Tractable semidefinite bounds of positive maximal singular values

Victor Magron POP team, CNRS LAAS
Joint work with N. H. A. Mai, Y. Ebihara, and H. Waki
Moment Problems, Convex Algebraic Geometry, and Semidefinite Relaxations at MTNS 2022, Bayreuth

September 15, 2022

Positive maximal singular values

$$
\sigma_{+}(M)^{2}=\max _{\mathrm{x} \in \mathbb{R}_{+}^{n}}\left\{\mathrm{x}^{\top}\left(M^{\top} M\right) \mathrm{x}:\|x\|_{2}^{2} \leq 1\right\}
$$

Positive maximal singular values

$$
\sigma_{+}(M)^{2}=\max _{x \in \mathbb{R}_{+}^{2}}\left\{\mathrm{x}^{\top}\left(M^{\top} M\right) \mathrm{x}:\|x\|_{2}^{2} \leq 1\right\} .
$$

Hard problem!

Positive maximal singular values

$$
\sigma_{+}(M)^{2}=\max _{x \in \mathbb{R}_{+}^{2}}\left\{\mathrm{x}^{\top}\left(M^{\top} M\right) \mathrm{x}:\|x\|_{2}^{2} \leq 1\right\} .
$$

Hard problem! Related to copositive programming

Positive maximal singular values

$$
\sigma_{+}(M)^{2}=\max _{x \in \mathbb{R}_{+}^{2}}\left\{\mathrm{x}^{\top}\left(M^{\top} M\right) \mathrm{x}:\|x\|_{2}^{2} \leq 1\right\} .
$$

Hard problem! Related to copositive programming
Induced norm analysis of discrete-time linear time-invariant systems

Positive maximal singular values

$$
\sigma_{+}(M)^{2}=\max _{x \in \mathbb{R}_{+}^{p}}\left\{\mathrm{x}^{\top}\left(M^{\top} M\right) \mathrm{x}:\|x\|_{2}^{2} \leq 1\right\} .
$$

Hard problem! Related to copositive programming
Induced norm analysis of discrete-time linear time-invariant systems with nonnegative input signals

Positive maximal singular values

$$
\sigma_{+}(M)^{2}=\max _{x \in \mathbb{R}_{+}^{2}}\left\{\mathrm{x}^{\top}\left(M^{\top} M\right) \mathrm{x}:\|x\|_{2}^{2} \leq 1\right\} .
$$

Hard problem! Related to copositive programming
Induced norm analysis of discrete-time linear time-invariant systems with nonnegative input signals

$$
\left\{\begin{array}{l}
x(t+1)=A x(t)+B w(t), x(0)=0 \\
z(t)=C x(t)+D w(t)
\end{array}\right.
$$

Positive maximal singular values

$$
\sigma_{+}(M)^{2}=\max _{x \in \mathbb{R}_{+}^{2}}\left\{\mathrm{x}^{\top}\left(M^{\top} M\right) \mathrm{x}:\|x\|_{2}^{2} \leq 1\right\} .
$$

Hard problem! Related to copositive programming
Induced norm analysis of discrete-time linear time-invariant systems with nonnegative input signals

$$
\left\{\begin{array}{l}
x(t+1)=A x(t)+B w(t), x(0)=0 \\
z(t)=C x(t)+D w(t)
\end{array}\right.
$$

$\ddot{\nabla}$ Also a polynomial optimization problem

Polynomial optimization

NP-hard NON CONVEX Problem $f^{\star}=\sup f(x)$

Theory

$$
\begin{gathered}
\text { (Primal) } \\
\text { sup } \int f d \mu \\
\text { with } \mu \text { inf } \lambda
\end{gathered}
$$

Polynomial optimization

$$
\text { NP-hard NON CONVEX Problem } f^{\star}=\sup f(x)
$$

Practice

(Primal Relaxation)
moments $\int x^{\alpha} d \mu$ finite number $\Rightarrow \quad$ SDP
(Dual Strengthening)
$\lambda-f=$ sum of squares
\Leftarrow fixed degree

Lasserre's hierarchy of CONVEX Problems $\downarrow f^{*}$ [Lasserre/Parrilo 01]
degree k \& n vars $\quad \Longrightarrow\binom{n+2 k}{n}$ SDP variables

Sparse polynomial optimization

- Exploiting sparsity
few terms [Reznick '78] or few correlations [Lasserre, Waki et al. '06]

