Polynomial Optimization for Bounding Lipschitz Constants of Deep Networks

Victor Magron, MAC Team, CNRS-LAAS

Jointly certified with T. Chen, J.-B. Lasserre and E. Pauwels

IPAM, UCLA 28 February 2020





- Applications: WGAN, certification
- Existing works: [Lattore et al.'18] based on linear programming (LP)
- Network setting: *K*-classifier, **ReLU network**, 1 + *m* layers (1 input layer + *m* hidden layer), A<sub>i</sub> weights, b<sub>i</sub> biases
- Score of label  $k \leq K = \mathbf{c}_k^T \mathbf{x}_m$  with last activation vector  $\mathbf{c}_k$





LIPSCHITZ CONSTANT:

$$L_f^{||\cdot||} = \inf\{L : \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}, |f(\mathbf{x}) - f(\mathbf{y})| \le L||\mathbf{x} - \mathbf{y}||\}$$

$$\mathbf{x}_{0} \in \mathbb{R}^{p} \longrightarrow \mathbf{z}_{0} \in \mathbb{R}^{p} \longrightarrow \mathbf{z}_{1} \in \mathbb{R}^{p_{1}} \longrightarrow \cdots \longrightarrow \mathbf{z}_{m} \in \mathbb{R}^{p_{m}}$$
$$\mathbf{z}_{i} = \mathbf{A}_{i} \mathbf{x}_{i-1} + \mathbf{b}_{i} \qquad \mathbf{x}_{i-1} = \operatorname{ReLU}(\mathbf{z}_{i-1})$$

#### LIPSCHITZ CONSTANT:

$$\begin{split} L_f^{||\cdot||} &= \inf\{L : \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}, |f(\mathbf{x}) - f(\mathbf{y})| \le L ||\mathbf{x} - \mathbf{y}||\}\\ & \overleftarrow{\mathbf{y}}^* &= \sup\{||\nabla f(\mathbf{x})||_* : \mathbf{x} \in \mathcal{X}\}\\ &= \sup\{\mathbf{t}^T \nabla f(\mathbf{x}) : \mathbf{x} \in \mathcal{X}, ||\mathbf{t}|| \le 1\} \end{split}$$

Victor Magron

ī.,

$$\mathbf{x}_{0} \in \mathbb{R}^{p} \longrightarrow \mathbf{z}_{0} \in \mathbb{R}^{p} \longrightarrow \mathbf{z}_{1} \in \mathbb{R}^{p_{1}} \longrightarrow \cdots \longrightarrow \mathbf{z}_{m} \in \mathbb{R}^{p_{m}}$$
$$\mathbf{z}_{i} = \mathbf{A}_{i} \mathbf{x}_{i-1} + \mathbf{b}_{i} \qquad \mathbf{x}_{i-1} = \operatorname{ReLU}(\mathbf{z}_{i-1})$$

#### LIPSCHITZ CONSTANT:

1

$$\begin{split} L_f^{||\cdot||} &= \inf\{L : \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}, |f(\mathbf{x}) - f(\mathbf{y})| \le L ||\mathbf{x} - \mathbf{y}||\}\\ & \overleftarrow{\mathbf{y}}^{\star} &= \sup\{||\nabla f(\mathbf{x})||_* : \mathbf{x} \in \mathcal{X}\}\\ &= \sup\{\mathbf{t}^T \nabla f(\mathbf{x}) : \mathbf{x} \in \mathcal{X}, ||\mathbf{t}|| \le 1\} \end{split}$$

**GRADIENT** for a fixed label *k*:

$$abla f(\mathbf{x}_0) = \left(\prod_{i=1}^m \mathbf{A}_i^T \text{diag}\left(\text{ReLU}'(\mathbf{z}_i)\right)\right) \mathbf{c}_k$$

Victor Magron

#### ReLU (left) & its semialgebraicity (right)



 $u = \max\{x, 0\}$   $u(u - x) = 0, u \ge x, u \ge 0$ 

Victor Magron

ReLU' (left) & its semialgebraicity (right)



