= -(x_1-2)^3/2 - x_2 + 2.5 \ , \\ g_2 &:= -x_1 - x_2 + 8(-x_1 + x_2 + 0.65)^2 + 3.85 \ , \\ \mathbf{S} &:= \{\mathbf{x} \in \mathbb{R}^2 : g_1(\mathbf{x}) \ge 0, g_2(\mathbf{x}) \ge 0\} \ . \end{split}$$

$$\begin{split} f_1 &:= (x_1+x_2-7.5)^2/4 + (-x_1+x_2+3)^2 \ , \\ f_2 &:= (x_1-1)^2/4 + (x_2-4)^2/4 \ . \end{split}$$



Certified Optimization for System Verification

- Inspired by previous research on multiobjective linear optimization [Gorissen-den Hertog 12]
- Workaround: reduce **P** to a **parametric POP**

$$(\mathbf{P}_{\lambda}): \quad f^*(\lambda) := \min_{\mathbf{x} \in \mathbf{S}} \left\{ f_2(\mathbf{x}) : f_1(\mathbf{x}) \leqslant \lambda \right\} \;,$$

• variable $(\mathbf{x}, \lambda) \in \mathbf{K} = \mathbf{S} \times [0, 1]$

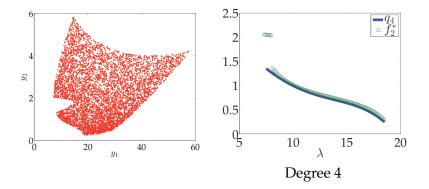
Moment-SOS approach [Lasserre 10]:

$$(D_k) \begin{cases} \max_{q \in \mathbb{R}_{2k}[\lambda]} & \sum_{i=0}^{2k} q_i / (1+i) \\ \text{s.t.} & f_2(\mathbf{x}) - q(\lambda) \in \mathcal{Q}_{2k}(\mathbf{K}) \end{cases}$$

The hierarchy (D_k) provides a sequence (q_k) of polynomial under-approximations of f^{*}(λ).

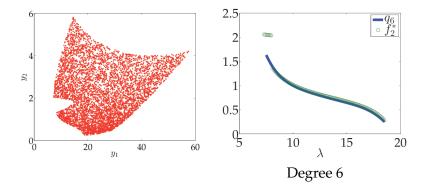
$$\lim_{d\to\infty} \int_0^1 (f^*(\lambda) - q_k(\lambda)) d\lambda = 0$$

A Hierarchy of Polynomial Approximations

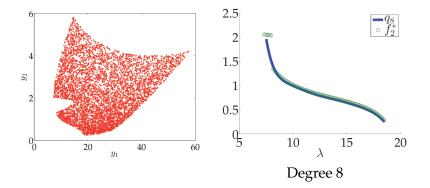


Certified Optimization for System Verification

A Hierarchy of Polynomial Approximations



A Hierarchy of Polynomial Approximations



Certified Optimization for System Verification

- Numerical schemes that avoid computing finitely many points.
- Pareto curve approximation with polynomials, convergence guarantees in L₁-norm
- M., Henrion, Lasserre. Approximating Pareto Curves using Semidefinite Relaxations. *Operations Research Letters*, 2014.

SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets

Semialgebraic Maxplus Optimization Roundoff Error Bounds Pareto Curves

Polynomial Images of Semialgebraic Sets

Reachable Sets of Polynomial Systems Invariant Measures of Polynomial Systems

Exact Polynomial Optimization

Conclusion

Polynomial Images of Semialgebraic Sets

- Semialgebraic set $\mathbf{S} := \{ \mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_l(\mathbf{x}) \ge 0 \}$
- A polynomial map $f : \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{x} \mapsto f(\mathbf{x}) := (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$
- deg $f = d := \max\{\deg f_1, \dots, \deg f_m\}$
- $\mathbf{F} := f(\mathbf{S}) \subseteq \mathbf{B}$, with $\mathbf{B} \subset \mathbb{R}^m$ a box or a ball
- Tractable approximations of **F** ?

