The Moment-Sums of Squares Hierarchy for Polynomial Optimization

Victor Magron, CNRS-LAAS

21 October 2019

TU Chemnitz

Outline

- Semidefinite Optimization

Outline

- Semidefinite Optimization

■ Representation of positive polynomials

Outline

- Semidefinite Optimization

■ Representation of positive polynomials
■ The K-moment problem

What is Semidefinite Optimization?

■ Linear Programming (LP):

$$
\begin{array}{cl}
\min _{\mathbf{z}} & \mathbf{c}^{\top} \mathbf{z} \\
\text { s.t. } & \mathbf{A z} \geqslant \mathbf{d} .
\end{array}
$$

■ Linear cost c

- Linear inequalities " $\sum_{i} A_{i j} z_{j} \geqslant d_{i}$ "

Polyhedron

What is Semidefinite Optimization?

■ Semidefinite Programming (SDP):

- Linear cost c

■ Symmetric matrices F_{0}, F_{i}

Spectrahedron

- Linear matrix inequalities " $\mathrm{F} \succcurlyeq 0$ " (F has nonnegative eigenvalues)

What is Semidefinite Optimization?

■ Semidefinite Programming (SDP):

$$
\begin{aligned}
\mathbf{P}: \min _{\mathbf{z}} & \mathbf{c}^{\top} \mathbf{z} \\
\text { s.t. } & \sum_{i=1}^{n} \mathbf{F}_{i} z_{i} \succcurlyeq \mathbf{F}_{0}, \quad \mathbf{A} \mathbf{z}=\mathbf{d}
\end{aligned}
$$

- Linear cost c

■ Symmetric matrices F_{0}, F_{i}

Spectrahedron

- Linear matrix inequalities " $\mathrm{F} \succcurlyeq 0$ " (F has nonnegative eigenvalues)

Example

$$
\begin{aligned}
\mathbf{P}: & \min _{\mathbf{z}} \\
& \left\{z_{1}+z_{2}:\right. \\
& \text { s.t. } \left.\left[\begin{array}{cc}
3+2 z_{1}+z_{2} & z_{1}-5 \\
z_{1}-5 & z_{1}-2 z_{2}
\end{array}\right] \succcurlyeq 0\right\}
\end{aligned}
$$

or, equivalently
$\mathbf{P}: \min _{\mathbf{z}}\left\{z_{1}+z_{2}\right.$:

$$
\text { s.t. } \left.\left[\begin{array}{cc}
3 & -5 \\
-5 & 0
\end{array}\right]+z_{1}\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]+z_{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right] \succcurlyeq 0\right\}
$$

Its DUAL is the convex optimization problem:

$$
\mathbf{P}^{*}: \max \left\{\left\langle\mathbf{F}_{0}, \mathbf{Y}\right\rangle \mid \mathbf{Y} \succcurlyeq 0 ;\left\langle\mathbf{F}_{i}, \mathbf{Y}\right\rangle=c_{i}, \quad i=1, \ldots, n\right\}
$$

Example (continued)

The dual of

P: $\min _{\mathbf{z}}\left\{z_{1}+z_{2}\right.$:

$$
\text { s.t. } \left.\left[\begin{array}{cc}
3 & -5 \\
-5 & 0
\end{array}\right]+z_{1}\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]+z_{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right] \succcurlyeq 0\right\}
$$

is the semidefinite program

$$
\begin{aligned}
\mathbf{P}^{*}: \max _{\mathbf{Y} \succcurlyeq 0} & \left\{\left\langle\mathbf{Y},-\left[\begin{array}{cc}
3 & -5 \\
-5 & 0
\end{array}\right]\right\rangle:\left\langle\mathbf{Y},\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\right\rangle=1 ;\right. \\
& \left.\left\langle\mathbf{Y},\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right]\right\rangle=1\right\}
\end{aligned}
$$

or, equivalently

$$
\begin{aligned}
\mathbf{P}^{*}: \max & \left\{-3 y_{1}+10 y_{2}: 2 y_{1}+2 y_{2}+y_{3}=1 ; y_{1}-2 y_{3}=1 ;\right. \\
& \left.\mathbf{Y}=\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{2} & y_{3}
\end{array}\right] \succcurlyeq 0\right\}
\end{aligned}
$$

\mathbf{P} and its dual \mathbf{P}^{*} are convex problems that are solvable in polynomial time to arbitrary precision $\epsilon>0$.

\mathbf{P} and its dual \mathbf{P}^{*} are convex problems that are solvable in polynomial time to arbitrary precision $\epsilon>0$.
= generalization to the convex cone $\mathcal{S}_{m}^{+}(X \succcurlyeq 0)$ of Linear Programming on the convex polyhedral cone $\mathbb{R}_{+}^{m}(x \geqslant 0)$.

Indeed, with DIAGONAL matrices
Semidefinite programming = Linear Programming!
\mathbf{P} and its dual \mathbf{P}^{*} are convex problems that are solvable in polynomial time to arbitrary precision $\epsilon>0$.
= generalization to the convex cone $\mathcal{S}_{m}^{+}(X \succcurlyeq 0)$ of Linear
Programming on the convex polyhedral cone $\mathbb{R}_{+}^{m}(x \geqslant 0)$.
Indeed, with DIAGONAL matrices
Semidefinite programming = Linear Programming!

Several academic SDP software packages exist, (e.g. MATLAB "LMI toolbox", SeduMi, SDPT3, ...). However, so far, size limitation is more severe than for LP software packages. Pioneer contributions by A. Nemirovsky, Y. Nesterov, N.Z. Shor, B.D. Yudin,...

