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Personal Background
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Research Field
CERTIFIED OPTIMIZATION

Input: linear problem (LP), geometric, semidefinite (SDP)
Output: value + numerical/symbolic/formal certificate

VERIFICATION OF CRITICAL SYSTEMS

Safety of embedded software/hardware
Mathematical formal proofs
biology, robotics, analysers, . . .

Efficient certification for nonlinear systems

Certified optimization of polynomial systems
analysis / synthesis / control

Efficiency
symmetry reduction, sparsity

Certified approximation algorithms
convergence, error analysis
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What is Semidefinite Optimization?

Linear Programming (LP):

min
z

c
>

z

s.t. A z > d .

Linear cost c

Linear inequalities “∑i Aij zj > di” Polyhedron
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What is Semidefinite Optimization?

Semidefinite Programming (SDP):

min
z

c
>

z

s.t. ∑
i

Fi zi < F0 .

Linear cost c

Symmetric matrices F0, Fi

Linear matrix inequalities “F < 0”
(F has nonnegative eigenvalues)

Spectrahedron

Victor Magron Certified Optimization for System Verification 3 / 46



What is Semidefinite Optimization?

Semidefinite Programming (SDP):

min
z

c
>

z

s.t. ∑
i

Fi zi < F0 , A z = d .

Linear cost c

Symmetric matrices F0, Fi

Linear matrix inequalities “F < 0”
(F has nonnegative eigenvalues)

Spectrahedron

Victor Magron Certified Optimization for System Verification 3 / 46



Applications of SDP

Combinatorial optimization

Control theory

Matrix completion

Unique Games Conjecture (Khot ’02) :
“A single concrete algorithm provides optimal guarantees
among all efficient algorithms for a large class of
computational problems.”
(Barak and Steurer survey at ICM’14)

Solving polynomial optimization (Lasserre ’01)
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SDP for Polynomial Optimization

Theoretical approach for polynomial optimization

(Primal) (Dual)

inf
∫

f dµ sup λ

avec µ probabilité ⇒ LP INFINI ⇐ avec f − λ > 0

Hierarchy of SDP ↑ f ∗

degree 2k
n vars

=⇒ (n+2k
n ) SDP VARIABLES
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SDP for Polynomial Optimization

Practical approach for polynomial optimization

(Primal Relaxation) (Dual Strengthening)

moments
∫

xα dµ f − λ = sums of squares

finite ⇒ SDP ⇐ fixed degree

Hierarchy of SDP ↑ f ∗

degree 2k
n vars

=⇒ (n+2k
n ) SDP VARIABLES
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Lasserre’s hierarchy

Cast polynomial optimization as infinite-dimensional LP over
measures [Lasserre 01]

f ? := inf
x∈K

f (x) = inf
µ∈M+(K)

∫
K

f (x)dµ

 Regions of attraction [Henrion-Korda 14]

 Maximum invariants [Korda et al 13]

 Reachable sets [Magron et al 17]
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SDP for Polynomial Optimization

Prove polynomial inequalities with SDP:

f (a, b) := a2 − 2ab + b2 > 0 .

Find z s.t. f (a, b) =
(

a b
)(z1 z2

z2 z3

)
︸ ︷︷ ︸

<0

(
a
b

)
.

Find z s.t. a2 − 2ab + b2 = z1a2 + 2z2ab + z3b2 (A z = d)

(
z1 z2
z2 z3

)
=

(
1 0
0 0

)
︸ ︷︷ ︸

F1

z1 +

(
0 1
1 0

)
︸ ︷︷ ︸

F2

z2 +

(
0 0
0 1

)
︸ ︷︷ ︸

F3

z3 <
(

0 0
0 0

)
︸ ︷︷ ︸

F0
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SDP for Polynomial Optimization

Choose a cost c e.g. (1, 0, 1) and solve:

min
z

c
>

z

s.t. ∑
i

Fi zi < F0 , A z = d .

Solution
(

z1 z2
z2 z3

)
=

(
1 −1
−1 1

)
< 0 (eigenvalues 0 and 2)

a2 − 2ab + b2 =
(
a b

) ( 1 −1
−1 1

)
︸ ︷︷ ︸

<0

(
a
b

)
= (a− b)2 .