Polynomial Images of Semialgebraic Sets

Includes important special cases:

1
$$m = 1$$
: polynomial optimization

$$\mathbf{F} \subseteq [\inf_{\mathbf{x} \in \mathbf{S}} f(\mathbf{x}), \sup_{\mathbf{x} \in \mathbf{S}} f(\mathbf{x})]$$

2 Approximate **projections** of **S** when $f(\mathbf{x}) := (x_1, \dots, x_m)$

3 Pareto curve approximations
For
$$f_1, f_2$$
 two conflicting criteria: (P) $\left\{ \min_{\mathbf{x} \in \mathbf{S}} (f_1(\mathbf{x}) f_2(\mathbf{x}))^\top \right\}$

• Pushforward $f_{\#} : \mathcal{M}(\mathbf{S}) \to \mathcal{M}(\mathbf{B})$:

 $f_{\#}\mu_0(\mathbf{A}) := \mu_0(\{\mathbf{x} \in \mathbf{S} : f(\mathbf{x}) \in \mathbf{A}\}), \quad \forall \mathbf{A} \in \mathcal{B}(\mathbf{B}), \forall \mu_0 \in \mathcal{M}(\mathbf{S})$

• $f_{\#}\mu_0$ is the **image measure** of μ_0 under *f*

Support of Image Measures

$$p^* := \sup_{\mu_0, \mu_1, \hat{\mu}_1} \int_{\mathbf{B}} \mu_1$$

s.t. $\mu_1 + \hat{\mu}_1 = \lambda_{\mathbf{B}},$
 $\mu_1 = f_{\#}\mu_0,$
 $\mu_0 \in \mathcal{M}_+(\mathbf{S}), \quad \mu_1, \hat{\mu}_1 \in \mathcal{M}_+(\mathbf{B}).$
Lebesgue measure on **B** is $\lambda_{\mathbf{B}}(d\mathbf{y}) := \mathbf{1}_{\mathbf{B}}(\mathbf{y}) d\mathbf{y}$

Support of Image Measures

$$p^{*} := \sup_{\mu_{0}, \mu_{1}, \hat{\mu}_{1}} \int_{\mathbf{B}} \mu_{1}$$

s.t. $\mu_{1} + \hat{\mu}_{1} = \lambda_{\mathbf{B}},$
 $\mu_{1} = f_{\#}\mu_{0},$
 $\mu_{0} \in \mathcal{M}_{+}(\mathbf{S}), \quad \mu_{1}, \hat{\mu}_{1} \in \mathcal{M}_{+}(\mathbf{B}).$

Lemma

Let μ_1^* be an optimal solution of the above LP. Then $\mu_1^* = \lambda_F$ and $p^* = \text{vol } F$.

Method 2: Primal-dual LP Formulation

Prin	nal LP	Dual LP
$p^* := \sup_{\mu_0,\mu_1,\hat{\mu}_1}$	$\int \mu_1 \qquad d^* := \inf_{v, v \in v}$	$\int w(\mathbf{y}) \lambda_{\mathbf{B}}(d\mathbf{y})$
s.t.	$\mu_1 + \hat{\mu}_1 = \lambda_{\mathbf{B}}$, s.t.	$v(f(\mathbf{x})) \geqslant 0, \forall \mathbf{x} \in \mathbf{S}$,
	$\mu_1 = f_{\#}\mu_0$,	$w(\mathbf{y}) \geqslant 1 + v(\mathbf{y}), \forall \mathbf{y} \in \mathbf{B}$,
	$\mu_0 \in \mathcal{M}_+(\mathbf{S})$,	$w(\mathbf{y}) \geqslant 0, orall \mathbf{y} \in \mathbf{B}$,
	$\mu_1, \hat{\mu}_1 \in \mathcal{M}_+(\mathbf{B})$.	$v,w\in \mathcal{C}(\mathbf{B})$.