Consider the polynomial optimization problem:

$$
\mathbf{P}: \quad f^{*}=\min \left\{f(\mathbf{x}): \quad g_{j}(\mathbf{x}) \geqslant 0, j=1, \ldots, m\right\}
$$

for some polynomials $f, g_{j} \in \mathbb{R}[\mathbf{x}]$.

Consider the polynomial optimization problem:

$$
\mathbf{P}: \quad f^{*}=\min \left\{f(\mathbf{x}): \quad g_{j}(\mathbf{x}) \geqslant 0, j=1, \ldots, m\right\}
$$

for some polynomials $f, g_{j} \in \mathbb{R}[\mathbf{x}]$.

Why Polynomial Optimization?

After all ... \mathbf{P} is just a particular case of Non Linear Programming (NLP)!

True!
... if one is interested with a LOCAL optimum only!!
... if one is interested with a LOCAL optimum only!!

When searching for a local minimum ...

Optimality conditions and descent algorithms use basic tools from REAL and CONVEX analysis and linear algebra

True!

... if one is interested with a LOCAL optimum only!!

When searching for a local minimum ...

Optimality conditions and descent algorithms use basic tools from REAL and CONVEX analysis and linear algebra

The focus is on how to improve f by looking at a NEIGHBORHOOD of a nominal point $\mathbf{x} \in \mathbf{K}$, i.e., LOCALLY AROUND $\mathbf{x} \in \mathbf{K}$, and in general, no GLOBAL property of $\mathbf{x} \in \boldsymbol{K}$ can be inferred.

True!

... if one is interested with a LOCAL optimum only!!

When searching for a local minimum ...

Optimality conditions and descent algorithms use basic tools from REAL and CONVEX analysis and linear algebra

The focus is on how to improve f by looking at a NEIGHBORHOOD of a nominal point $\mathbf{x} \in \mathbf{K}$, i.e., LOCALLY AROUND $\mathbf{x} \in K$, and in general, no GLOBAL property of $\mathbf{x} \in \boldsymbol{K}$ can be inferred.

The fact that f and g_{j} are POLYNOMIALS does not help much!

BUT for GLOBAL Optimization
 ... the picture is different!

BUT for GLOBAL Optimization
 ... the picture is different!

Remember that for the GLOBAL minimum f^{*} :

$$
f^{*}=\sup \{\lambda: f(\mathbf{x})-\lambda \geqslant 0 \quad \forall \mathbf{x} \in \mathbf{K}\}
$$

(Not true for a local minimum!))

BUT for GLOBAL Optimization
 ... the picture is different!

Remember that for the GLOBAL minimum f^{*} :

$$
f^{*}=\sup \{\lambda: f(\mathbf{x})-\lambda \geqslant 0 \quad \forall \mathbf{x} \in \mathbf{K}\}
$$

(Not true for a local minimum!))
and so to compute $f^{*} \ldots$
one needs to handle EFFICIENTLY the difficult constraint

$$
f(\mathbf{x})-\lambda \geqslant 0 \quad \forall \mathbf{x} \in \mathbf{K}
$$

i.e. one needs

TRACTABLE CERTIFICATES of POSITIVITY on K for the polynomial $\mathbf{x} \mapsto f(\mathbf{x})-\lambda!$

Global Optimization

Consider the GLOBAL optimization problem

$$
\text { (P) } \quad f^{*}:=\min _{x}\left\{f(\mathbf{x}) \mid g_{j}(\mathbf{x}) \geqslant 0, j=1, \ldots, m\right\}
$$

where $f, g_{j}(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ are all real-valued functions. Let

$$
\mathbf{K}:=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \quad g_{j}(\mathbf{x}) \geqslant 0, j=1, \ldots, m\right\}
$$

be the feasible set.

Two dual points of view

I: THE PRIMAL SIDE
 f^{*} is a global minimum if and only if

i.e. one optimizes over the set $\mathcal{P}(\mathbf{K}) \subset M(\mathbf{K})$ of probability measures with support contained in K.

$$
f \geqslant f^{*} \Rightarrow \int_{\mathbf{K}} f d \mu \geqslant \int_{\mathbf{K}} f^{*} d \mu=f^{*}, \forall \mu \in \mathcal{P}(\mathbf{K})
$$

On the other hand, with $\mathbf{x} \in \mathbf{K}$ and $\mu:=\delta_{\mathbf{x}}, \int f d \mu=f(\mathbf{x})$

Two dual points of view (continued)

$$
\begin{aligned}
& \ldots \text { But also: II. THE DUAL SIDE } \\
& f^{*} \text { is a global minimum if and only if: } \\
& f^{*}=\sup _{\lambda}\{\lambda: f(\mathbf{x})-\lambda \geqslant 0 \quad \forall \mathbf{x} \in \mathbf{K}\}
\end{aligned}
$$

and in particular, $\mathbf{x} \mapsto f(\mathbf{x})-f^{*}$ is nonnegative on \mathbf{K}.

Two dual points of view (continued)

. . . But also: II. THE DUAL SIDE

f^{*} is a global minimum if and only if:

$$
f^{*}=\sup _{\lambda}\{\lambda: f(\mathbf{x})-\lambda \geqslant 0 \quad \forall \mathbf{x} \in \mathbf{K}\}
$$

and in particular, $\mathbf{x} \mapsto f(\mathbf{x})-f^{*}$ is nonnegative on \mathbf{K}.