 $u = \mathbf{1}_{\{x \ge 0\}}$   $u(u-1) = 0, (u-\frac{1}{2})x \ge 0$ 

Victor Magron

Local Lipschitz constant:  $x_0 \in \text{ball}$  of center  $\bar{x}_0$  and radius  $\epsilon$ 

Local Lipschitz constant:  $x_0 \in \text{ball}$  of center  $\bar{x}_0$  and radius  $\epsilon$ 

One single hidden layer (m = 1):

$$\sup_{\mathbf{x},\mathbf{u},\mathbf{z},\mathbf{t}} \mathbf{t}^T \mathbf{A}^T \operatorname{diag} (\mathbf{u}) \mathbf{c}$$
  
s.t. 
$$\begin{cases} (\mathbf{z} - \mathbf{A}\mathbf{x} - \mathbf{b})^2 = 0\\ \mathbf{t}^2 \le 1, (\mathbf{x} - \bar{\mathbf{x}}_0 + \varepsilon)(\mathbf{x} - \bar{\mathbf{x}}_0 - \varepsilon) \le 0\\ \mathbf{u}(\mathbf{u} - 1) = 0, (\mathbf{u} - 1/2)\mathbf{z} \ge 0 \end{cases}$$

Local Lipschitz constant:  $x_0 \in \text{ball}$  of center  $\bar{x}_0$  and radius  $\epsilon$ 

One single hidden layer (m = 1):

$$\sup_{\mathbf{x},\mathbf{u},\mathbf{z},\mathbf{t}} \mathbf{t}^T \mathbf{A}^T \operatorname{diag} (\mathbf{u}) \mathbf{c}$$
  
s.t. 
$$\begin{cases} (\mathbf{z} - \mathbf{A}\mathbf{x} - \mathbf{b})^2 = 0\\ \mathbf{t}^2 \le 1, (\mathbf{x} - \bar{\mathbf{x}}_0 + \varepsilon)(\mathbf{x} - \bar{\mathbf{x}}_0 - \varepsilon) \le 0\\ \mathbf{u}(\mathbf{u} - 1) = 0, (\mathbf{u} - 1/2)\mathbf{z} \ge 0 \end{cases}$$

"CHEAP" and "TIGHT" upper bound?

## The moment-sums of squares hierarchy



# The moment-sums of squares hierarchy



LASSERRE'S HIERARCHY of **CONVEX PROBLEMS**  $\uparrow f^*$ [Lasserre/Parrilo 01]

degree *d* & *n* vars  $\implies \binom{n+2d}{n}$  SDP VARIABLES Numeric solvers  $\implies$  Approx Certificate



### The sparse hierarchy [Waki, Lasserre 06]



### The sparse hierarchy [Waki, Lasserre 06]



V Go between 1ST & 2ND stair in SPARSE hierarchy



**W** Go between 1ST & 2ND stair in SPARSE hierarchy



$$\sup_{\mathbf{x},\mathbf{u},\mathbf{z},\mathbf{t}} \mathbf{t}^T \mathbf{A}^T \text{diag} (\mathbf{u}) \mathbf{c}$$
  
s.t. 
$$\begin{cases} (\mathbf{z} - \mathbf{A}\mathbf{x} - \mathbf{b})^2 = 0\\ \mathbf{t}^2 \le 1, (\mathbf{x} - \bar{\mathbf{x}}_0 + \varepsilon)(\mathbf{x} - \bar{\mathbf{x}}_0 - \varepsilon) \le 0\\ \mathbf{u}(\mathbf{u} - 1) = 0, (\mathbf{u} - 1/2)\mathbf{z} \ge 0 \end{cases}$$

**W** Go between 1st & 2ND stair in SPARSE hierarchy



$$\sup_{\mathbf{x},\mathbf{u},\mathbf{z},\mathbf{t}} \mathbf{t}^T \mathbf{A}^T \text{diag} (\mathbf{u}) \mathbf{c}$$
  
s.t. 
$$\begin{cases} (\mathbf{z} - \mathbf{A}\mathbf{x} - \mathbf{b})^2 = 0\\ \mathbf{t}^2 \le 1, (\mathbf{x} - \bar{\mathbf{x}}_0 + \varepsilon)(\mathbf{x} - \bar{\mathbf{x}}_0 - \varepsilon) \le 0\\ \mathbf{u}(\mathbf{u} - 1) = 0, (\mathbf{u} - 1/2)\mathbf{z} \ge 0 \end{cases}$$