Strengthening of the dual LP:

$$d_k^* := \inf_{v,w} \sum_{\beta \in \mathbb{N}_{2k}^m} w_\beta z_\beta^{\mathbf{B}}$$

s.t. $v \circ f \in \mathcal{Q}_{kd}(\mathbf{S}),$
 $w - 1 - v \in \mathcal{Q}_k(\mathbf{B}),$
 $w \in \mathcal{Q}_k(\mathbf{B}),$
 $v, w \in \mathbb{R}_{2k}[\mathbf{y}].$

Method 2: Strong Convergence Property

Theorem

Assuming that $\overset{\,\,{}_\circ}{\mathbf{F}} \neq \emptyset$ and $\mathcal{Q}_k(\mathbf{S})$ is Archimedean,

1 The sequence (w_k) converges to **1**_F w.r.t the $L_1(\mathbf{B})$ -norm:

$$\lim_{k\to\infty}\int_{\mathbf{B}}|w_k-\mathbf{1}_{\mathbf{F}}|d\mathbf{y}=0$$
.

Method 2: Strong Convergence Property

Theorem

Assuming that $\check{\mathbf{F}} \neq \emptyset$ and $\mathcal{Q}_k(\mathbf{S})$ is Archimedean,

1 The sequence (w_k) converges to **1**_F w.r.t the $L_1(\mathbf{B})$ -norm:

$$\lim_{k\to\infty}\int_{\mathbf{B}}|w_k-\mathbf{1}_{\mathbf{F}}|d\mathbf{y}=0$$
.

2 Let $\mathbf{F}_k := \{ \mathbf{y} \in \mathbf{B} : w_k(\mathbf{y}) \ge 1 \}$. Then,

 $\lim_{k\to\infty}\operatorname{vol}(\mathbf{F}_k\backslash\mathbf{F})=0 \ .$

Image of the unit ball $\mathbf{S} := \{ \mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2^2 \leq 1 \}$ by

$$f(\mathbf{x}) := (x_1 + x_1 x_2, x_2 - x_1^3)/2$$

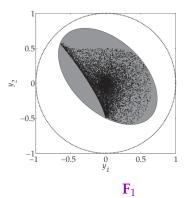


Image of the unit ball $\mathbf{S} := \{ \mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2^2 \leq 1 \}$ by

$$f(\mathbf{x}) := (x_1 + x_1 x_2, x_2 - x_1^3)/2$$

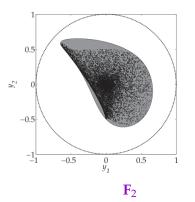


Image of the unit ball $\mathbf{S} := \{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2^2 \leq 1\}$ by

$$f(\mathbf{x}) := (x_1 + x_1 x_2, x_2 - x_1^3)/2$$

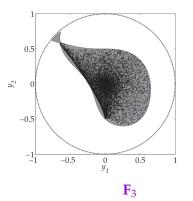
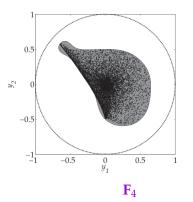


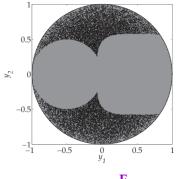
Image of the unit ball $\mathbf{S} := \{ \mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2^2 \leq 1 \}$ by

$$f(\mathbf{x}) := (x_1 + x_1 x_2, x_2 - x_1^3)/2$$



Semialgebraic Set Projections

 $f(\mathbf{x}) = (x_1, x_2)$: projection on \mathbb{R}^2 of the semialgebraic set $\mathbf{S} := \{\mathbf{x} \in \mathbb{R}^3 : \|\mathbf{x}\|_2^2 \le 1, 1/4 - (x_1 + 1/2)^2 - x_2^2 \ge 0,$ $1/9 - (x_1 - 1/2)^4 - x_2^4 \ge 0\}$

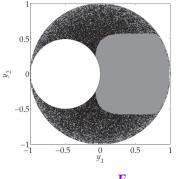


 F_2 Certified Optimization for System Verification

30 / 46

Semialgebraic Set Projections

 $f(\mathbf{x}) = (x_1, x_2)$: projection on \mathbb{R}^2 of the semialgebraic set $\mathbf{S} := \{\mathbf{x} \in \mathbb{R}^3 : \|\mathbf{x}\|_2^2 \leq 1, 1/4 - (x_1 + 1/2)^2 - x_2^2 \ge 0,$ $1/9 - (x_1 - 1/2)^4 - x_2^4 \ge 0\}$