Observe that these two characterizations are proper to the global optimum f^{*}, and are NOT valid for a local minimum!

BUT ... this is just LP-Duality

The optimization problem

$$
f^{*}=\min _{\mu \in M(\mathbf{K})}\left\{\int_{\mathbf{K}} f d \mu \quad \mid \quad \mu(\mathbf{K})=1\right\}
$$

is the infinite-dimensional LP

$$
f^{*}=\min _{\mu \in \mathcal{M}(\mathbf{K})}\{\langle f, \mu\rangle \mid\langle 1, \mu\rangle=1 ; \mu \geqslant 0\}
$$

where:

- $\mathcal{M}(\mathbf{K})$ is the space of finite signed Borel measures on \mathbf{K}, and
$-\langle\cdot, \cdot\rangle$ is the duality bracket between $\mathcal{C}(\mathbf{K})$ and $\mathcal{M}(\mathbf{K})$:

$$
\langle f, \mu\rangle=\int_{\mathbf{K}} f d \mu, \quad \forall f \in \mathcal{C}(\mathbf{K}), \mu \in \mathcal{M}(\mathbf{K})
$$

As in the finite dimensional case, the dual LP reads:

$$
f^{*}=\max _{\gamma \in \mathbb{R}}\left\{\gamma \quad \mid \quad f-\gamma 1 \in \mathcal{C}(\mathbf{K})_{+}\right\}
$$

As in the finite dimensional case, the dual LP reads:

$$
f^{*}=\max _{\gamma \in \mathbb{R}}\left\{\quad \gamma \quad \mid f-\gamma 1 \in \mathcal{C}(\mathbf{K})_{+}\right\}
$$

or, equivalently:

$$
f^{*}=\max _{\gamma \in \mathbb{R}}\{\gamma \quad \mid \quad f(\mathbf{x})-\gamma \geqslant 0 \quad \forall \mathbf{x} \in \mathbf{K}\}
$$

鳴
Hence, to solve (or at least approximate) either LP, one needs:
relatively simple and tractable characterizations of:

检
Hence, to solve (or at least approximate) either LP, one needs:
relatively simple and tractable characterizations of:

- measures μ with support contained in \mathbf{K}, \ldots or

鳴
Hence, to solve (or at least approximate) either LP, one needs:
relatively simple and tractable characterizations of:

- measures μ with support contained in K, ... or
- functions (e.g. $f-\gamma$) nonnegative on K.

鳴
Hence, to solve (or at least approximate) either LP, one needs:
relatively simple and tractable characterizations of:

- measures μ with support contained in K, ... or
- functions (e.g. $f-\gamma$) nonnegative on K.

目
Hence, to solve (or at least approximate) either LP, one needs: relatively simple and tractable characterizations of:

- measures μ with support contained in K, ... or
- functions (e.g. $f-\gamma$) nonnegative on \mathbf{K}.

Not possible in general BUT ...

Concerning the primal LP, NOTICE that if f is a polynomial, i.e.,

$$
\begin{aligned}
& \qquad f(\mathbf{x})=\sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha} \quad\left(=\sum_{\alpha} f_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{1}^{\alpha_{n}}\right) \\
& \text { then } \int_{\mathbf{K}} f d \mu=\sum_{\alpha} f_{\alpha} \underbrace{\int_{\mathbf{K}} \mathbf{x}^{\alpha} d \mu}_{=y_{\alpha}}=\sum_{\alpha} f_{\alpha} y_{\alpha},
\end{aligned}
$$

and so the primal LP reads:

$$
f^{*}=\min \left\{\sum_{\alpha} f_{\alpha} y_{\alpha}: y_{0}=1 ; \quad y \in \Delta\right\},
$$

where $\Delta=\left\{y=\left(y_{\alpha}\right): \exists \mu \in \mathcal{M}(\mathbf{K})\right.$ s.t. $\left.y_{\alpha}=\int_{\mathbf{K}} \mathbf{x}^{\alpha} d \mu, \forall \alpha\right\}$.

Concerning the primal LP, NOTICE that if f is a polynomial, i.e.,

$$
\begin{aligned}
& \qquad f(\mathbf{x})=\sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha} \quad\left(=\sum_{\alpha} f_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{1}^{\alpha_{n}}\right) \\
& \text { then } \int_{\mathbf{K}} f d \mu=\sum_{\alpha} f_{\alpha} \underbrace{\int_{\mathbf{K}} \mathbf{x}^{\alpha} d \mu}_{=y_{\alpha}}=\sum_{\alpha} f_{\alpha} y_{\alpha},
\end{aligned}
$$

and so the primal LP reads:

$$
f^{*}=\min \left\{\sum_{\alpha} f_{\alpha} y_{\alpha}: y_{0}=1 ; \quad y \in \Delta\right\},
$$

where $\Delta=\left\{y=\left(y_{\alpha}\right): \exists \mu \in \mathcal{M}(\mathbf{K})\right.$ s.t. $\left.y_{\alpha}=\int_{\mathbf{K}} \mathbf{x}^{\alpha} d \mu, \forall \alpha\right\}$.
\rightarrow a FINITE-DIMENSIONAL CONVEX optimization problem!!