Solving SDP =⇒ Finding SUMS OF SQUARES certificates
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SDP for Polynomial Optimization

NP hard General Problem: f ∗ := min
x∈K

f (x)

Semialgebraic set K := {x ∈ Rn : g1(x) > 0, . . . , gm(x) > 0}

� := [0, 1]2 = {x ∈ R2 : x1(1− x1) > 0, x2(1− x2) > 0}

f︷︸︸︷
x1x2 +

1
8
=

σ0︷ ︸︸ ︷
1
2

(
x1 + x2 −

1
2

)2

+

σ1︷︸︸︷
1
2

g1︷ ︸︸ ︷
x1(1− x1) +

σ2︷︸︸︷
1
2

g2︷ ︸︸ ︷
x2(1− x2)

Sums of squares (SOS) σi

Bounded degree:

Qk(K) :=
{

σ0 + ∑m
j=1 σjgj, with deg σj gj 6 2k

}
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SDP for Polynomial Optimization

Hierarchy of SDP relaxations:

λk := sup
λ

{
λ : f − λ ∈ Qk(K)

}

Convergence guarantees λk ↑ f ∗ [Lasserre 01]

Can be computed with SDP solvers (CSDP, SDPA)

“No Free Lunch” Rule: (n+2k
n ) SDP variables
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SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets

Exact Polynomial Optimization

Conclusion



From Oranges Stack...

Kepler Conjecture (1611):

The maximal density of sphere packings in 3D-space is π√
18

Face-centered cubic Packing Hexagonal Compact Packing
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...to Flyspeck Nonlinear Inequalities

The proof of T. Hales (1998) contains mathematical and
computational parts

Computation: check thousands of nonlinear inequalities

Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture

Project Completion on August 2014 by the Flyspeck team
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A “Simple” Example

In the computational part:

Multivariate Polynomials:
∆x := x1x4(−x1 + x2 + x3 − x4 + x5 + x6) + x2x5(x1 − x2 + x3 +

x4 − x5 + x6) + x3x6(x1 + x2 − x3 + x4 + x5 − x6)− x2(x3x4 +

x1x6)− x5(x1x3 + x4x6)
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A “Simple” Example

In the computational part:

Semialgebraic functions: composition of polynomials with
| · |,√,+,−,×, /, sup, inf, . . .

p(x) := ∂4∆x q(x) := 4x1∆x
r(x) := p(x)/

√
q(x)

l(x) := −π

2
+ 1.6294− 0.2213 (

√
x2 +

√
x3 +

√
x5 +

√
x6 − 8.0) +

0.913 (
√

x4 − 2.52) + 0.728 (
√

x1 − 2.0)
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A “Simple” Example

In the computational part:

Transcendental functions T : composition of semialgebraic
functions with arctan, exp, sin, +,−,×, . . .
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A “Simple” Example

In the computational part:

Feasible set K := [4, 6.3504]3 × [6.3504, 8]× [4, 6.3504]2

Lemma9922699028 from Flyspeck:

∀x ∈ K, arctan
( p(x)√

q(x)

)
+ l(x) > 0
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Existing Formal Frameworks

Formal proofs for Global Optimization:

Bernstein polynomial methods [Zumkeller’s PhD 08]

SMT methods [Gao et al. 12]

Interval analysis and Sums of squares
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Existing Formal Frameworks

Interval analysis

Certified interval arithmetic in COQ [Melquiond 12]

Taylor methods in HOL Light [Solovyev thesis 13]
Formal verification of floating-point operations

robust but subject to the Curse of Dimensionality

Victor Magron Certified Optimization for System Verification 13 / 46



Existing Formal Frameworks

Lemma9922699028 from Flyspeck:

∀x ∈ K, arctan
( ∂4∆x√

4x1∆x

)
+ l(x) > 0

Dependency issue using Interval Calculus:
One can bound ∂4∆x/

√
4x1∆x and l(x) separately

Too coarse lower bound: −0.87

Subdivide K to prove the inequality

K
=⇒

K0
K1

K2

K3

K4
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Existing Formal Frameworks

Sums of squares (SOS) techniques

Formalized in HOL-LIGHT [Harrison 07] COQ [Besson 07]

Precise methods but scalability and robustness issues
(numerical)

powerful: global optimality certificates without branching

but

not so robust: handles moderate size problems

Restricted to polynomials
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Existing Formal Frameworks

Caprasse Problem:

∀x ∈ [−0.5, 0.5]4,−x1x3
3 + 4x2x2

3x4 + 4x1x3x2
4 + 2x2x3

4 +

4x1x3 + 4x2
3 − 10x2x4 − 10x2

4 + 5.1801 > 0.