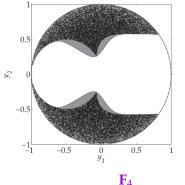
 F_3 Certified Optimization for System Verification

Victor Magron

30 / 46

Semialgebraic Set Projections

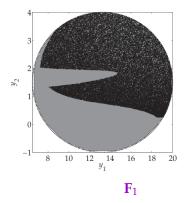
 $f(\mathbf{x}) = (x_1, x_2)$: projection on \mathbb{R}^2 of the semialgebraic set $\mathbf{S} := \{\mathbf{x} \in \mathbb{R}^3 : \|\mathbf{x}\|_2^2 \le 1, 1/4 - (x_1 + 1/2)^2 - x_2^2 \ge 0,$ $1/9 - (x_1 - 1/2)^4 - x_2^4 \ge 0\}$



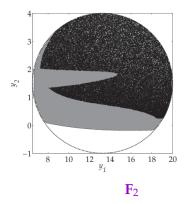
Г4 Certified Optimization for System Verification

30 / 46

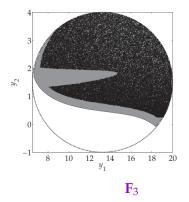
Back on our previous nonconvex example:



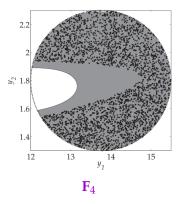
Back on our previous nonconvex example:



Back on our previous nonconvex example:



"Zoom" on the region which is hard to approximate:



"Zoom" on the region which is hard to approximate:

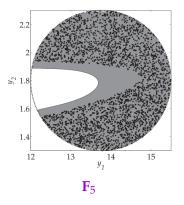


Image of the unit ball $\mathbf{S} := \{ \mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2^2 \leqslant 1 \}$ by

$$f(\mathbf{x}) := (\min(x_1 + x_1 x_2, x_1^2), x_2 - x_1^3)/3$$

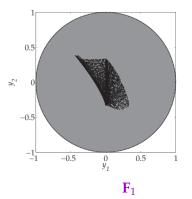


Image of the unit ball $\mathbf{S} := \{ \mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2^2 \leqslant 1 \}$ by

$$f(\mathbf{x}) := (\min(x_1 + x_1 x_2, x_1^2), x_2 - x_1^3)/3$$

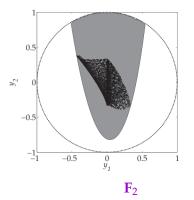


Image of the unit ball $\mathbf{S} := \{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2^2 \leqslant 1\}$ by

$$f(\mathbf{x}) := (\min(x_1 + x_1 x_2, x_1^2), x_2 - x_1^3)/3$$

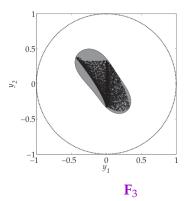
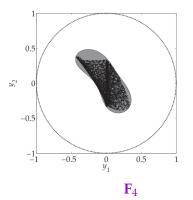


Image of the unit ball $\mathbf{S} := \{ \mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2^2 \leqslant 1 \}$ by

$$f(\mathbf{x}) := (\min(x_1 + x_1 x_2, x_1^2), x_2 - x_1^3)/3$$



Contributions

M., Henrion, Lasserre. Semidefinite approximations of projections and polynomial images of semialgebraic sets. *SIAM Opt.*, 2015.