SIMILARLY for the dual LP, NOTICE that if f is a polynomial of degree d, then the constraint of the dual LP

$$
f(\mathbf{x})-\gamma \geqslant 0 \quad \forall \mathbf{x} \in \mathbf{K}
$$

is the same as stating that the polynomial $f-\gamma 1$ belongs to the FINITE-DIMENSIONAL convex cone

$$
\Theta_{d}=\left\{g \in \mathbb{R}[\mathbf{x}]_{d}: g \geqslant 0 \text { on } \mathbf{K}\right\} .
$$

and so the dual LP reads:

$$
f^{*}=\max \left\{\gamma: f-\gamma 1 \in \Theta_{d}\right\}
$$

\rightarrow a FINITE-DIMENSIONAL CONVEX optimization problem!!

First good news ...

When:

- $K \subset \mathbb{R}^{n}$ is the compact semi-algebraic set

$$
\mathbf{K}:=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \quad g_{j}(\mathbf{x}) \geqslant 0, \quad j=1, \ldots, m\right\}
$$

with $\left\{g_{j}\right\} \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \ldots$

First good news ...

When:
$■ \mathbf{K} \subset \mathbb{R}^{n}$ is the compact semi-algebraic set

$$
\mathbf{K}:=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \quad g_{j}(\mathbf{x}) \geqslant 0, \quad j=1, \ldots, m\right\}
$$

with $\left\{g_{j}\right\} \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \ldots$
■ and f is a POLYNOMIAL

POWERFUL results of real algebraic geometry provide

 ■ a CHARACTERIZATION of polynomials POSITIVE on K.
POWERFUL results of real algebraic geometry provide

- a CHARACTERIZATION of polynomials POSITIVE on K.
\rightarrow which is what we need to solve the dual LP!

POWERFUL results of real algebraic geometry provide

■ a CHARACTERIZATION of polynomials POSITIVE on K.
\rightarrow which is what we need to solve the dual LP!

- a CHARACTERIZATION of real sequences $y=\left(y_{\alpha}\right)$, $\alpha \in \mathbb{N}^{n}$, such that

$$
y_{\alpha}=\int_{\mathbf{K}} \mathbf{x}^{\alpha} d \mu, \quad \forall \alpha \in \mathbb{N}^{n}
$$

for some Borel Measure μ on K.

POWERFUL results of real algebraic geometry provide

■ a CHARACTERIZATION of polynomials POSITIVE on K.
\rightarrow which is what we need to solve the dual LP!

- a CHARACTERIZATION of real sequences $y=\left(y_{\alpha}\right)$, $\alpha \in \mathbb{N}^{n}$, such that

$$
y_{\alpha}=\int_{\mathbf{K}} \mathbf{x}^{\alpha} d \mu, \quad \forall \alpha \in \mathbb{N}^{n}
$$

for some Borel Measure μ on K.
\rightarrow which is what we need to solve the primal LP!

Second good news ...

In both cases ... these conditions can translate into Linear Matrix Inequalities (LMI) on :

Second good news ...

In both cases ... these conditions can translate into Linear Matrix Inequalities (LMI) on :

- The moments $y_{\alpha}:=\int_{\mathbf{K}} \mathbf{x}^{\alpha} d \mu$ of $\mu \quad$ (Primal side)

Second good news ...

In both cases ... these conditions can translate into Linear Matrix Inequalities (LMI) on :

- The moments $y_{\alpha}:=\int_{\mathbf{K}} \mathbf{x}^{\alpha} d \mu$ of $\mu \quad$ (Primal side)
- The coefficients of some sum of squares (s.o.s.) polynomials $\left\{q_{j}\right\}_{j=0}^{m} \subset \mathbb{R}[\mathbf{x}]$, for the representation of a polynomial positive on \mathbf{K}.

Second good news ...

In both cases ... these conditions can translate into Linear Matrix Inequalities (LMI) on :

- The moments $y_{\alpha}:=\int_{\mathbf{K}} \mathbf{x}^{\alpha} d \mu$ of $\mu \quad$ (Primal side)
- The coefficients of some sum of squares (s.o.s.) polynomials $\left\{q_{j}\right\}_{j=0}^{m} \subset \mathbb{R}[\mathbf{x}]$, for the representation of a polynomial positive on K.
\rightarrow PRACTICAL COMPUTATION is possible!

Other and (not s.o.s. based) representations of positive polynomials are available (Krivine, Handelman, Vasilescu).
† They lead to Linear Inequalities instead of LMIs and so
... to LP-relaxations instead of SDP-relaxations
.. but less efficient and ill-behaved ... despite so far, LP software packages are more powerful than SDP packages!!

Putinar's Positivstellensatze

Let $\mathbf{K} \subset \mathbb{R}^{n}$ be the basic semi-algebraic set:

$$
\mathbf{K}:=\left\{x \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0, \quad j=1, \ldots, m\right\}
$$

for some polynomials $\left\{g_{j}\right\} \subset \mathbb{R}[\mathbf{x}]$.
and with g_{0} being the constant polynomial 1 , define the quadratic module

$$
\mathcal{Q}\left(g_{1}, \ldots, g_{m}\right)=\left\{g \in \mathbb{R}[X]: g=\sum_{j=0}^{m} \sigma_{j} g_{j}\right\},
$$

where the $\left(\sigma_{j}\right)_{j=0}^{m}$ are s.o.s. polynomials.

- $f \in \mathcal{Q}\left(g_{1}, \ldots, g_{m}\right)$ is also an obvious certificate of nonnegativity on \mathbf{K}.

- $f \in \mathcal{Q}\left(g_{1}, \ldots, g_{m}\right)$ is also an obvious certificate of nonnegativity on \mathbf{K}.
- It requires $m+1$ s.o.s. weights σ_{j}.

