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What is Semidefinite Optimization?

Linear Programming (LP):

min
z

c
>

z

s.t. A z > d .

Linear cost c

Linear inequalities “∑i Aij zj > di” Polyhedron
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What is Semidefinite Optimization?

Semidefinite Programming (SDP):

P : min
z

c
>

z

s.t. ∑
i

Fi zi < F0 .

Linear cost c

Symmetric matrices F0, Fi

Linear matrix inequalities “F < 0”
(F has nonnegative eigenvalues)

Spectrahedron
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Example

P : min
z
{z1 + z2 :

s.t.

[
3 + 2z1 + z2 z1 − 5

z1 − 5 z1 − 2z2

]
< 0

}
or, equivalently

P : min
z
{z1 + z2 :

s.t.

[
3 −5
−5 0

]
+ z1

[
2 1
1 1

]
+ z2

[
1 0
0 −2

]
< 0

}
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Its DUAL is the convex optimization problem:

P∗ : max { 〈F0 , Y〉 | Y < 0; 〈Fi, Y〉 = ci, i = 1, . . . , n}
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Example (continued)

The dual of

P : min
z
{z1 + z2 :

s.t.

[
3 −5
−5 0

]
+ z1

[
2 1
1 1

]
+ z2

[
1 0
0 −2

]
< 0

}
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is the semidefinite program

P∗ : max
Y<0

{
〈Y,−

[
3 −5
−5 0

]
〉 : 〈Y,

[
2 1
1 1

]
〉 = 1;

〈Y,

[
1 0
0 −2

]
〉 = 1

}

or, equivalently

P∗ : max {−3y1 + 10y2 : 2y1 + 2y2 + y3 = 1; y1 − 2y3 = 1;

Y =

[
y1 y2

y2 y3

]
< 0

}
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P and its dual P∗ are convex problems that are solvable in
polynomial time to arbitrary precision ε > 0.

= generalization to the convex cone S+m (X < 0) of Linear
Programming on the convex polyhedral cone Rm

+ (x > 0).

Indeed, with DIAGONAL matrices
Semidefinite programming = Linear Programming!

Several academic SDP software packages exist, (e.g. MATLAB
“LMI toolbox”, SeduMi, SDPT3, ...). However, so far, size
limitation is more severe than for LP software packages.
Pioneer contributions by A. Nemirovsky, Y. Nesterov, N.Z. Shor,
B.D. Yudin,...
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Consider the polynomial optimization problem:

P : f ∗ = min{ f (x) : gj(x) > 0, j = 1, . . . , m }

for some polynomials f , gj ∈ R[x].

Why Polynomial Optimization?

After all ... P is just a particular case of Non Linear
Programming (NLP)!
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True!
... if one is interested with a LOCAL optimum only!!

When searching for a local minimum ...

Optimality conditions and descent algorithms use basic tools
from REAL and CONVEX analysis and linear algebra

The focus is on how to improve f by looking at a
NEIGHBORHOOD of a nominal point x ∈ K, i.e., LOCALLY

AROUND x ∈ K, and in general,
no GLOBAL property of x ∈ K can be inferred.

The fact that f and gj are POLYNOMIALS does not help much!
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BUT for GLOBAL Optimization
... the picture is different!

Remember that for the GLOBAL minimum f ∗:

f ∗ = sup { λ : f (x)− λ > 0 ∀x ∈ K}

(Not true for a local minimum!))

and so to compute f ∗ ...
one needs to handle EFFICIENTLY the difficult constraint

f (x)− λ > 0 ∀x ∈ K

i.e. one needs
TRACTABLE CERTIFICATES of POSITIVITY on K

for the polynomial x 7→ f (x)− λ!
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Global Optimization

Consider the GLOBAL optimization problem

(P) f ∗ := min
x
{ f (x) | gj(x) > 0, j = 1, . . . , m}

where f , gj(x) : Rn → R are all real-valued functions. Let

K := { x ∈ Rn | gj(x) > 0, j = 1, . . . , m}

be the feasible set.
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Two dual points of view

I: THE PRIMAL SIDE

f ∗ is a global minimum if and only if

(∗) f ∗ = min
µ∈M(K)

{ ∫
K

f dµ | µ(K) = 1
}

i.e. one optimizes over the set P(K) ⊂ M(K) of probability
measures with support contained in K.

f > f ∗ ⇒
∫

K
f dµ >

∫
K

f ∗ dµ = f ∗, ∀µ ∈ P(K)

On the other hand, with x ∈ K and µ := δx,
∫

f dµ = f (x)
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Two dual points of view (continued)

. . . But also: II. THE DUAL SIDE

f ∗ is a global minimum if and only if:

f ∗ = sup
λ

{λ : f (x)− λ > 0 ∀x ∈ K }

and in particular, x 7→ f (x)− f ∗ is nonnegative on K.