Sparse polynomial optimization

Exploiting sparsity
few terms [Reznick '78] or few correlations [Lasserre, Waki et al. '06]
Correlative sparsity: few products between each variable and the others

Sparse polynomial optimization

Exploiting sparsity
few terms [Reznick '78] or few correlations [Lasserre, Waki et al. '06]
Correlative sparsity: few products between each variable and the others
$\rightsquigarrow x_{1} x_{2}+x_{2} x_{3}+\ldots x_{99} x_{100}$
(1)-2-3
$99-100$

Sparse polynomial optimization

Exploiting sparsity
few terms [Reznick '78] or few correlations [Lasserre, Waki et al. '06]
Correlative sparsity: few products between each variable and the others
$\rightsquigarrow x_{1} x_{2}+x_{2} x_{3}+\ldots x_{99} x_{100}$
(1)-2-3
$99-100$

Term sparsity: few terms

Sparse polynomial optimization

Exploiting sparsity
few terms [Reznick '78] or few correlations [Lasserre, Waki et al. '06]
Correlative sparsity: few products between each variable and the others
$\rightsquigarrow x_{1} x_{2}+x_{2} x_{3}+\ldots x_{99} x_{100}$
(1)-2-3
$99-100$

Term sparsity: few terms
$\rightsquigarrow x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$

Sparse polynomial optimization

Exploiting sparsity
few terms [Reznick '78] or few correlations [Lasserre, Waki et al. '06]
Correlative sparsity: few products between each variable and the others
$\rightsquigarrow x_{1} x_{2}+x_{2} x_{3}+\ldots x_{99} x_{100}$

99

Term sparsity: few terms
$\rightsquigarrow x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$

Polynomial optimization on the nonnegative orthant

Roadmap:

Polynomial optimization on the nonnegative orthant

Roadmap:

1. Make use of denominators in certain representations of positive polynomials

Polynomial optimization on the nonnegative orthant

Roadmap:

1. Make use of denominators in certain representations of positive polynomials
2. Define sums of s-nomial squares

Polynomial optimization on the nonnegative orthant

Roadmap:

1. Make use of denominators in certain representations of positive polynomials
2. Define sums of s-nomial squares
3. Combine 1. and 2. to speed-up the resolution of the corresponding convex relaxations

Polynomial optimization on the nonnegative orthant

Roadmap:

1. Make use of denominators in certain representations of positive polynomials
2. Define sums of s-nomial squares
3. Combine 1. and 2. to speed-up the resolution of the corresponding convex relaxations
4. Apply this to positive maximal singular values

Polynomial optimization on the nonnegative orthant

$$
\begin{array}{r}
f^{\star}=\sup _{x \in S} f(x) \\
\text { where } S=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, g_{j}(x) \geq 0\right\}
\end{array}
$$

Polynomial optimization on the nonnegative orthant

$$
f^{\star}=\sup _{x \in S} f(x)
$$

where $S=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, g_{j}(x) \geq 0\right\}$
Set $\check{p}(x)=p\left(x^{2}\right)$ with $x^{2}=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$

Polynomial optimization on the nonnegative orthant

$$
f^{\star}=\sup _{x \in S} f(x)
$$

where $S=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, g_{j}(x) \geq 0\right\}$
Set $\check{p}(x)=p\left(x^{2}\right)$ with $x^{2}=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \Rightarrow \check{p}$ is even

Polynomial optimization on the nonnegative orthant

$$
f^{\star}=\sup _{x \in S} f(x)
$$

where $S=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, g_{j}(x) \geq 0\right\}$
Set $\check{p}(x)=p\left(x^{2}\right)$ with $x^{2}=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \Rightarrow \check{p}$ is even
Equivalent formulation:

$$
f^{\star}=\sup _{x \in \check{S}} \check{f}(x)
$$

where $\check{S}=\left\{x \in \mathbb{R}^{n}: \check{g}_{j}(x) \geq 0\right\}$.