Decompose the polynomial as SOS of degree at most 4

Gives a nonnegative bound!
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Existing Formal Frameworks

Approximation theory: Chebyshev/Taylor models

mandatory for non-polynomial problems

hard to combine with SOS techniques (degree of
approximation)
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Existing Formal Frameworks

Can we develop a new approach with both keeping the
respective strength of interval and precision of SOS?

Proving Flyspeck Inequalities is challenging: medium-size and
tight
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Contribution: Publications and Software

M., Allamigeon, Gaubert, Werner.
Formal Proofs for Nonlinear Optimization,
Journal of Formalized Reasoning 8(1):1–24, 2015.

Hales, Adams, Bauer, Dang, Harrison, Hoang, Kaliszyk, M.,
Mclaughlin, Nguyen, Nguyen, Nipkow, Obua, Pleso, Rute,
Solovyev, Ta, Tran, Trieu, Urban, Vu & Zumkeller, Forum of
Mathematics, Pi, 5 2017

Software Implementation NLCertify:

15 000 lines of OCAML code

4000 lines of COQ code

M. NLCertify: A Tool for Formal Nonlinear Optimization, ICMS,
2014.
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SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets
Semialgebraic Maxplus Optimization
Roundoff Error Bounds
Pareto Curves
Polynomial Images of Semialgebraic Sets
Reachable Sets of Polynomial Systems
Invariant Measures of Polynomial Systems

Exact Polynomial Optimization

Conclusion



General informal Framework

Given K a compact set and f a transcendental function, bound
f ∗ = inf

x∈K
f (x) and prove f ∗ > 0

f is under-approximated by a semialgebraic function fsa

Reduce the problem f ∗sa := infx∈K fsa(x) to a polynomial
optimization problem (POP)
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Maxplus Approximation

Initially introduced to solve Optimal Control Problems
[Fleming-McEneaney 00]

Curse of dimensionality reduction [McEaneney Kluberg,
Gaubert-McEneaney-Qu 11, Qu 13].
Allowed to solve instances of dim up to 15 (inaccessible by
grid methods)

In our context: approximate transcendental functions
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Maxplus Approximation

Definition
Let γ > 0. A function φ : Rn → R is said to be γ-semiconvex if
the function x 7→ φ(x) + γ

2 ‖x‖2
2 is convex.

a

y

par+a1

par+a2

par−a2

par−a1

a2a1

arctan

m M
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Nonlinear Function Representation

Exact parsimonious maxplus representations

a

y
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Nonlinear Function Representation

Exact parsimonious maxplus representations

a

y
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Nonlinear Function Representation

Abstract syntax tree representations of multivariate
transcendental functions:

leaves are semialgebraic functions of A
nodes are univariate functions of D or binary operations
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Nonlinear Function Representation

For the “Simple” Example from Flyspeck:

+

l(x) arctan

r(x)
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Maxplus Optimization Algorithm

First iteration:

+

l(x) arctan

r(x)

a

y

par−a1

arctan

m Ma1

1 control point {a1}: m1 = −4.7× 10−3 < 0
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Maxplus Optimization Algorithm

Second iteration:

+

l(x) arctan

r(x)

a

y

par−a1

par−a2

arctan

m Ma1a2

2 control points {a1, a2}: m2 = −6.1× 10−5 < 0
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Maxplus Optimization Algorithm

Third iteration:

+

l(x) arctan

r(x)

a

y

par−a1

par−a2

par−a3

arctan

m Ma1a2 a3

3 control points {a1, a2, a3}: m3 = 4.1× 10−6 > 0

OK!
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SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets
Semialgebraic Maxplus Optimization
Roundoff Error Bounds
Pareto Curves
Polynomial Images of Semialgebraic Sets
Reachable Sets of Polynomial Systems
Invariant Measures of Polynomial Systems

Exact Polynomial Optimization

Conclusion



Roundoff Error Bounds

Exact:
f (x) := x1x2 + x3x4

Floating-point:

f̂ (x, e) := [x1x2(1 + e1) + x3x4(1 + e2)](1 + e3)

x ∈ X , | ei |6 2−p p = 24 (single) or 53 (double)