Reachable Sets of Polynomial Systems

Iterations $\mathbf{x}_{t+1} = f(\mathbf{x}_t)$ Uncertain $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u})$

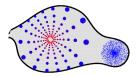
Converging SDP hierarchies
 Image measure
 Liouville equation (conservation)

$$u_t + \mu = f_\# \mu + \mu_0$$

Reachable Sets of Polynomial Systems

Iterations $\mathbf{x}_{t+1} = f(\mathbf{x}_t)$ Uncertain $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u})$

Converging SDP hierarchies
 Image measure
 Liouville equation (conservation)



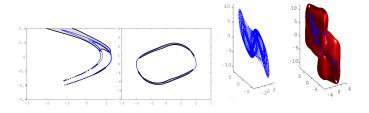
$$\mu_t + \mu = f_\# \mu + \mu_0$$

M., Garoche, Henrion, Thirioux. Semidefinite Approximations of Reachable Sets for Discrete-time Polynomial Systems, 2017.

Invariant Measures of Polynomial Systems

Discrete $\mathbf{x}_{t+1} = f(\mathbf{x}_t) \implies f_{\#} \mu - \mu = 0$ **Continuous** $\dot{\mathbf{x}} = f(\mathbf{x}) \implies \operatorname{div} f \mu = 0$

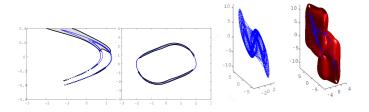
Converging SDP hierarchies **masures** with density in L_p **masures** measures \implies chaotic attractors



Invariant Measures of Polynomial Systems

Discrete $\mathbf{x}_{t+1} = f(\mathbf{x}_t) \implies f_{\#} \mu - \mu = 0$ **Continuous** $\dot{\mathbf{x}} = f(\mathbf{x}) \implies \operatorname{div} f \mu = 0$

Converging SDP hierarchies **mathchart measures** with density in L_p **mathchart measures** \implies chaotic attractors



M., Forets, Henrion. Semidefinite Characterization of Invariant Measures for Polynomial Systems. *In Progress*, 2018.

Victor Magron

SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets

Exact Polynomial Optimization

Conclusion

Exact Polynomial Optimization

 $\tilde{\mathbf{v}}$ [Lasserre/Parrilo 01] **Numerical** solvers compute σ_i Semidefinite programming (SDP) \rightsquigarrow **approximate** certificates

$$f = 4X_1^4 + 4X_1^3X_2 - 7X_1^2X_2^2 - 2X_1X_2^3 + 10X_2^4$$
$$f \simeq \sigma = (2X_1^2 + X_1X_2 - \frac{8}{3}X_2^2)^2 + (\frac{4}{3}X_1X_2 + \frac{3}{2}X_2^2)^2 + (\frac{2}{7}X_2^2)^2$$

Exact Polynomial Optimization

 $\tilde{\mathbf{v}}$ [Lasserre/Parrilo 01] **Numerical** solvers compute σ_i Semidefinite programming (SDP) \rightsquigarrow **approximate** certificates

$$f = 4X_1^4 + 4X_1^3X_2 - 7X_1^2X_2^2 - 2X_1X_2^3 + 10X_2^4$$

$$f \simeq \sigma = (2X_1^2 + X_1X_2 - \frac{8}{3}X_2^2)^2 + (\frac{4}{3}X_1X_2 + \frac{3}{2}X_2^2)^2 + (\frac{2}{7}X_2^2)^2$$

$$f = \sigma + \frac{8}{9}X_1^2X_2^2 - \frac{2}{3}X_1X_2^3 + \frac{983}{1764}X_2^4$$

Exact Polynomial Optimization

 $\tilde{\mathbf{v}}$ [Lasserre/Parrilo 01] **Numerical** solvers compute σ_i Semidefinite programming (SDP) \rightsquigarrow **approximate** certificates

$$f = 4X_1^4 + 4X_1^3X_2 - 7X_1^2X_2^2 - 2X_1X_2^3 + 10X_2^4$$

$$f \simeq \sigma = (2X_1^2 + X_1X_2 - \frac{8}{3}X_2^2)^2 + (\frac{4}{3}X_1X_2 + \frac{3}{2}X_2^2)^2 + (\frac{2}{7}X_2^2)^2$$

$$f = \sigma + \frac{8}{9}X_1^2X_2^2 - \frac{2}{3}X_1X_2^3 + \frac{983}{1764}X_2^4$$

The Question of Exact Certification

How to go from approximate to exact certification?