Assumption 1:

For some $M>0$, the quadratic polynomial $M-\|x\|^{2}$ belongs to the quadratic module $\mathcal{Q}\left(g_{1}, \ldots, g_{m}\right)$

Assumption 1:

For some $M>0$, the quadratic polynomial $M-\|\mathbf{x}\|^{2}$ belongs to the quadratic module $\mathcal{Q}\left(g_{1}, \ldots, g_{m}\right)$

Theorem (Putinar-Jacobi-Prestel)
Let \mathbf{K} be compact and Assumption 1 hold. Then

$$
\begin{gathered}
{[f \in \mathbb{R}[\mathbf{x}] \text { and } f>0 \text { on } \mathbf{K}] \Rightarrow f \in \mathcal{Q}\left(g_{1}, \ldots, g_{m}\right) \text {, i.e., }} \\
f(\mathbf{x})=\sigma_{0}(\mathbf{x})+\sum_{j=1}^{m} \sigma_{j}(\mathbf{x}) g_{j}(\mathbf{x}), \quad \forall x \in \mathbb{R}^{n}
\end{gathered}
$$

for some s.o.s. polynomials $\left\{\sigma_{j}\right\}_{j=0}^{m}$.

- If one fixes an a priori bound on the degree of the s.o.s. polynomials $\left\{\sigma_{j}\right\}$, checking $f \in \mathcal{Q}\left(g_{1}, \ldots, g_{m}\right)$ reduces to solving an SDP!!
- If one fixes an a priori bound on the degree of the s.o.s. polynomials $\left\{\sigma_{j}\right\}$, checking $f \in \mathcal{Q}\left(g_{1}, \ldots, g_{m}\right)$ reduces to solving an SDP!!
- Moreover, Assumption 1 holds true if e.g. :
- all the g_{j} 's are linear (hence \mathbf{K} is a polytope), or if
- the set $\left\{\mathbf{x} \mid g_{j}(\mathbf{x}) \geqslant 0\right\}$ is compact for some $j \in\{1, \ldots, m\}$
- If one fixes an a priori bound on the degree of the s.o.s.
polynomials $\left\{\sigma_{j}\right\}$, checking $f \in \mathcal{Q}\left(g_{1}, \ldots, g_{m}\right)$ reduces to solving an SDP!!
- Moreover, Assumption 1 holds true if e.g. :
- all the g_{j} 's are linear (hence \mathbf{K} is a polytope), or if
- the set $\left\{\mathbf{x} \mid g_{j}(\mathbf{x}) \geqslant 0\right\}$ is compact for some $j \in\{1, \ldots, m\}$
- If $\mathbf{x} \in \mathbf{K} \Rightarrow\|\mathbf{x}\| \leqslant M$ for some (known) M, then it suffices to add the redundant quadratic constraint $M^{2}-\|\mathbf{x}\|^{2} \geqslant 0$, in the definition of K
- If one fixes an a priori bound on the degree of the s.o.s.
polynomials $\left\{\sigma_{j}\right\}$, checking $f \in \mathcal{Q}\left(g_{1}, \ldots, g_{m}\right)$ reduces to solving an SDP!!
- Moreover, Assumption 1 holds true if e.g. :
- all the g_{j} 's are linear (hence \mathbf{K} is a polytope), or if
- the set $\left\{\mathbf{x} \mid g_{j}(\mathbf{x}) \geqslant 0\right\}$ is compact for some $j \in\{1, \ldots, m\}$
- If $\mathbf{x} \in \mathbf{K} \Rightarrow\|\mathbf{x}\| \leqslant M$ for some (known) M, then it suffices to add the redundant quadratic constraint $M^{2}-\|\mathbf{x}\|^{2} \geqslant 0$, in the definition of K

A representation in terms of s.o.s. (sums of squares) is interesting BECAUSE checking whether some given polynomial $f \in \mathbb{R}[\mathbf{x}]$ is s.o.s. reduces to solving an SDP ... that one may solve efficiently to arbitrary precision, in time polynomial in the input size!

A representation in terms of s.o.s. (sums of squares) is interesting BECAUSE checking whether some given polynomial $f \in \mathbb{R}[\mathbf{x}]$ is s.o.s. reduces to solving an SDP ... that one may solve efficiently to arbitrary precision, in time polynomial in the input size!

Indeed, let

$$
v_{d}(\mathbf{x})=\left(\mathbf{x}^{\alpha}\right), \quad|\alpha|:=\sum_{i} \alpha_{i} \leqslant d
$$

be a basis of $\mathbb{R}[\mathbf{x}]_{d}$ (polynomials of degree at most d)
Let $f \in \mathbb{R}[\mathbf{x}]_{2 d}$ be a s.o.s. polynomial, that is, $f=\sum_{k=1}^{s} q_{k}(\mathbf{x})^{2}$, for some polynomials $\left\{q_{k}\right\}_{k=1}^{s} \subset \mathbb{R}[\mathbf{x}]_{d}$.

