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Lipschitz constant of neural networks
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Applications: WGAN, certification

Existing works: [Lattore et al.’18] based on linear
programming (LP)

Network setting: K-classifier, ReLU network, 1 + m layers
(1 input layer + m hidden layer), Ai weights, bi biases

Score of label k 6 K = ck
Txm with last activation vector ck
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Lipschitz constant of neural networks

x0 ∈ Rp z0 ∈ Rp z1 ∈ Rp1 . . . zm ∈ Rpm

zi = Aixi−1 + bi xi−1 = ReLU(zi−1)

LIPSCHITZ CONSTANT:

L||·||f = inf{L : ∀x, y ∈ X , | f (x)− f (y)| ≤ L||x− y||}
= sup{||∇ f (x)||∗ : x ∈ X}
= sup{tT∇ f (x) : x ∈ X , ||t|| ≤ 1}

GRADIENT for a fixed label k:

∇ f (x0) =

( m

∏
i=1

Ai
Tdiag (ReLU′(zi))

)
ck
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A polynomial optimization formulation

ReLU (left) & its semialgebraicity (right)
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A polynomial optimization formulation

ReLU’ (left) & its semialgebraicity (right)
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A polynomial optimization formulation

Local Lipschitz constant: x0 ∈ ball of center x̄0 and radius ε

One single hidden layer (m = 1):

sup
x,u,z,t

tTATdiag (u)c

s.t.


(z−Ax− b)2 = 0

t2 ≤ 1, (x− x̄0 + ε)(x− x̄0 − ε) ≤ 0

u(u− 1) = 0, (u− 1/2)z ≥ 0

“CHEAP” and “TIGHT” upper bound?

Victor Magron Polynomial Optimization for Bounding Lipschitz Constants of Deep Networks 5 / 11



A polynomial optimization formulation

Local Lipschitz constant: x0 ∈ ball of center x̄0 and radius ε

One single hidden layer (m = 1):

sup
x,u,z,t

tTATdiag (u)c

s.t.


(z−Ax− b)2 = 0

t2 ≤ 1, (x− x̄0 + ε)(x− x̄0 − ε) ≤ 0

u(u− 1) = 0, (u− 1/2)z ≥ 0

“CHEAP” and “TIGHT” upper bound?

Victor Magron Polynomial Optimization for Bounding Lipschitz Constants of Deep Networks 5 / 11



A polynomial optimization formulation

Local Lipschitz constant: x0 ∈ ball of center x̄0 and radius ε

One single hidden layer (m = 1):

sup
x,u,z,t

tTATdiag (u)c

s.t.


(z−Ax− b)2 = 0

t2 ≤ 1, (x− x̄0 + ε)(x− x̄0 − ε) ≤ 0

u(u− 1) = 0, (u− 1/2)z ≥ 0

“CHEAP” and “TIGHT” upper bound?

Victor Magron Polynomial Optimization for Bounding Lipschitz Constants of Deep Networks 5 / 11



The moment-sums of squares hierarchy

NP-hard NON CONVEX Problem f ? = sup f (x)

Theory

(Primal) (Dual)

sup
∫

f dµ inf λ

with µ proba ⇒ INFINITE LP ⇐ with λ− f > 0

LASSERRE’S HIERARCHY of CONVEX PROBLEMS ↑ f ∗

[Lasserre/Parrilo 01]

degree d & n vars
Numeric solvers

=⇒ (n+2d
n ) SDP VARIABLES

=⇒ Approx Certificate
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The moment-sums of squares hierarchy

NP-hard NON CONVEX Problem f ? = sup f (x)

Practice

(Primal Relaxation) (Dual Strengthening)

moments
∫

xα dµ λ− f = sum of squares

finite number ⇒ SDP ⇐ fixed degree

LASSERRE’S HIERARCHY of CONVEX PROBLEMS ↑ f ∗

[Lasserre/Parrilo 01]

degree d & n vars
Numeric solvers

=⇒ (n+2d
n ) SDP VARIABLES
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The sparse hierarchy [Waki, Lasserre 06]

Correlative sparsity pattern

f = x2x5 + x3x6− x2x3− x5x6 + x1(−x1 + x2 + x3− x4 + x5 + x6)

Chordal graph
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1 Subsets C1, C2, C3

2 Average size κ ; (κ+2d
κ ) vars

C1 = {1, 4}
C2 = {1, 2, 3, 5}
C3 = {1, 3, 5, 6}
Dense SDP: 210 vars
Sparse SDP: 115 vars
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Our “heuristic relaxation” method: HR-2

Go between 1ST & 2ND stair in SPARSE hierarchy

sup
x,u,z,t

tTATdiag (u)c

s.t.