One Answer when $\mathbf{K} = \mathbb{R}^n$

♥ Hybrid SYMBOLIC/NUMERIC methods ☐ [Peyrl-Parrilo 08] [Kaltofen et. al 08]

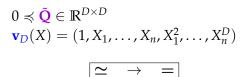
 $f(X) \simeq \mathbf{v}_D^T(X) \,\tilde{\mathbf{Q}} \, \mathbf{v}_D(X)$

 $0 \preccurlyeq \tilde{\mathbf{Q}} \in \mathbb{R}^{D \times D}$ $\mathbf{v}_D(X) = (1, X_1, \dots, X_n, X_1^2, \dots, X_n^D)$

One Answer when $\mathbf{K} = \mathbb{R}^n$

♥ Hybrid SYMBOLIC/NUMERIC methods
☐ [Peyrl-Parrilo 08] [Kaltofen et. al 08]

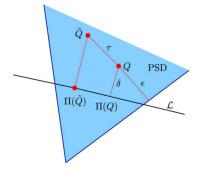
 $f(X) \simeq \mathbf{v}_D^T(X) \, \tilde{\mathbf{Q}} \, \mathbf{v}_D(X)$



 $\tilde{V} \tilde{Q}$ Rounding Q Projection $\prod(Q)$

 $f(X) = \mathbf{v}_D^T(X) \prod(\mathbf{Q}) \mathbf{v}_D(X)$

 $\prod(\mathbf{Q}) \succeq 0 \text{ when } \boldsymbol{\varepsilon} \to 0$

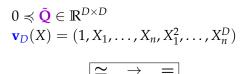


Victor Magron

One Answer when $\mathbf{K} = \mathbb{R}^n$

♥ Hybrid SYMBOLIC/NUMERIC methods
☐ [Peyrl-Parrilo 08] [Kaltofen et. al 08]

 $f(X) \simeq \mathbf{v}_D^T(X) \, \tilde{\mathbf{Q}} \, \mathbf{v}_D(X)$

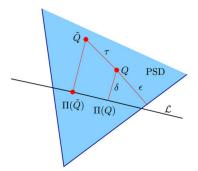


 $\tilde{V} \tilde{Q}$ Rounding Q Projection $\prod(Q)$

 $f(X) = \mathbf{v}_D^T(X) \prod(\mathbf{Q}) \mathbf{v}_D(X)$

$$\prod(\mathbf{Q}) \succeq 0 \text{ when } \boldsymbol{\varepsilon} \to 0$$

Victor Magron



One Answer when $\mathbf{K} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$

₩Hybrid SYMBOLIC/NUMERIC methods

Magron-Allamigeon-Gaubert-Werner 14

 $f\simeq \tilde{\sigma}_0+\tilde{\sigma}_1\,g_1+\cdots+\tilde{\sigma}_m\,g_m$

 $u=f-\tilde{\sigma}_0+\tilde{\sigma}_1\,g_1+\cdots+\tilde{\sigma}_m\,g_m$

One Answer when $\mathbf{K} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{g}_i(\mathbf{x}) \ge 0\}$

Whybrid SYMBOLIC/NUMERIC methods

Magron-Allamigeon-Gaubert-Werner 14

 $f\simeq \tilde{\sigma}_0+\tilde{\sigma}_1\,g_1+\cdots+\tilde{\sigma}_m\,g_m$

 $u=f-\tilde{\sigma}_0+\tilde{\sigma}_1\,g_1+\cdots+\tilde{\sigma}_m\,g_m$

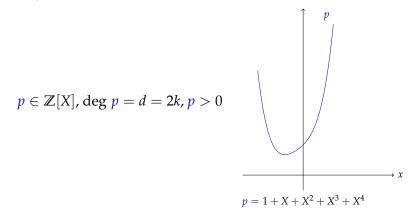
$$\simeq \rightarrow =$$

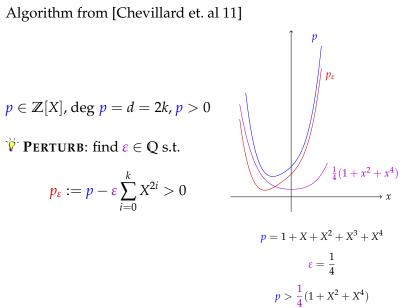
 $\forall \mathbf{x} \in [0,1]^n, \mathbf{u}(\mathbf{x}) \leq -\boldsymbol{\varepsilon}$