Denote also $q_{k}=\left\{q_{k \alpha}\right\}_{\alpha \in \mathbb{N}^{n}}$, the vector of coefficients of the polynomial q_{k}, in the basis $v_{d}(\mathbf{x})$, that is,

$$
q_{k}(\mathbf{x})=\left\langle q_{k}, v_{d}(\mathbf{x})\right\rangle=\sum_{|\alpha| \leqslant r} q_{k \alpha} \mathbf{x}^{\alpha}
$$

and define the real symmetric matrix $Q:=\sum_{k=1}^{s} q_{k} q_{k}^{T} \succcurlyeq 0$.

$$
\left\langle v_{d}(\mathbf{x}), Q v_{d}(\mathbf{x})\right\rangle=\sum_{k=1}^{s}\left\langle q_{k}, v_{d}(\mathbf{x})\right\rangle^{2}=\sum_{k=1}^{s} q_{k}(\mathbf{x})^{2}=f(\mathbf{x})
$$

Denote also $q_{k}=\left\{q_{k \alpha}\right\}_{\alpha \in \mathbb{N}^{n}}$, the vector of coefficients of the polynomial q_{k}, in the basis $v_{d}(\mathbf{x})$, that is,

$$
q_{k}(\mathbf{x})=\left\langle q_{k}, v_{d}(\mathbf{x})\right\rangle=\sum_{|\alpha| \leqslant r} q_{k \alpha} \mathbf{x}^{\alpha}
$$

and define the real symmetric matrix $Q:=\sum_{k=1}^{S} q_{k} q_{k}^{T} \succcurlyeq 0$.

$$
\left\langle v_{d}(\mathbf{x}), Q v_{d}(\mathbf{x})\right\rangle=\sum_{k=1}^{s}\left\langle q_{k}, v_{d}(\mathbf{x})\right\rangle^{2}=\sum_{k=1}^{s} q_{k}(\mathbf{x})^{2}=f(\mathbf{x})
$$

Conversely, let $Q \succcurlyeq 0$ be a real $s(d) \times s(d)$ positive semidefinite symmetric matrix $(s(d)$ is the dimension of the vector space $\left.\mathbb{R}[\mathbf{x}]_{d}\right)$. As $Q \succcurlyeq 0$, write $Q=\sum_{k=1}^{s} q_{k} q_{k}^{T}$, so that

$$
f(\mathbf{x})=\left\langle v_{d}(\mathbf{x}), Q v_{d}(\mathbf{x})\right\rangle=\sum_{k=1}^{s}\left\langle q_{k}, v_{d}(\mathbf{x})\right\rangle^{2}=\sum_{k=1}^{s} q_{k}(\mathbf{x})^{2}
$$

is s.o.s.

Next, write the matrix $v_{d}(\mathbf{x}) v_{d}(\mathbf{x})^{T}$ as:

$$
v_{d}(\mathbf{x}) v_{d}(\mathbf{x})^{T}=\sum_{\alpha \in \mathbb{N}_{2 d}^{n}} \mathbf{B}_{\alpha} \mathbf{x}^{\alpha},
$$

so that checking whether

$$
f(\mathbf{x})=\left\langle v_{d}(\mathbf{x}), Q v_{d}(\mathbf{x})\right\rangle=\left\langle Q, v_{d}(\mathbf{x}) v_{d}(\mathbf{x})^{T}\right\rangle
$$

for some $Q \succcurlyeq 0$ reduces to checking the LMI

$$
\left\{\begin{aligned}
\left\langle\mathbf{B}_{\alpha}, Q\right\rangle & =f_{\alpha \prime} \quad \alpha \in \mathbb{N}^{n},|\alpha| \leqslant 2 d \\
Q & \succcurlyeq 0
\end{aligned}\right.
$$

Example

Let $t \mapsto f(t)=6+4 t+9 t^{2}-4 t^{3}+6 t^{4}$. Is f an SOS? Do we have

$$
f(t)=\left[\begin{array}{c}
1 \\
t \\
t^{2}
\end{array}\right]^{T}\left[\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right]\left[\begin{array}{c}
1 \\
t \\
t^{2}
\end{array}\right]
$$

Example

Let $t \mapsto f(t)=6+4 t+9 t^{2}-4 t^{3}+6 t^{4}$. Is f an SOS? Do we have

$$
f(t)=\left[\begin{array}{c}
1 \\
t \\
t^{2}
\end{array}\right]^{T}\left[\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right]\left[\begin{array}{c}
1 \\
t \\
t^{2}
\end{array}\right]
$$

We must have:

$$
a=6 ; 2 b=4 ; d+2 c=9 ; 2 e=-4 ; f=6
$$

And so we must find a scalar c such that

$$
Q=\left[\begin{array}{ccc}
6 & 2 & c \\
2 & 9-2 c & -2 \\
c & -2 & 6
\end{array}\right] \succcurlyeq 0
$$

With $c=-4$ we have

$$
Q=\left[\begin{array}{ccc}
6 & 2 & -4 \\
2 & 17 & -2 \\
-4 & -2 & 6
\end{array}\right] \succcurlyeq 0
$$

and

$$
\begin{gathered}
Q=2\left[\begin{array}{c}
\sqrt{2} / 2 \\
0 \\
\sqrt{2} / 2
\end{array}\right]\left[\begin{array}{c}
\sqrt{2} / 2 \\
0 \\
\sqrt{2} / 2
\end{array}\right]^{\prime}+9\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
-2 / 3
\end{array}\right]\left[\begin{array}{c}
2 / 3 \\
1 / 3 \\
-2 / 3
\end{array}\right]^{\prime} \\
+18\left[\begin{array}{c}
1 / \sqrt{(18)} \\
4 / \sqrt{(18)} \\
-1 / \sqrt{(} 18)
\end{array}\right]\left[\begin{array}{c}
1 / \sqrt{(18)} \\
4 / \sqrt{(18)} \\
-1 / \sqrt{(18)}
\end{array}\right]^{\prime}
\end{gathered}
$$

and so

$$
f(t)=\left(1+t^{2}\right)^{2}+\left(2-t-2 t^{2}\right)^{2}+\left(1+4 t-t^{2}\right)^{2}
$$

II. DUAL side: The K-moment problem

Let $\left\{\mathbf{x}^{\alpha}\right\}$ be a canonical basis for $\mathbb{R}[\mathbf{x}]$, and let $y:=\left\{y_{\alpha}\right\}$ be a given sequence indexed in that basis.