Sparse SDP Optimization [Waki, Lasserre 06]
Correlative sparsity pattern (csp) of vars

x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)
6

4

5

1

23

1 Maximal cliques C1, . . . , Cl

2 Average size κ ; (κ+2k
κ ) vars

C1 := {1, 4}
C2 := {1, 2, 3, 5}
C3 := {1, 3, 5, 6}
Dense SDP: 210 vars
Sparse SDP: 115 vars
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Roundoff Error Bounds

Input: exact f (x), floating-point f̂ (x, e)
Output: Bounds for f − f̂

1: Error r(x, e) := f (x)− f̂ (x, e) = ∑
α

rα(e)xα

2: Decompose r(x, e) = l(x, e) + h(x, e), l linear in e

3: Bound h(x, e) with interval arithmetic

4: Bound l(x, e) with SPARSE SUMS OF SQUARES

Sparse SDP Optimization [Waki, Lasserre 06]
Correlative sparsity pattern (csp) of vars
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Contributions

l(x, e) = ∑m
i=1 si(x)ei

Maximal cliques correspond to {x, e1}, . . . , {x, em}

M., Constantinides, Donaldson. Certified Roundoff Error Bounds
Using Semidefinite Programming, Trans. Math. Soft., 2016
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SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets
Semialgebraic Maxplus Optimization
Roundoff Error Bounds
Pareto Curves
Polynomial Images of Semialgebraic Sets
Reachable Sets of Polynomial Systems
Invariant Measures of Polynomial Systems

Exact Polynomial Optimization

Conclusion



Bicriteria Optimization Problems

Let f1, f2 ∈ R[x] two conflicting criteria

Let S := {x ∈ Rn : g1(x) > 0, . . . , gm(x) > 0} a
semialgebraic set

(P)
{

min
x∈S

(f1(x) f2(x))>
}

Assumption

The image space R2 is partially ordered in a natural way (R2
+ is

the ordering cone).
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Bicriteria Optimization Problems

g1 := −(x1 − 2)3/2− x2 + 2.5 ,

g2 := −x1 − x2 + 8(−x1 + x2 + 0.65)2 + 3.85 ,

S := {x ∈ R2 : g1(x) > 0, g2(x) > 0} .

f1 := (x1 + x2 − 7.5)2/4 + (−x1 + x2 + 3)2 ,

f2 := (x1 − 1)2/4 + (x2 − 4)2/4 .
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Parametric Sublevel Set Approximations

Inspired by previous research on multiobjective linear
optimization [Gorissen-den Hertog 12]

Workaround: reduce P to a parametric POP

(Pλ) : f ∗(λ) := min
x∈S
{ f2(x) : f1(x) 6 λ } ,

variable (x, λ) ∈ K = S× [0, 1]
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A Hierarchy of Polynomial Approximations

Moment-SOS approach [Lasserre 10]:

(Dk)

 max
q∈R2k[λ]

2k

∑
i=0

qi/(1 + i)

s.t. f2(x)− q(λ) ∈ Q2k(K) .

The hierarchy (Dk) provides a sequence (qk) of
polynomial under-approximations of f ∗(λ).

limd→∞
∫ 1

0 (f
∗(λ)− qk(λ))dλ = 0
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A Hierarchy of Polynomial Approximations

Degree 4
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A Hierarchy of Polynomial Approximations

Degree 6
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A Hierarchy of Polynomial Approximations

Degree 8
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Contributions

Numerical schemes that avoid computing finitely many
points.

Pareto curve approximation with polynomials,
convergence guarantees in L1-norm

M., Henrion, Lasserre. Approximating Pareto Curves using
Semidefinite Relaxations. Operations Research Letters, 2014.
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SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets
Semialgebraic Maxplus Optimization
Roundoff Error Bounds
Pareto Curves
Polynomial Images of Semialgebraic Sets
Reachable Sets of Polynomial Systems
Invariant Measures of Polynomial Systems

Exact Polynomial Optimization

Conclusion



Polynomial Images of Semialgebraic Sets

Semialgebraic set S := {x ∈ Rn : g1(x) > 0, . . . , gl(x) > 0}

A polynomial map f : Rn → Rm,
x 7→ f (x) := (f1(x), . . . , fm(x))

deg f = d := max{deg f1, . . . , deg fm}

F := f (S) ⊆ B, with B ⊂ Rm a box or a ball

Tractable approximations of F ?
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Polynomial Images of Semialgebraic Sets