Observe that these two characterizations are proper to the
global optimum f ∗, and are NOT valid for a local minimum!
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BUT ... this is just LP-Duality

The optimization problem

f ∗ = min
µ∈M(K)

{
∫

K
f dµ | µ(K) = 1 }

is the infinite-dimensional LP

f ∗ = min
µ∈M(K)

{ 〈 f , µ〉 | 〈1, µ〉 = 1; µ > 0 }

where :
-M(K) is the space of finite signed Borel measures on K,
and
- 〈·, ·〉 is the duality bracket between C(K) andM(K):

〈 f , µ〉 =
∫

K
f dµ, ∀ f ∈ C(K), µ ∈ M(K)
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As in the finite dimensional case ...., the dual LP reads:

f ∗ = max
γ∈R
{ γ | f − γ 1 ∈ C(K)+ }

or, equivalently:

f ∗ = max
γ∈R
{ γ | f (x)− γ > 0 ∀ x ∈ K }
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�

Hence, to solve (or at least approximate) either LP, one
needs:
relatively simple and tractable characterizations of:

• measures µ with support contained in K, ... or

• functions (e.g. f − γ) nonnegative on K.

� Not possible in general .... BUT ...
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Concerning the primal LP, NOTICE that if f is a polynomial, i.e.,

f (x) = ∑
α

fα xα

(
= ∑

α

fα xα1
1 · · · x

αn
1

)

then
∫

K
f dµ = ∑

α

fα

∫
K

xα dµ︸ ︷︷ ︸
=yα

= ∑
α

fα yα,

and so the primal LP reads:

f ∗ = min

{
∑
α

fα yα : y0 = 1; y ∈ ∆

}
,

where ∆ = {y = (yα) : ∃ µ ∈ M(K) s.t. yα =
∫

K xα dµ, ∀α}.

→ a FINITE-DIMENSIONAL CONVEX optimization problem!!
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SIMILARLY for the dual LP, NOTICE that if f is a polynomial of
degree d, then the constraint of the dual LP

f (x)− γ > 0 ∀ x ∈ K

is the same as stating that the polynomial f − γ 1 belongs to
the FINITE-DIMENSIONAL convex cone

Θd = {g ∈ R[x]d : g > 0 on K}.

and so the dual LP reads:

f ∗ = max {γ : f − γ 1 ∈ Θd} ,

→ a FINITE-DIMENSIONAL CONVEX optimization problem!!
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First good news ...
When:

K ⊂ Rn is the compact semi-algebraic set

K := { x ∈ Rn | gj(x) > 0, j = 1, . . . , m }

with {gj} ⊂ R[x1, . . . , xn] ...

and f is a POLYNOMIAL
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POWERFUL results of real algebraic geometry provide

a CHARACTERIZATION of polynomials POSITIVE on K.

→ which is what we need to solve the dual LP!

a CHARACTERIZATION of real sequences y = (yα),
α ∈Nn, such that

yα =
∫

K
xα dµ, ∀α ∈Nn,

for some Borel Measure µ on K.

→ which is what we need to solve the primal LP!
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Second good news ...
In both cases ... these conditions can translate into Linear
Matrix Inequalities (LMI) on :

The moments yα :=
∫

K
xα dµ of µ (Primal side)

The coefficients of some sum of squares (s.o.s.)
polynomials {qj}m

j=0 ⊂ R[x], for the representation of a
polynomial positive on K.

→ PRACTICAL COMPUTATION is possible!
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Other and (not s.o.s. based) representations of positive
polynomials are available (Krivine, Handelman, Vasilescu).

† They lead to Linear Inequalities instead of LMIs and so

... to LP-relaxations instead of SDP-relaxations

.. but less efficient and ill-behaved ... despite so far, LP
software packages are more powerful than SDP packages!!
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Putinar’s Positivstellensatze

Let K ⊂ Rn be the basic semi-algebraic set:

K := { x ∈ Rn : gj(x) > 0, j = 1, . . . , m }

for some polynomials {gj} ⊂ R[x].

and with g0 being the constant polynomial 1,

define the quadratic module

Q(g1, . . . , gm) = {g ∈ R[X] : g =
m

∑
j=0

σj gj},

where the (σj)
m
j=0 are s.o.s. polynomials.