Polynomial optimization on the nonnegative orthant

$$
f^{\star}=\sup _{x \in S} f(x)
$$

where $S=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, g_{j}(x) \geq 0\right\}$
Set $\check{p}(x)=p\left(x^{2}\right)$ with $x^{2}=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \Rightarrow \check{p}$ is even
Equivalent formulation:

$$
f^{\star}=\sup _{x \in \check{S}} \check{f}(x)
$$

where $\check{S}=\left\{x \in \mathbb{R}^{n}: \check{g}_{j}(x) \geq 0\right\}$.
\Rightarrow Construct sum-of-squares (SOS) relaxations associated with even polynomials

Polynomial optimization on the nonnegative orthant

$$
f^{\star}=\sup _{x \in S} f(x)
$$

where $S=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, g_{j}(x) \geq 0\right\}$
Set $\check{p}(x)=p\left(x^{2}\right)$ with $x^{2}=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \Rightarrow \check{p}$ is even
Equivalent formulation:

$$
f^{\star}=\sup _{x \in \check{S}} \check{f}(x)
$$

where $\check{S}=\left\{x \in \mathbb{R}^{n}: \check{g}_{j}(x) \geq 0\right\}$.
\Rightarrow Construct sum-of-squares (SOS) relaxations associated with even polynomials

Positive maximal singular value:
$\check{f}=\left(x^{2}\right)^{T}\left(M^{T} M\right) x^{2}, g_{1}=1, g_{2}=1-\sum x_{i}^{4}$

Extension of Pólya's theorem

[Pólya, 1928]
If p is a homogeneous polynomial ≥ 0 on the unit simplex

Extension of Pólya's theorem

[Pólya, 1928]
If p is a homogeneous polynomial ≥ 0 on the unit simplex then there exists $c>0$ s.t. $\forall \varepsilon>0$

$$
k \geq c \varepsilon^{-1} \Longrightarrow\left(\sum_{i} x_{i}\right)^{k}(p+\varepsilon)
$$

has positive coefficients

Extension of Pólya's theorem

[Pólya, 1928]

If p is a homogeneous polynomial ≥ 0 on the unit simplex then there exists $c>0$ s.t. $\forall \varepsilon>0$

$$
k \geq c \varepsilon^{-1} \Longrightarrow\left(\sum_{i} x_{i}\right)^{k}(p+\varepsilon)
$$

has positive coefficients

Extension from the unit simplex to more general sets $S=\left\{x: g_{j}(x) \geq 0\right\}$?

Extension of Pólya's theorem

[Pólya, 1928]

If p is a homogeneous polynomial ≥ 0 on the unit simplex then there exists $c>0$ s.t. $\forall \varepsilon>0$

$$
k \geq c \varepsilon^{-1} \Longrightarrow\left(\sum_{i} x_{i}\right)^{k}(p+\varepsilon)
$$

has positive coefficients

Extension from the unit simplex to more general sets $S=\left\{x: g_{j}(x) \geq 0\right\}$?
". "Make it even" $\sum_{i} x_{i} \rightarrow\|x\|_{2}^{2}$

Extension of Pólya's theorem

[Pólya, 1928]

If p is a homogeneous polynomial ≥ 0 on the unit simplex then there exists $c>0$ s.t. $\forall \varepsilon>0$

$$
k \geq c \varepsilon^{-1} \Longrightarrow\left(\sum_{i} x_{i}\right)^{k}(p+\varepsilon)
$$

has positive coefficients

Extension from the unit simplex to more general sets $S=\left\{x: g_{j}(x) \geq 0\right\}$?
"- "Make it even" $\sum_{i} x_{i} \rightarrow\|x\|_{2}^{2}$

+ "dehomogenize" $\|x\|_{2}^{2} \rightarrow 1+\|x\|_{2}^{2}$

Extension of Pólya's theorem

[Dickinson and Povh, 2015, Mai et al., 2022]
Let \check{f}, \check{g}_{j} be even polynomials such that

1. $\check{g}_{1}=1$ and $\check{g}_{m}=1-\sum_{i} x_{i}^{4}$
2. $\check{f} \geq 0$ on $\check{S}, \operatorname{deg} \check{f} \leq 2 d$

Extension of Pólya's theorem

[Dickinson and Povh, 2015, Mai et al., 2022]
Let \check{f}, \check{g}_{j} be even polynomials such that

1. $\check{g}_{1}=1$ and $\check{g}_{m}=1-\sum_{i} x_{i}^{4}$
2. $\check{f} \geq 0$ on $\check{S}, \operatorname{deg} \check{f} \leq 2 d$

Then there exist $\bar{c}, c>0$ depending on \check{f}, \check{g}_{j} s.t. $\forall \varepsilon>0$

$$
k \geq \bar{c} \varepsilon^{-c} \Longrightarrow\left(1+\|x\|_{2}^{2}\right)^{k}(\check{f}+\varepsilon)=\sum_{j=1}^{m} \sigma_{j} \check{g}_{j}
$$

for some SOS of monomials $\sigma_{j}, \operatorname{deg}\left(\sigma_{j} \check{g}_{j}\right) \leq 2(k+d)$.