Includes important special cases:

1 m = 1: polynomial optimization

F ⊆ [ inf
x∈S

f (x), sup
x∈S

f (x)]

2 Approximate projections of S when f (x) := (x1, . . . , xm)

3 Pareto curve approximations

For f1, f2 two conflicting criteria: (P)
{

min
x∈S

(f1(x) f2(x))>
}
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Support of Image Measures

Pushforward f # :M(S)→M(B):

f #µ0(A) := µ0({x ∈ S : f (x) ∈ A}) , ∀A ∈ B(B), ∀µ0 ∈ M(S)

f #µ0 is the image measure of µ0 under f
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Support of Image Measures

p∗ := sup
µ0,µ1,µ̂1

∫
B

µ1

s.t. µ1 + µ̂1 = λB ,

µ1 = f #µ0 ,

µ0 ∈ M+(S), µ1, µ̂1 ∈ M+(B) .

Lebesgue measure on B is λB(dy) := 1B(y) dy
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Support of Image Measures

p∗ := sup
µ0,µ1,µ̂1

∫
B

µ1

s.t. µ1 + µ̂1 = λB ,

µ1 = f #µ0 ,

µ0 ∈ M+(S), µ1, µ̂1 ∈ M+(B) .

Lemma
Let µ∗1 be an optimal solution of the above LP.
Then µ∗1 = λF and p∗ = vol F.
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Method 2: Primal-dual LP Formulation

Primal LP

p∗ := sup
µ0,µ1,µ̂1

∫
µ1

s.t. µ1 + µ̂1 = λB ,

µ1 = f #µ0 ,

µ0 ∈ M+(S) ,

µ1, µ̂1 ∈ M+(B) .

Dual LP

d∗ := inf
v,w

∫
w(y) λB(dy)

s.t. v(f (x)) > 0, ∀x ∈ S ,

w(y) > 1 + v(y), ∀y ∈ B ,

w(y) > 0, ∀y ∈ B ,

v, w ∈ C(B) .
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Method 2: Strong Convergence Property

Strengthening of the dual LP:

d∗k := inf
v,w ∑

β∈Nm
2k

wβzB
β

s.t. v ◦ f ∈ Qkd(S),

w− 1− v ∈ Qk(B),

w ∈ Qk(B),

v, w ∈ R2k[y].
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Method 2: Strong Convergence Property

Theorem

Assuming that
◦
F 6= ∅ and Qk(S) is Archimedean,

1 The sequence (wk) converges to 1F w.r.t the L1(B)-norm:

lim
k→∞

∫
B
|wk − 1F|dy = 0 .

2 Let Fk := {y ∈ B : wk(y) > 1}. Then,

lim
k→∞

vol(Fk\F) = 0 .
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Polynomial Image of the Unit Ball

Image of the unit ball S := {x ∈ R2 : ‖x‖2
2 6 1} by

f (x) := (x1 + x1x2, x2 − x3
1)/2

F1
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Polynomial Image of the Unit Ball

Image of the unit ball S := {x ∈ R2 : ‖x‖2
2 6 1} by

f (x) := (x1 + x1x2, x2 − x3
1)/2

F2

Victor Magron Certified Optimization for System Verification 29 / 46



Polynomial Image of the Unit Ball

Image of the unit ball S := {x ∈ R2 : ‖x‖2
2 6 1} by
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Polynomial Image of the Unit Ball

Image of the unit ball S := {x ∈ R2 : ‖x‖2
2 6 1} by

f (x) := (x1 + x1x2, x2 − x3
1)/2

F4
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Semialgebraic Set Projections

f (x) = (x1, x2): projection on R2 of the semialgebraic set

S := {x ∈ R3 :‖x‖2
2 6 1, 1/4− (x1 + 1/2)2 − x2

2 > 0,

1/9− (x1 − 1/2)4 − x4
2 > 0}

F2
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Approximating Pareto Curves

Back on our previous nonconvex example:

F1
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Approximating Pareto Curves

Back on our previous nonconvex example:

F2
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Approximating Pareto Curves

Back on our previous nonconvex example:

F3
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Approximating Pareto Curves

“Zoom” on the region which is hard to approximate:

F4
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Approximating Pareto Curves

“Zoom” on the region which is hard to approximate:

F5
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Semialgebraic Image of Semialgebraic Sets