Victor Magron The Moment-Sums of Squares Hierarchy for Polynomial Optimization 23 / 44



• f ∈ Q(g1, . . . , gm) is also an obvious certificate of
nonnegativity on K.

• It requires m + 1 s.o.s. weights σj.
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Assumption 1:
For some M > 0, the quadratic polynomial M− ‖x‖2 belongs
to the quadratic module Q(g1, . . . , gm)

Theorem (Putinar-Jacobi-Prestel)
Let K be compact and Assumption 1 hold. Then

[ f ∈ R[x] and f > 0 on K ] ⇒ f ∈ Q(g1, . . . , gm), i.e.,

f (x) = σ0(x) +
m

∑
j=1

σj(x) gj(x), ∀x ∈ Rn

for some s.o.s. polynomials {σj}m
j=0.
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• If one fixes an a priori bound on the degree of the s.o.s.
polynomials {σj}, checking f ∈ Q(g1, . . . , gm) reduces to
solving an SDP!!

• Moreover, Assumption 1 holds true if e.g. :
- all the gj’s are linear (hence K is a polytope), or if
- the set { x | gj(x) > 0} is compact for some j ∈ {1, . . . , m}

• If x ∈ K⇒ ‖x‖ 6 M for some (known) M, then it suffices to
add the redundant quadratic constraint M2 − ‖x‖2 > 0, in the
definition of K
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• If x ∈ K⇒ ‖x‖ 6 M for some (known) M, then it suffices to
add the redundant quadratic constraint M2 − ‖x‖2 > 0, in the
definition of K
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A representation in terms of s.o.s. (sums of squares) is
interesting BECAUSE checking whether some given polynomial
f ∈ R[x] is s.o.s. reduces to solving an SDP ... that one may
solve efficiently to arbitrary precision, in time polynomial in the
input size!

Indeed, let

vd(x) = (xα), |α| := ∑
i

αi 6 d

be a basis of R[x]d (polynomials of degree at most d)

Let f ∈ R[x]2d be a s.o.s. polynomial, that is, f = ∑s
k=1 qk(x)2,

for some polynomials {qk}s
k=1 ⊂ R[x]d.
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Denote also qk = {qkα}α∈Nn , the vector of coefficients of the
polynomial qk, in the basis vd(x), that is,

qk(x) = 〈qk, vd(x)〉 = ∑
|α|6r

qkαxα

and define the real symmetric matrix Q := ∑s
k=1 qkqT

k < 0.

〈vd(x), Q vd(x)〉 =
s

∑
k=1
〈qk, vd(x)〉2 =

s

∑
k=1

qk(x)2 = f (x)

Conversely, let Q < 0 be a real s(d)× s(d) positive semidefinite
symmetric matrix (s(d) is the dimension of the vector space
R[x]d). As Q < 0, write Q = ∑s

k=1 qkqT
k , so that

f (x) = 〈vd(x), Q vd(x)〉 =
s

∑
k=1
〈qk, vd(x)〉2 =

s

∑
k=1

qk(x)2

is s.o.s.
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Next, write the matrix vd(x) vd(x)T as:

vd(x) vd(x)T = ∑
α∈Nn

2d

Bα xα,

so that checking whether

f (x) = 〈vd(x), Q vd(x)〉 = 〈Q, vd(x) vd(x)T〉,

for some Q < 0 reduces to checking the LMI

{
〈Bα, Q 〉 = fα, α ∈Nn, |α| 6 2d

Q < 0
.
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Example

Let t 7→ f (t) = 6 + 4t + 9t2 − 4t3 + 6t4. Is f an SOS? Do we
have

f (t) =

 1
t
t2


T  a b c

b d e
c e f


 1

t
t2



We must have:

a = 6 ; 2 b = 4; d + 2 c = 9; 2 e = −4; f = 6.

And so we must find a scalar c such that

Q =

 6 2 c
2 9− 2c −2
c −2 6

 < 0.
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With c = −4 we have

Q =

 6 2 −4
2 17 −2
−4 −2 6

 < 0.

and

Q = 2


√

2/2
0√
2/2



√

2/2
0√
2/2


′

+ 9

 2/3
−1/3
−2/3


 2/3

1/3
−2/3


′

+18

 1/
√
(18)

4/
√
(18)

−1/
√
(18)


 1/

√
(18)

4/
√
(18)

−1/
√
(18)


′
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and so

f (t) = (1 + t2)2 + (2− t− 2t2)2 + (1 + 4t− t2)2
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II. DUAL side: The K-moment problem

Let {xα} be a canonical basis for R[x], and let y := {yα} be a
given sequence indexed in that basis.

