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Positive maximal singular values

σ+(M)2 = max
x∈Rn

+

{x⊤(M⊤M)x : ∥x∥22 ≤ 1} .

Hard problem! Related to copositive programming

Induced norm analysis of discrete-time linear time-invariant systems
with nonnegative input signals{

x(t + 1) = Ax(t) + Bw(t), x(0) = 0

z(t) = Cx(t) + Dw(t)

Also a polynomial optimization problem
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Polynomial optimization

NP-hard NON CONVEX Problem f ⋆ = sup f (x)

Theory

(Primal) (Dual)

sup

∫
f dµ inf λ

with µ proba ⇒ in�nite LP ⇐ with λ− f ≥ 0

Lasserre's hierarchy of CONVEX Problems ↓ f ∗

[Lasserre/Parrilo 01]

degree k & n vars =⇒
(
n+2k
n

)
SDP variables
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Polynomial optimization

NP-hard NON CONVEX Problem f ⋆ = sup f (x)

Practice

(Primal Relaxation) (Dual Strengthening)

moments

∫
xα dµ λ− f = sum of squares

�nite number ⇒ SDP ⇐ �xed degree

Lasserre's hierarchy of CONVEX Problems ↓ f ∗

[Lasserre/Parrilo 01]

degree k & n vars =⇒
(
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n

)
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Sparse polynomial optimization
Exploiting sparsity

few terms [Reznick '78] or few correlations [Lasserre, Waki et al. '06]

Correlative sparsity: few products between each
variable and the others
⇝ x1x2 + x2x3 + . . . x99x100 1 2 3 10099

Term sparsity: few terms
⇝ x99

1
x2 + x1x

100

2
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Polynomial optimization on the nonnegative orthant

Roadmap:

1. Make use of denominators in certain representations of positive
polynomials

2. De�ne sums of s-nomial squares

3. Combine 1. and 2. to speed-up the resolution of the
corresponding convex relaxations

4. Apply this to positive maximal singular values
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Polynomial optimization on the nonnegative orthant

f ⋆ = sup
x∈S

f (x)

where S = {x ∈ Rn : xi ≥ 0 , gj(x) ≥ 0}

Set p̌(x) = p(x2) with x2 = (x21 , . . . , x
2
n ) ⇒ p̌ is even

Equivalent formulation:

f ⋆ = sup
x∈Š

f̌ (x)

where Š = {x ∈ Rn : ǧj(x) ≥ 0}.

⇒ Construct sum-of-squares (SOS) relaxations associated with
even polynomials

Positive maximal singular value:
f̌ = (x2)T (MTM)x2, g1 = 1, g2 = 1−

∑
x4i

6 / 17



Polynomial optimization on the nonnegative orthant

f ⋆ = sup
x∈S

f (x)

where S = {x ∈ Rn : xi ≥ 0 , gj(x) ≥ 0}

Set p̌(x) = p(x2) with x2 = (x21 , . . . , x
2
n )

⇒ p̌ is even

Equivalent formulation:

f ⋆ = sup
x∈Š
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Extension of Pólya's theorem

[Pólya, 1928]

If p is a homogeneous polynomial ≥ 0 on the unit simplex

then there exists c > 0 s.t. ∀ε > 0

k ≥ cε−1 =⇒ (
∑
i

xi )
k(p + ε)

has positive coe�cients

Extension from the unit simplex to more general sets
S = {x : gj(x) ≥ 0}?

�Make it even�
∑

i xi → ∥x∥22

+ �dehomogenize� ∥x∥22 → 1+ ∥x∥22
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Extension of Pólya's theorem

[Dickinson and Povh, 2015, Mai et al., 2022]

Let f̌ , ǧj be even polynomials such that

1. ǧ1 = 1 and ǧm = 1−
∑

i x
4
i

2. f̌ ≥ 0 on Š , deg f̌ ≤ 2d

Then there exist c̄ , c > 0 depending on f̌ , ǧj s.t. ∀ε > 0

k ≥ c̄ε−c =⇒ (1+ ∥x∥22)k(f̌ + ε) =
∑m

j=1 σj ǧj

for some SOS of monomials σj , deg(σj ǧj) ≤ 2(k + d).

8 / 17



Extension of Pólya's theorem

[Dickinson and Povh, 2015, Mai et al., 2022]
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8 / 17



Examples

Let n = 1 and f = (x2 − 3
2
)2.

Then f is even and positive on [−1, 1].

▶ There do not exist SOS of monomials σ0, σ1 s.t.
f = σ0 + σ1(1− x2)

▶ With a uniform denominator, we obtain

(1+ x2)2f = σ̄0 + σ̄1(1− x2) ,

where σ̄0 = x8, σ̄1 = x4 + 15
4
x2 + 9

4
are SOS of monomials.
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Sums of even s-nomial squares
An even s-nomial square is a polynomial which can be written as

(
s∑

j=1

cαj x
αj )2

with αi + αj ∈ 2Nn.

⇒ The Gram matrix of an even s-nomial square has size at most s.

Generalization of (S)DSOS by Parrilo/Majumdar/Hall

Let us denote by Σs the set of sums of even s-nomial squares.
The set of sum of (even) monomial squares corresponds to Σ1.

For any s ∈ N\{0}, one has the following obvious inclusions

Σ1 ⊂ · · · ⊂ Σs ⊂ Σs+1 ⊂ . . . .
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A new hierarchy of SOS relaxations

Set d = deg f and let θ = 1+ ∥x∥22.

SOS relaxation indexed by (k , s) ∈ N2 for f ⋆ = sup
x∈Š

f̌ (x):

ρ
(s)
k := inf

λ,σj

λ

s.t. λ ∈ R , σj ∈ Σs , deg(σj ǧj) ≤ 2(k + d) ,
θk(λ− f̌ ) =

∑
j∈[m]

σj ǧj .

SDP reformulation with maximal block size s
⇒ Solve the resulting SDP by interior-point methods (e.g., Mosek,
SDPT3)

For �xed s, ρ(s)k ↓ f ⋆ as k → ∞ with rate O(ε−c) under mild
condition

11 / 17
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Application to Positive maximal singular values
Linear time invariant discrete system:{

x(t + 1) = Ax(t) + Bw(t), x(0) = 0

z(t) = Cx(t) + Dw(t)

Strategy from [Ebihara et al., 2021], take r time steps

M =


D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0
. . . . . . . . . . . . . . .

CAr−2B CAr−3B CAr−4B . . . D


Certify stability by estimating

σ+(M)2 = max
x∈Rn

+

{x⊤(M⊤M)x : ∥x∥22 ≤ 1}
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Numerical example

25 variables

k : relaxation order

s: upper bound on the block size

Classical Lasserre Extension of Pólya
k val time k s val time
1 168.4450 0.04

0 26 91.28158 0.7
2 91.28158 877

the same bound up to more than 1250 times faster

Performance vs Accuracy
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Take-away

1. The uniform denominators (in Pólya's representation) allow us
to control the size of the SDP relaxations (using sums of even
s-nomial squares)

2. Our method is a powerful & accurate MODELING tool for
POPs on the nonnegative orthant (e.g., positive maximal
singular values)
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Many thanks for your attention!

https://homepages.laas.fr/vmagron

github:InterRelax

Mai, Lasserre, Magron & Toh. Tractable hierarchies of convex
relaxations for polynomial optimization on the nonnegative orthant
arXiv:2209.06175
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https://arxiv.org/abs/2209.06175
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