Examples

Let $n=1$ and $f=\left(x^{2}-\frac{3}{2}\right)^{2}$.
Then f is even and positive on $[-1,1]$.

Examples

Let $n=1$ and $f=\left(x^{2}-\frac{3}{2}\right)^{2}$.
Then f is even and positive on $[-1,1]$.

- There do not exist SOS of monomials σ_{0}, σ_{1} s.t. $f=\sigma_{0}+\sigma_{1}\left(1-x^{2}\right)$

Examples

Let $n=1$ and $f=\left(x^{2}-\frac{3}{2}\right)^{2}$.
Then f is even and positive on $[-1,1]$.

- There do not exist SOS of monomials σ_{0}, σ_{1} s.t.

$$
f=\sigma_{0}+\sigma_{1}\left(1-x^{2}\right)
$$

- With a uniform denominator, we obtain

$$
\left(1+x^{2}\right)^{2} f=\bar{\sigma}_{0}+\bar{\sigma}_{1}\left(1-x^{2}\right),
$$

where $\bar{\sigma}_{0}=x^{8}, \bar{\sigma}_{1}=x^{4}+\frac{15}{4} x^{2}+\frac{9}{4}$ are SOS of monomials.

Sums of even s-nomial squares

An even s-nomial square is a polynomial which can be written as

$$
\left(\sum_{j=1}^{s} c_{\alpha_{j}} x^{\alpha_{j}}\right)^{2}
$$

with $\alpha_{i}+\alpha_{j} \in 2 \mathbb{N}^{n}$.

Sums of even s-nomial squares

An even s-nomial square is a polynomial which can be written as

$$
\left(\sum_{j=1}^{s} c_{\alpha_{j}} x^{\alpha_{j}}\right)^{2}
$$

with $\alpha_{i}+\alpha_{j} \in 2 \mathbb{N}^{n}$.
\Rightarrow The Gram matrix of an even s-nomial square has size at most s.

Sums of even s-nomial squares

An even s-nomial square is a polynomial which can be written as

$$
\left(\sum_{j=1}^{s} c_{\alpha_{j}} x^{\alpha_{j}}\right)^{2}
$$

with $\alpha_{i}+\alpha_{j} \in 2 \mathbb{N}^{n}$.
\Rightarrow The Gram matrix of an even s-nomial square has size at most s.
Generalization of (S)DSOS by Parrilo/Majumdar/Hall

Sums of even s-nomial squares

An even s-nomial square is a polynomial which can be written as

$$
\left(\sum_{j=1}^{s} c_{\alpha_{j}} x^{\alpha_{j}}\right)^{2}
$$

with $\alpha_{i}+\alpha_{j} \in 2 \mathbb{N}^{n}$.
\Rightarrow The Gram matrix of an even s-nomial square has size at most s.
Generalization of (S)DSOS by Parrilo/Majumdar/Hall
Let us denote by Σ_{s} the set of sums of even s-nomial squares.

Sums of even s-nomial squares

An even s-nomial square is a polynomial which can be written as

$$
\left(\sum_{j=1}^{s} c_{\alpha_{j}} x^{\alpha_{j}}\right)^{2}
$$

with $\alpha_{i}+\alpha_{j} \in 2 \mathbb{N}^{n}$.
\Rightarrow The Gram matrix of an even s-nomial square has size at most s.
Generalization of (S)DSOS by Parrilo/Majumdar/Hall
Let us denote by Σ_{s} the set of sums of even s-nomial squares. The set of sum of (even) monomial squares corresponds to Σ_{1}.

Sums of even s-nomial squares

An even s-nomial square is a polynomial which can be written as

$$
\left(\sum_{j=1}^{s} c_{\alpha_{j}} x^{\alpha_{j}}\right)^{2}
$$

with $\alpha_{i}+\alpha_{j} \in 2 \mathbb{N}^{n}$.
\Rightarrow The Gram matrix of an even s-nomial square has size at most s.
Generalization of (S)DSOS by Parrilo/Majumdar/Hall
Let us denote by Σ_{s} the set of sums of even s-nomial squares. The set of sum of (even) monomial squares corresponds to Σ_{1}.

For any $s \in \mathbb{N} \backslash\{0\}$, one has the following obvious inclusions

$$
\Sigma_{1} \subset \cdots \subset \Sigma_{s} \subset \Sigma_{s+1} \subset \ldots
$$

A new hierarchy of SOS relaxations

Set $d=\operatorname{deg} f$ and let $\theta=1+\|x\|_{2}^{2}$.