$$\min_{\mathbf{K}} f \geq \varepsilon \text{ when } \varepsilon \to 0$$
COMPLEXITY?

Compact $\mathbf{K} \subseteq [0, 1]^n$

Algorithm from [Chevillard et. al 11]





Victor Magron

Certified Optimization for System Verification

40 / 46

Algorithm from [Chevillard et. al 11] $p \in \mathbb{Z}[X]$, deg p = d = 2k, p > 0

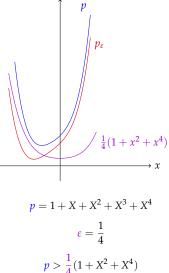
PERTURB: find $\varepsilon \in \mathbb{Q}$ s.t.

$$p_{\varepsilon} := p - \varepsilon \sum_{i=0}^{k} X^{2i} > 0$$

♥ SDP Approximation:

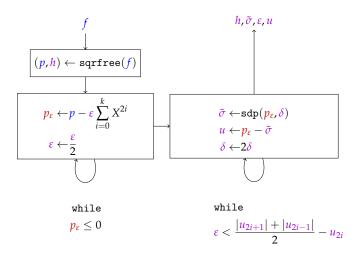
$$p - \varepsilon \sum_{i=0}^{k} X^{2i} = \sigma + u$$

$$\stackrel{\overleftarrow{\mathbf{v}}}{\longrightarrow} \mathbf{ABSORB: small enough } u_i$$
$$\implies \varepsilon \sum_{i=0}^k X^{2i} + u \text{ SOS}$$



Victor Magron

Input: *f* ≥ 0 ∈ Q[X] of degree *d* ≥ 2, ε ∈ Q^{>0}, δ ∈ N^{>0}
Output: SOS decomposition with coefficients in Q



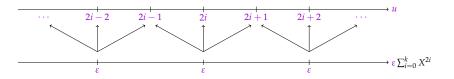
$$\vec{V} \quad X = \frac{1}{2} \left[(X+1)^2 - 1 - X^2 \right] \vec{V} \quad -X = \frac{1}{2} \left[(X-1)^2 - 1 - X^2 \right]$$

$$\vec{V} \quad X = \frac{1}{2} \left[(X+1)^2 - 1 - X^2 \right] \vec{V} \quad -X = \frac{1}{2} \left[(X-1)^2 - 1 - X^2 \right]$$

$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[(X^{i+1} + \operatorname{sgn}(u_{2i+1})X^{i})^{2} - X^{2i} - X^{2i+2} \right]$$

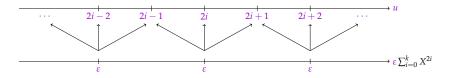
$$\vec{V} \quad X = \frac{1}{2} \left[(X+1)^2 - 1 - X^2 \right] \vec{V} \quad -X = \frac{1}{2} \left[(X-1)^2 - 1 - X^2 \right]$$

$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[(X^{i+1} + \operatorname{sgn}(u_{2i+1})X^{i})^{2} - X^{2i} - X^{2i+2} \right]$$



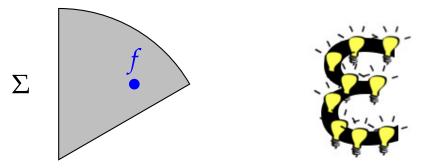
$$\vec{V} \quad X = \frac{1}{2} \left[(X+1)^2 - 1 - X^2 \right] \vec{V} \quad -X = \frac{1}{2} \left[(X-1)^2 - 1 - X^2 \right]$$