 $\forall$  Pick SDP variables for products in  $\{x, t\}, \{u, z\}$  up to deg 4

Victor Magron

V Go between 1ST & 2ND stair in SPARSE hierarchy



$$\sup_{\mathbf{x},\mathbf{u},\mathbf{z},\mathbf{t}} \mathbf{t}^T \mathbf{A}^T \text{diag} (\mathbf{u}) \mathbf{c}$$
  
s.t. 
$$\begin{cases} (\mathbf{z} - \mathbf{A}\mathbf{x} - \mathbf{b})^2 = 0\\ \mathbf{t}^2 \le 1, (\mathbf{x} - \bar{\mathbf{x}}_0 + \varepsilon)(\mathbf{x} - \bar{\mathbf{x}}_0 - \varepsilon) \le 0\\ \mathbf{u}(\mathbf{u} - 1) = 0, (\mathbf{u} - 1/2)\mathbf{z} \ge 0 \end{cases}$$

V Pick SDP variables for products in  $\{x, t\}$ ,  $\{u, z\}$  up to deg 4 V Pick SDP variables for products in  $\{x, z\}$ ,  $\{t, u\}$  up to deg 2

# HR-2 on random (80,80) networks

Weight matrix **A** with band structure of width **s SHOR**: Shor's relaxation given by 1ST stair in the hierarchy **LipOpt-**3: LP based method **LBS**: lower bound given by 10<sup>4</sup> random samples



MNIST classifier (**SDP-NN**) from Raghunathan et al. *Certified defenses against adversarial examples*, ICLR'18

|                  |       | HR-2  |   | SHOR  | LipOpt-3   | LBS  |
|------------------|-------|-------|---|-------|------------|------|
| Global Lipschitz | Bound | 14.56 | < | 17.85 | Out of RAM | 9.69 |
|                  | Time  | 12246 | > | 2869  | Out of RAM | -    |
| Local Lipschitz  | Bound | 12.70 | < | 16.07 | -          | 8.20 |
|                  | Time  | 20596 | > | 4217  | -          | -    |

MORE LAYERS  $\implies$  higher degree polynomials TSSOS HIERARCHY: exploit term sparsity [Wang-M.-Lasserre 19]

MORE LAYERS  $\implies$  higher degree polynomials TSSOS HIERARCHY: exploit term sparsity [Wang-M.-Lasserre 19]

- **Ferm** sparsity pattern graph Chordal extension
- ~ Link with Jared Miller's poster!



MORE LAYERS  $\implies$  higher degree polynomials TSSOS HIERARCHY: exploit term sparsity [Wang-M.-Lasserre 19]

**Ferm** sparsity pattern graph Chordal extension

~ Link with Jared Miller's poster!



 $\label{eq:Certified bounds} \mbox{ centred ML into "CRITICAL" dynamical systems}$ 

MORE LAYERS  $\implies$  higher degree polynomials TSSOS HIERARCHY: exploit term sparsity [Wang-M.-Lasserre 19]

- **Ferm** sparsity pattern graph Chordal extension
- ~> Link with Jared Miller's poster!



 $\mathsf{CERTIFIED} \text{ bounds} \rightsquigarrow \mathsf{embed} \ \mathsf{ML} \text{ into ``CRITICAL''} \ \mathsf{dynamical} \ \mathsf{systems}$ 

#### Open PhD/Postdoc positions







https://homepages.laas.fr/vmagron

- Chen, Lasserre, Magron and Pauwels. *Polynomial Optimization for Bounding Lipschitz Constants of Deep Networks*. arxiv:2002.03657
  - Wang, Magron & Lasserre. TSSOS: a moment-SOS hierarchy that exploits term sparsity. arxiv:1912.08899 TSSOS