A new hierarchy of SOS relaxations

Set $d=\operatorname{deg} f$ and let $\theta=1+\|x\|_{2}^{2}$.
SOS relaxation indexed by $(k, s) \in \mathbb{N}^{2}$ for $f^{\star}=\sup _{x \in \check{S}} \check{f}(x)$: $x \in$ Š

$$
\begin{aligned}
\rho_{k}^{(s)}:=\inf _{\lambda, \sigma_{j}} & \lambda \\
& \text { s.t. } \\
& \lambda \in \mathbb{R}, \sigma_{j} \in \Sigma_{s}, \operatorname{deg}\left(\sigma_{j} \check{g}_{j}\right) \leq 2(k+d), \\
& \theta^{k}(\lambda-\breve{f})=\sum_{j \in[m]} \sigma_{j} \check{g}_{j} .
\end{aligned}
$$

A new hierarchy of SOS relaxations

Set $d=\operatorname{deg} f$ and let $\theta=1+\|x\|_{2}^{2}$.
SOS relaxation indexed by $(k, s) \in \mathbb{N}^{2}$ for $f^{\star}=\sup _{x \in \check{S}} \check{f}(x)$:

$$
\begin{aligned}
\rho_{k}^{(s)}:=\inf _{\lambda, \sigma_{j}} & \lambda \\
& \text { s.t. } \\
& \lambda \in \mathbb{R}, \sigma_{j} \in \Sigma_{s}, \operatorname{deg}\left(\sigma_{j} \check{g}_{j}\right) \leq 2(k+d), \\
& \theta^{k}(\lambda-\breve{f})=\sum_{j \in[m]} \sigma_{j} \check{g}_{j} .
\end{aligned}
$$

SDP reformulation with maximal block size s

A new hierarchy of SOS relaxations

Set $d=\operatorname{deg} f$ and let $\theta=1+\|x\|_{2}^{2}$.
SOS relaxation indexed by $(k, s) \in \mathbb{N}^{2}$ for $f^{\star}=\sup _{x \in \check{S}} \check{f}(x)$:

$$
\begin{aligned}
\rho_{k}^{(s)}:=\inf _{\lambda, \sigma_{j}} & \lambda \\
\text { s.t. } & \lambda \in \mathbb{R}, \sigma_{j} \in \Sigma_{s}, \operatorname{deg}\left(\sigma_{j} \check{g}_{j}\right) \leq 2(k+d), \\
& \theta^{k}(\lambda-\breve{f})=\sum_{j \in[m]} \sigma_{j} \check{g}_{j} .
\end{aligned}
$$

0
SDP reformulation with maximal block size s
\Rightarrow Solve the resulting SDP by interior-point methods (e.g., Mosek, SDPT3)

A new hierarchy of SOS relaxations

Set $d=\operatorname{deg} f$ and let $\theta=1+\|x\|_{2}^{2}$.
SOS relaxation indexed by $(k, s) \in \mathbb{N}^{2}$ for $f^{\star}=\sup _{x \in \check{S}} \check{f}(x)$:

$$
\begin{aligned}
\rho_{k}^{(s)}:=\inf _{\lambda, \sigma_{j}} & \lambda \\
\text { s.t. } & \lambda \in \mathbb{R}, \sigma_{j} \in \Sigma_{s}, \operatorname{deg}\left(\sigma_{j} \check{g}_{j}\right) \leq 2(k+d), \\
& \theta^{k}(\lambda-\breve{f})=\sum_{j \in[m]} \sigma_{j} \check{g}_{j} .
\end{aligned}
$$

(2)
SDP reformulation with maximal block size s
\Rightarrow Solve the resulting SDP by interior-point methods (e.g., Mosek, SDPT3)
$\ddot{\ell}$ For fixed $s, \rho_{k}^{(s)} \downarrow f^{\star}$ as $k \rightarrow \infty$ with rate $\mathcal{O}\left(\varepsilon^{-c}\right)$ under mild condition

Application to Positive maximal singular values

Linear time invariant discrete system:

$$
\left\{\begin{array}{l}
x(t+1)=A x(t)+B w(t), x(0)=0 \\
z(t)=C x(t)+D w(t)
\end{array}\right.
$$