Image of the unit ball S := {x ∈ R2 : ‖x‖2
2 6 1} by

f (x) := (min(x1 + x1x2, x2
1), x2 − x3

1)/3

F1
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Image of the unit ball S := {x ∈ R2 : ‖x‖2
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f (x) := (min(x1 + x1x2, x2
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1)/3

F4
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Contributions

M., Henrion, Lasserre. Semidefinite approximations of
projections and polynomial images of semialgebraic sets. SIAM
Opt. , 2015.
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Reachable Sets of Polynomial Systems

Iterations xt+1 = f (xt)

Uncertain xt+1 = f (xt, u)

Converging SDP hierarchies
Image measure
Liouville equation (conservation)

µt + µ = f # µ + µ0

M., Garoche, Henrion, Thirioux. Semidefinite Approximations of
Reachable Sets for Discrete-time Polynomial Systems, 2017.
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Invariant Measures of Polynomial Systems

Discrete xt+1 = f (xt) =⇒ f # µ− µ = 0
Continuous ẋ = f (x) =⇒ div f µ = 0

Converging SDP hierarchies
measures with density in Lp

singular measures =⇒ chaotic attractors

M., Forets, Henrion. Semidefinite Characterization of Invariant
Measures for Polynomial Systems. In Progress, 2018.
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Continuous ẋ = f (x) =⇒ div f µ = 0

Converging SDP hierarchies
measures with density in Lp

singular measures =⇒ chaotic attractors

M., Forets, Henrion. Semidefinite Characterization of Invariant
Measures for Polynomial Systems. In Progress, 2018.

Victor Magron Certified Optimization for System Verification 36 / 46



SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets

Exact Polynomial Optimization

Conclusion



Exact Polynomial Optimization

[Lasserre/Parrilo 01] Numerical solvers compute σi

Semidefinite programming (SDP) approximate certificates

f = 4X4
1 + 4X3

1X2 − 7X2
1X2

2 − 2X1X3
2 + 10X4

2

f ' σ = (2X2
1 + X1X2 − 8

3 X2
2)

2 + ( 4
3 X1X2 +

3
2 X2

2)
2 + ( 2

7 X2
2)

2

f = σ + 8
9 X2

1X2
2 − 2

3 X1X3
2 +

983
1764 X4

2

' → =

The Question of Exact Certification
How to go from approximate to exact certification?
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One Answer when K = Rn

Hybrid SYMBOLIC/NUMERIC methods
[Peyrl-Parrilo 08] [Kaltofen et. al 08]

f (X) ' vD
T(X) Q̃ vD(X)

0 4 Q̃ ∈ RD×D

vD(X) = (1, X1, . . . , Xn, X2
1, . . . , XD

n )

' → =

Q̃ Rounding Q Projection ∏(Q)

f (X) = vD
T(X)∏(Q) vD(X)

∏(Q) < 0 when ε→ 0
COMPLEXITY?
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One Answer when K = {x ∈ Rn : gj(x) > 0}

Hybrid SYMBOLIC/NUMERIC methods

Magron-Allamigeon-Gaubert-Werner 14

f ' σ̃0 + σ̃1 g1 + · · ·+ σ̃m gm

u = f − σ̃0 + σ̃1 g1 + · · ·+ σ̃m gm

' → =

∀x ∈ [0, 1]n, u(x) 6 −ε

minK f > ε when ε→ 0
COMPLEXITY?

Compact K ⊆ [0, 1]n
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intsos with n = 1 and SDP Approximation

Algorithm from [Chevillard et. al 11]

p ∈ Z[X], deg p = d = 2k, p > 0

x

p

p = 1 + X + X2 + X3 + X4
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intsos with n = 1 and SDP Approximation

Algorithm from [Chevillard et. al 11]

p ∈ Z[X], deg p = d = 2k, p > 0

PERTURB: find ε ∈ Q s.t.

pε := p− ε
k

∑
i=0

X2i > 0 x

p

1
4 (1 + x2 + x4)

pε

p = 1 + X + X2 + X3 + X4

ε =
1
4

p >
1
4
(1 + X2 + X4)

Victor Magron Certified Optimization for System Verification 40 / 46



intsos with n = 1 and SDP Approximation

Algorithm from [Chevillard et. al 11]

p ∈ Z[X], deg p = d = 2k, p > 0

PERTURB: find ε ∈ Q s.t.