The K-moment problem
Given $K \subset \mathbb{R}^{n}$, does there exist a measure μ on \mathbf{K}, such that

$$
y_{\alpha}=\int_{\mathbf{K}} \mathbf{x}^{\alpha} d \mu, \quad \forall \alpha \in \mathbb{N}^{n} ?
$$

(where $\left.\mathbf{x}^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)$.

Given $y=\left\{y_{\alpha}\right\}$, let $L_{y}: \mathbb{R}[\mathbf{x}] \rightarrow \mathbb{R}$, be the linear functional

$$
f\left(=\sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}\right) \quad \mapsto \quad L_{y}(f):=\sum_{\alpha \in \mathbb{N}^{n}} f_{\alpha} y_{\alpha}
$$

Moment matrix $M_{d}(y)$
with rows and columns also indexed in the basis $\left\{\mathbf{x}^{\alpha}\right\}$.

$$
M_{d}(y)(\alpha, \beta):=L_{y}\left(\mathbf{x}^{\alpha+\beta}\right)=y_{\alpha+\beta}, \quad \alpha, \beta \in \mathbb{N}^{n}, \quad|\alpha|,|\beta| \leqslant d
$$

For instance in $\mathbb{R}^{2}: \quad M_{1}(y)=\left[\begin{array}{c:cc}\overbrace{y_{00}}^{1} & \overbrace{y_{10}}^{X_{1}} & \overbrace{y_{01}}^{X_{2}} \\ - & - & - \\ y_{10} & y_{20} & y_{11} \\ y_{01} & y_{11} & y_{02}\end{array}\right]$

Importantly ...

$$
M_{d}(y) \succcurlyeq 0 \quad \Longleftrightarrow \quad L_{y}\left(h^{2}\right) \geqslant 0, \quad \forall h \in \mathbb{R}[X]_{d}
$$

Localizing matrix

The "Localizing matrix" $M_{d}(\theta y)$ w.r.t. a polynomial $\theta \in \mathbb{R}[X]$
with $\mathbf{x} \mapsto \theta(\mathbf{x})=\sum_{\gamma} \theta_{\gamma} \mathbf{x}^{\gamma}$, has its rows and columns also indexed in the basis $\left\{X^{\alpha}\right\}$ of $\mathbb{R}[\mathbf{x}]_{d}$, and with entries:

$$
\begin{aligned}
M_{d}(\theta y)(\alpha, \beta) & =L_{y}\left(\theta \mathbf{x}^{\alpha+\beta}\right) \\
& =\sum_{\gamma \in \mathbb{N}^{n}} \theta_{\gamma} y_{\alpha+\beta+\gamma}, \quad\left\{\begin{array}{l}
\alpha, \beta \in \mathbb{N}^{n} \\
|\alpha|,|\beta| \leqslant d
\end{array}\right.
\end{aligned}
$$

For instance, in \mathbb{R}^{2}, and with $X \mapsto \theta(\mathbf{x}):=1-x_{1}^{2}-x_{2}^{2}$,

$$
M_{1}(\theta y)=\left[\begin{array}{lll}
\overbrace{y_{00}-y_{20}-y_{02}}^{1} & \overbrace{y_{10}-y_{30}-y_{12}}^{x_{1}} & \overbrace{y_{01}-y_{21}-y_{03}}^{x_{2}} \\
y_{10}-y_{30}-y_{12} & y_{20}-y_{40}-y_{22} & y_{11}-y_{21}-y_{12} \\
y_{01}-y_{21}-y_{03} & y_{11}-y_{21}-y_{12} & y_{02}-y_{22}-y_{04}
\end{array}\right]
$$

Importantly ...

$$
M_{d}(\theta y) \succcurlyeq 0 \quad \Longleftrightarrow \quad L_{y}\left(h^{2} \theta\right) \geqslant 0, \quad \forall h \in \mathbb{R}[\mathbf{x}]_{d}
$$

Putinar's dual conditions

Again $\mathrm{K}:=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \quad g_{j}(\mathbf{x}) \geqslant 0, j=1, \ldots, m\right\}$. Assumption 1:
For some $M>0$, the quadratic polynomial $M-\|\mathbf{x}\|^{2}$ is in the quadratic module $\mathcal{Q}\left(g_{1}, \ldots, g_{m}\right)$

Putinar's dual conditions

Again $\mathbf{K}:=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \quad g_{j}(\mathbf{x}) \geqslant 0, j=1, \ldots, m\right\}$.
Assumption 1:
For some $M>0$, the quadratic polynomial
$M-\|\mathbf{x}\|^{2}$ is in the quadratic module $\mathcal{Q}\left(g_{1}, \ldots, g_{m}\right)$
Theorem (Putinar: dual side)
Let \mathbf{K} be compact, and Assumption 1 hold. Then $y=\left\{y_{\alpha}\right\}$ has a representing measure μ on K if and only if
$(* *) \quad L_{y}\left(f^{2}\right) \geqslant 0 ; \quad L_{y}\left(f^{2} g_{j}\right) \geqslant 0, \quad \forall j=1, \ldots, m ; \quad \forall f \in \mathbb{R}[\mathbf{x}]$.