Application to Positive maximal singular values

Linear time invariant discrete system:

$$
\left\{\begin{array}{l}
x(t+1)=A x(t)+B w(t), x(0)=0 \\
z(t)=C x(t)+D w(t)
\end{array}\right.
$$

Strategy from [Ebihara et al., 2021], take r time steps

$$
M=\left[\begin{array}{ccccc}
\mathrm{D} & 0 & 0 & \ldots & 0 \\
\mathrm{CB} & \mathrm{D} & 0 & \ldots & 0 \\
\mathrm{CAB} & \mathrm{CB} & \mathrm{D} & \ldots & 0 \\
\cdots & \ldots & \ldots & \ldots & \ldots \\
\mathrm{CA}^{r-2} \mathrm{~B} & \mathrm{CA}^{r-3} \mathrm{~B} & \mathrm{CA}^{r-4} \mathrm{~B} & \ldots & \mathrm{D}
\end{array}\right]
$$

Application to Positive maximal singular values

Linear time invariant discrete system:

$$
\left\{\begin{array}{l}
x(t+1)=A x(t)+B w(t), x(0)=0 \\
z(t)=C x(t)+D w(t)
\end{array}\right.
$$

Strategy from [Ebihara et al., 2021], take r time steps

$$
M=\left[\begin{array}{ccccc}
\mathrm{D} & 0 & 0 & \ldots & 0 \\
\mathrm{CB} & \mathrm{D} & 0 & \ldots & 0 \\
\mathrm{CAB} & \mathrm{CB} & \mathrm{D} & \ldots & 0 \\
\cdots & \ldots & \ldots & \ldots & \ldots \\
\mathrm{CA}^{r-2} \mathrm{~B} & \mathrm{CA}^{r-3} \mathrm{~B} & \mathrm{CA}^{r-4} \mathrm{~B} & \ldots & \mathrm{D}
\end{array}\right]
$$

Certify stability by estimating

$$
\sigma_{+}(M)^{2}=\max _{\mathrm{x} \in \mathbb{R}_{+}^{n}}\left\{\mathrm{x}^{\top}\left(M^{\top} M\right) \mathrm{x}:\|x\|_{2}^{2} \leq 1\right\}
$$

Numerical example

25 variables
k : relaxation order
s : upper bound on the block size

Numerical example

25 variables
k : relaxation order
s : upper bound on the block size

Classical Lasserre			Extension of Pólya			
k	val	time	k	s	val	time
1	168.4450	0.04	0	26	$\mathbf{9 1 . 2 8 1 5 8}$	0.7
2	$\mathbf{9 1 . 2 8 1 5 8}$	877				

Numerical example

25 variables
k : relaxation order
s : upper bound on the block size

Classical Lasserre			Extension of Pólya			
k	val	time	k	s	val	time
1	168.4450	0.04	0	26	$\mathbf{9 1 . 2 8 1 5 8}$	0.7
2	$\mathbf{9 1 . 2 8 1 5 8}$	877				

the same bound up to more than 1250 times faster

VS

Accuracy

Take-away

1. The uniform denominators (in Pólya's representation) allow us to control the size of the SDP relaxations (using sums of even s-nomial squares)

Take-away

1. The uniform denominators (in Pólya's representation) allow us to control the size of the SDP relaxations (using sums of even s-nomial squares)
2. Our method is a powerful \& accurate MODELING tool for POPs on the nonnegative orthant (e.g., positive maximal singular values)

Many thanks for your attention!

https://homepages.laas.fr/vmagron
github:InterRelax
Mai, Lasserre, Magron \& Toh. Tractable hierarchies of convex relaxations for polynomial optimization on the nonnegative orthant arXiv:2209.06175

References I

Rickinson, P. J. and Povh, J. (2015).
On an extension of Pólya's Positivstellensatz. Journal of global optimization, 61(4):615-625.

囲 Ebihara, Y., Waki, H., Magron, V., Mai, N. H. A., Peaucelle, D., and Tarbouriech, S. (2021).

12 induced norm analysis of discrete-time lti systems for nonnegative input signals and its application to stability analysis of recurrent neural networks.
European Journal of Control, 62:99-104.
R Mai, N. H. A., Magron, V., Lasserre, J.-B., and Toh, K.-C. (2022).

Tractable hierarchies of convex relaxations for polynomial optimization on the nonnegative orthant.
Forthcoming.

References II

國 Pólya, G. (1928).
Über Positive Darstellung von Polynomen. Vierteljschr. Naturforsch. Ges. Zürich, 73:141-145.