$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[(X^{i+1} + \operatorname{sgn}(u_{2i+1})X^{i})^{2} - X^{2i} - X^{2i+2} \right]$$



$$\varepsilon \ge \frac{|u_{2i+1}| + |u_{2i-1}|}{2} - u_{2i} \implies \varepsilon \sum_{i=0}^{k} X^{2i} + u \quad \text{SOS}$$

intsos with $n \ge 1$: Perturbation



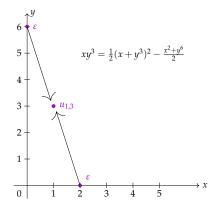
PERTURBATION idea

♥ Approximate SOS Decomposition

$$f(X)$$
 - $\varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$

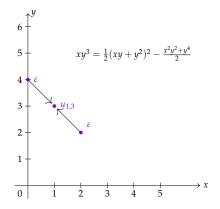
$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Choice of \mathcal{P} ?



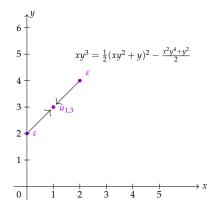
$$f(X)$$
 - $\varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$

Choice of \mathcal{P} ?



$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Choice of \mathcal{P} ?



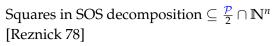
$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

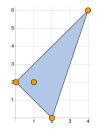
Choice of \mathcal{P} ?

$$f = 4x^4y^6 + x^2 - xy^2 + y^2$$

spt(f) = {(4,6), (2,0), (1,2), (0,2)}

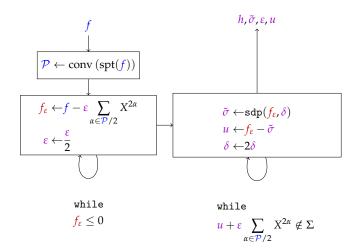
Newton Polytope $\mathcal{P} = \operatorname{conv}(\operatorname{spt}(f))$





Algorithm intsos

Input: *f* ≥ 0 ∈ Q[X] of degree *d* ≥ 2, ε ∈ Q^{>0}, δ ∈ N^{>0}
Output: SOS decomposition with coefficients in Q



Algorithm intsos

Theorem (Exact Certification Cost in Σ)

 $f \in \mathbb{Q}[X] \cap \mathring{\Sigma}[X]$ with degf = d = 2k and bit size τ

 \implies intsos terminates with SOS output of bit size $\tau d^{\mathcal{O}(n)}$

Algorithm intsos

Theorem (Exact Certification Cost in Σ)

 $f \in \mathbb{Q}[X] \cap \mathring{\Sigma}[X]$ with degf = d = 2k and bit size τ

 \implies intsos terminates with SOS output of bit size $\tau d^{\mathcal{O}(n)}$

Proof. $\forall \in \mathbb{R} : \forall \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} \mathbf{x}^{2\alpha} \ge 0 \} \neq \emptyset$ Quantifier Elimination [Basu et. al 06] $\implies \tau(\varepsilon) = \tau d^{\mathcal{O}(n)}$

 \forall # Coefficients in SOS output = size($\mathcal{P}/2$) = $\binom{n+k}{n} \leq d^n$

Ellipsoid algorithm for SDP [Grötschel et. al 93]

SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets

Exact Polynomial Optimization

Conclusion

Conclusion

SDP/SOS powerful to handle **NONLINEAR VERIFICATION**:

- Optimize values/curves/sets
- Formal nonlinear optimization: NLCertify ^{*}
- Analysis of NONLINEAR SYSTEMS (Reachability, Invariants)

Conclusion

SDP/SOS powerful to handle **NONLINEAR VERIFICATION**:

- Optimize values/curves/sets
- Formal nonlinear optimization: NLCertify ³⁰
- Analysis of NONLINEAR SYSTEMS (Reachability, Invariants)

FUTURE:

- PDEs
- Exact methods

Non polynomial functions

Thank you for your attention!

http://www-verimag.imag.fr/~magron