pε := p− ε
k

∑
i=0

X2i > 0

SDP Approximation:

p− ε
k

∑
i=0

X2i = σ + u

ABSORB: small enough ui

=⇒ ε ∑k
i=0 X2i + u SOS

x

p

1
4 (1 + x2 + x4)

pε

p = 1 + X + X2 + X3 + X4

ε =
1
4

p >
1
4
(1 + X2 + X4)
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intsos with n = 1 and SDP Approximation

Input: f > 0 ∈ Q[X] of degree d > 2, ε ∈ Q>0, δ ∈N>0

Output: SOS decomposition with coefficients in Q

pε ←p− ε
k

∑
i=0

X2i

ε← ε

2

σ̃←sdp(pε, δ)

u←pε − σ̃

δ←2δ

(p, h)← sqrfree( f )

f h, σ̃, ε, u

while

pε ≤ 0

while

ε <
|u2i+1|+ |u2i−1|

2
− u2i
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intsos with n = 1: Absorbtion

X = 1
2

[
(X + 1)2 − 1−X2]

−X = 1
2

[
(X− 1)2 − 1−X2]

u2i+1X2i+1 =
|u2i+1|

2
[
(Xi+1 + sgn (u2i+1)Xi)2 −X2i −X2i+2]

u

ε ∑k
i=0 X2i

· · · 2i− 2 2i− 1 2i 2i + 1 2i + 2 · · ·

ε ε ε

ε >
|u2i+1|+ |u2i−1|

2
− u2i =⇒ ε

k

∑
i=0

X2i + u SOS
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intsos with n > 1: Perturbation

Σ
f

PERTURBATION idea

Approximate SOS Decomposition

f (X) - ε ∑α∈P/2 X2α = σ̃ + u
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intsos with n > 1: Absorbtion

f (X) - ε ∑α∈P/2 X2α = σ̃ + u

Choice of P?

x

y

0 1 2 3 4 5

1

2

3

4

5

6

u1,3

ε

ε

xy3 = 1
2 (x + y3)2 − x2+y6

2
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intsos with n > 1: Absorbtion

f (X) - ε ∑α∈P/2 X2α = σ̃ + u

Choice of P?

x

y

0 1 2 3 4 5

1

2

3

4

5

6

u1,3

ε

ε

xy3 = 1
2 (xy2 + y)2 − x2y4+y2

2
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intsos with n > 1: Absorbtion

f (X) - ε ∑α∈P/2 X2α = σ̃ + u

Choice of P?

f = 4x4y6 + x2 − xy2 + y2

spt(f ) = {(4, 6), (2, 0), (1, 2), (0, 2)}

Newton Polytope P = conv (spt(f ))

Squares in SOS decomposition ⊆ P
2 ∩Nn

[Reznick 78]
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Algorithm intsos

Input: f > 0 ∈ Q[X] of degree d > 2, ε ∈ Q>0, δ ∈N>0

Output: SOS decomposition with coefficients in Q

fε ← f − ε ∑
α∈P/2

X2α

ε← ε

2

σ̃←sdp( fε, δ)

u← fε − σ̃

δ←2δ

P ← conv (spt( f ))

f h, σ̃, ε, u

while

fε ≤ 0
while

u + ε ∑
α∈P/2

X2α /∈ Σ

Theorem (Exact Certification Cost in Σ̊)

f ∈ Q[X] ∩ Σ̊[X] with deg f = d = 2k and bit size τ

=⇒ intsos terminates with SOS output of bit size τ dO (n)

Proof.
{ε ∈ R : ∀x ∈ Rn, f (x)− ε ∑α∈P/2 x2α > 0} 6= ∅

Quantifier Elimination [Basu et. al 06] =⇒ τ(ε) = τ dO (n)

# Coefficients in SOS output = size(P/2) = (n+k
n ) 6 dn

Ellipsoid algorithm for SDP [Grötschel et. al 93]
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SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets

Exact Polynomial Optimization

Conclusion



Conclusion

SDP/SOS powerful to handle NONLINEAR VERIFICATION:

Optimize values/curves/sets

Formal nonlinear optimization: NLCertify

Analysis of NONLINEAR SYSTEMS (Reachability,
Invariants)

FUTURE:

PDEs

Exact methods

Non polynomial functions
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End

Thank you for your attention!

http://www-verimag.imag.fr/~magron

http://www-verimag.imag.fr/~magron
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