The K-moment problem
Given K ⊂ Rn, does there exist a measure µ on K, such that

yα =
∫

K
xα dµ, ∀α ∈Nn ?

(where xα = xα1
1 · · · x

αn
n ).
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Given y = {yα}, let Ly : R[x]→ R, be the linear functional

f (= ∑
α

fα xα) 7→ Ly( f ) := ∑
α∈Nn

fα yα.

Moment matrix Md(y)
with rows and columns also indexed in the basis {xα}.

Md(y)(α, β) := Ly(xα+β) = yα+β, α, β ∈Nn, |α|, |β| 6 d.
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For instance in R2 : M1(y) =


1︷︸︸︷

y00 |
X1︷︸︸︷
y10

X2︷︸︸︷
y01

− − −
y10 | y20 y11

y01 | y11 y02



Importantly . . .

Md(y) < 0 ⇐⇒ Ly(h2) > 0, ∀h ∈ R[X]d
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Localizing matrix

The “Localizing matrix” Md(θy) w.r.t. a polynomial
θ ∈ R[X]

with x 7→ θ(x) = ∑γ θγ xγ, has its rows and columns also
indexed in the basis {Xα} of R[x]d, and with entries:

Md(θ y)(α, β) = Ly(θ xα+β)

= ∑
γ∈Nn

θγ yα+β+γ,

{
α, β ∈Nn

|α|, |β| 6 d.
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For instance, in R2, and with X 7→ θ(x) := 1− x2
1 − x2

2,

M1(θ y) =


1︷ ︸︸ ︷

y00 − y20 − y02

x1︷ ︸︸ ︷
y10 − y30 − y12

x2︷ ︸︸ ︷
y01 − y21 − y03

y10 − y30 − y12 y20 − y40 − y22 y11 − y21 − y12

y01 − y21 − y03 y11 − y21 − y12 y02 − y22 − y04



Importantly . . .

Md(θ y) < 0 ⇐⇒ Ly(h2 θ) > 0, ∀h ∈ R[x]d
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Putinar’s dual conditions

Again K := { x ∈ Rn | gj(x) > 0, j = 1, . . . , m}.

Assumption 1:
For some M > 0, the quadratic polynomial
M− ‖x‖2 is in the quadratic module Q(g1, . . . , gm)

Theorem (Putinar: dual side)
Let K be compact, and Assumption 1 hold. Then y = {yα} has
a representing measure µ on K if and only if

(∗∗) Ly( f 2) > 0; Ly( f 2 gj) > 0, ∀j = 1, . . . , m; ∀ f ∈ R[x].
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Checking whether (**) holds for all f ∈ R[x] with degree
6 d
reduces to checking whether Md(y) < 0 and Md(gj y) < 0, for
all j = 1, . . . , m!

→ m + 1 LMI conditions to verify!
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A Hierarchy of SDP Relaxations

Recall the PRIMAL LP

f ∗ = min
µ∈M(K)

{
∫

K
f dµ : µ(K) = 1 }

whereM(K) is the space of Borel measures on K
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A Hierarchy of SDP Relaxations

Let deg gj = 2vj or 2vj − 1. The SDP-relaxation Qd, d ∈N,
reads:

Qd



ρd = min
y

Ly( f ) (→ think of
∫

f dµ)

s.t. Md−vj(gj y) < 0, j = 0, . . . m︸ ︷︷ ︸
necessary conditions for yα=

∫
xαdµ

.

Ly(1) = 1 (→ µ(K) = 1)
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A Hierarchy of SDP Relaxations

... whose dual is the SDP

Q∗d



ρ∗d = max
λ,{σj}

λ

s.t. f − λ =
m

∑
k=0

σk gk

{σk} are s.o.s.; deg σ0, deg σk gk 6 2d
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A Hierarchy of SDP Relaxations

Recall that K ⊂ Rn is the basic semi-algebraic set

K := { x ∈ Rn | gj(x) > 0, j = 1, . . . , m}.

Assumption 1:
For some M > 0, M− ‖x‖2 is in Q(g1, . . . , gm)

Theorem (Lasserre 01)
Let K be compact, and let Assumption 1 holds. Then:

ρ∗d 6 ρd 6 f ∗ for all d and ρ∗d, ρd ↑ f ∗ as d→ ∞.

If int K 6= ∅, then ρd = ρ∗d and the “sup" is attained.
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Global optimality check & extracting solutions

Exactness of a particular SDP-relaxation

Let y be an optimal solution of Qd and let 2v > maxj deg gj. If

rank Md(y) = rank Md−v(y) ( =: s)

then ρd = f ∗

and one may extract s GLOBAL MINIMIZERS
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