(z−Ax− b)2 = 0

t2 ≤ 1, (x− x̄0 + ε)(x− x̄0 − ε) ≤ 0

u(u− 1) = 0, (u− 1/2)z ≥ 0

Pick SDP variables for products in {x, t}, {u, z} up to deg 4
Pick SDP variables for products in {x, z}, {t, u} up to deg 2
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HR-2 on random (80, 80) networks

Weight matrix A with band structure of width s
SHOR: Shor’s relaxation given by 1ST stair in the hierarchy
LipOpt-3: LP based method
LBS: lower bound given by 104 random samples
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HR-2 on trained (784, 500) network

MNIST classifier (SDP-NN) from Raghunathan et al. Certified
defenses against adversarial examples, ICLR’18

HR-2 SHOR LipOpt-3 LBS

Global Lipschitz
Bound 14.56 < 17.85 Out of RAM 9.69
Time 12246 > 2869 Out of RAM -

Local Lipschitz
Bound 12.70 < 16.07 - 8.20
Time 20596 > 4217 - -
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What’s next?

MORE LAYERS =⇒ higher degree polynomials
TSSOS HIERARCHY: exploit term sparsity [Wang-M.-Lasserre 19]

Term sparsity pattern graph
Chordal extension

 Link with Jared Miller’s poster! x y z

xy 1 yz

CERTIFIED bounds embed ML into “CRITICAL” dynamical systems

Open PhD/Postdoc positions

Victor Magron Polynomial Optimization for Bounding Lipschitz Constants of Deep Networks 11 / 11



What’s next?

MORE LAYERS =⇒ higher degree polynomials
TSSOS HIERARCHY: exploit term sparsity [Wang-M.-Lasserre 19]

Term sparsity pattern graph
Chordal extension

 Link with Jared Miller’s poster! x y z

xy 1 yz

CERTIFIED bounds embed ML into “CRITICAL” dynamical systems

Open PhD/Postdoc positions

Victor Magron Polynomial Optimization for Bounding Lipschitz Constants of Deep Networks 11 / 11



What’s next?

MORE LAYERS =⇒ higher degree polynomials
TSSOS HIERARCHY: exploit term sparsity [Wang-M.-Lasserre 19]

Term sparsity pattern graph
Chordal extension

 Link with Jared Miller’s poster! x y z

xy 1 yz

CERTIFIED bounds embed ML into “CRITICAL” dynamical systems

Open PhD/Postdoc positions

Victor Magron Polynomial Optimization for Bounding Lipschitz Constants of Deep Networks 11 / 11



What’s next?

MORE LAYERS =⇒ higher degree polynomials
TSSOS HIERARCHY: exploit term sparsity [Wang-M.-Lasserre 19]

Term sparsity pattern graph
Chordal extension

 Link with Jared Miller’s poster! x y z

xy 1 yz

CERTIFIED bounds embed ML into “CRITICAL” dynamical systems

Open PhD/Postdoc positions

Victor Magron Polynomial Optimization for Bounding Lipschitz Constants of Deep Networks 11 / 11



Thank you for your attention!

https://homepages.laas.fr/vmagron

Chen, Lasserre, Magron and Pauwels. Polynomial Optimization for
Bounding Lipschitz Constants of Deep Networks. arxiv:2002.03657

Wang, Magron & Lasserre. TSSOS: a moment-SOS hierarchy that

exploits term sparsity. arxiv:1912.08899 TSSOS

https://homepages.laas.fr/vmagron
http://arxiv.org/abs/2002.03657
arxiv.org/abs/1912.08899
https://github.com/wangjie212/TSSOS
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