Checking whether ${ }^{(* *)}$ holds for all $f \in \mathbb{R}[\mathbf{x}]$ with degree $\leqslant d$
reduces to checking whether $M_{d}(y) \succcurlyeq 0$ and $M_{d}\left(g_{j} y\right) \succcurlyeq 0$, for all $j=1, \ldots, m$!
$\rightarrow m+1$ LMI conditions to verify!

A Hierarchy of SDP Relaxations

Recall the PRIMAL LP

$$
f^{*}=\min _{\mu \in \mathcal{M}(\mathbf{K})}\left\{\int_{\mathbf{K}} f d \mu: \mu(\mathbf{K})=1\right\}
$$

where $\mathcal{M}(\mathbf{K})$ is the space of Borel measures on \mathbf{K}

A Hierarchy of SDP Relaxations

Let $\operatorname{deg} g_{j}=2 v_{j}$ or $2 v_{j}-1$. The SDP-relaxation $\mathbf{Q}_{d}, d \in \mathbb{N}$, reads:

$$
\mathbf{Q}_{d}\left\{\begin{aligned}
\rho_{d}=\min _{y} & L_{y}(f) \quad\left(\rightarrow \text { think of } \int f d \mu\right) \\
\text { s.t. } & \underbrace{M_{d-v_{j}}\left(g_{j} y\right) \succcurlyeq 0, \quad j=0, \ldots m}_{\text {necessary conditions for } y_{\alpha}=\int \mathbf{x}^{\alpha} d \mu} \\
& L_{y}(1)=1 \quad(\rightarrow \mu(\mathbf{K})=1)
\end{aligned}\right.
$$

A Hierarchy of SDP Relaxations

... whose dual is the SDP

$$
\mathbf{Q}_{d}^{*}\left\{\begin{aligned}
\rho_{d}^{*}=\max _{\lambda,\left\{\sigma_{j}\right\}} & \lambda \\
& \\
\text { s.t. } & f-\lambda=\sum_{k=0}^{m} \sigma_{k} g_{k} \\
& \left\{\sigma_{k}\right\} \text { are s.o.s.; } \operatorname{deg} \sigma_{0}, \operatorname{deg} \sigma_{k} g_{k} \leqslant 2 d
\end{aligned}\right.
$$

A Hierarchy of SDP Relaxations

Recall that $K \subset \mathbb{R}^{n}$ is the basic semi-algebraic set

$$
\mathbf{K}:=\left\{x \in \mathbb{R}^{n} \mid \quad g_{j}(\mathbf{x}) \geqslant 0, j=1, \ldots, m\right\} .
$$

Assumption 1:
For some $M>0, M-\|\mathbf{x}\|^{2}$ is in $\mathcal{Q}\left(g_{1}, \ldots, g_{m}\right)$

A Hierarchy of SDP Relaxations

Recall that $\mathrm{K} \subset \mathbb{R}^{n}$ is the basic semi-algebraic set

$$
\mathbf{K}:=\left\{x \in \mathbb{R}^{n} \mid \quad g_{j}(\mathbf{x}) \geqslant 0, j=1, \ldots, m\right\} .
$$

Assumption 1:

For some $M>0, M-\|\mathbf{x}\|^{2}$ is in $\mathcal{Q}\left(g_{1}, \ldots, g_{m}\right)$
Theorem (Lasserre 01)
Let \mathbf{K} be compact, and let Assumption 1 holds. Then:

- $\rho_{d}^{*} \leqslant \rho_{d} \leqslant f^{*}$ for all d and $\rho_{d}^{*}, \rho_{d} \uparrow f^{*}$ as $d \rightarrow \infty$.
- If int $\mathrm{K} \neq \varnothing$, then $\rho_{d}=\rho_{d}^{*}$ and the "sup" is attained.

Global optimality check \& extracting solutions

Exactness of a particular SDP-relaxation

Let y be an optimal solution of \mathbf{Q}_{d} and let $2 v \geqslant \max _{j} \operatorname{deg} g_{j}$. If

$$
\operatorname{rank} M_{d}(y)=\operatorname{rank} M_{d-v}(y)(=: s)
$$

then $\rho_{d}=f^{*}$

and one may extract s GLOBAL MINIMIZERS

Imperial Collene Press Optimization Series Vot1

Moments, Positive Polynomials and Their Applications

Many important problems in global optimization, algetra, peobabiliy and statistics, applied mathematics, control theong inancial mathematics, innerse problems, etci can be modited cup.

This book introduces, in a unified manual, a new general methodology to solve the GMP when its data are polynomials and basic semt-algetraic sets. This methodology combines semidefinite programming with recert results from real algebraic gecenetry to provide a hierarchy of semidefinite pelaxations converging to the desired optimal value. Applied on appropriate cones, standaed duality in convec optimiration nicely expresses the dality between momers and poiltive polynomials.
In the second part of this imaluatle volume, the methodology is particularized and described in decall for various applications, inclusling global optimization, probabiliny, optimal context, mathematical finance, multivarime integration, etc., and ocamples are provided for each particular application.

 Moments, Positive Polynomials

Lasserre

Moments, Positive Polynomials and Their Applications

$\frac{\text { Imperial College Press }}{\text { wwwicpress.couk }}$

An Introduction to Polynomial and Semi-Algebraic Optimization

JEAN BERNARD LASSERRE

See in particular the Chapter by M. Laurent

Springer

2012, 2012, XI, 957 p. 57 illus.

Printed book

Hardcover

- 199,95€|£180.00|\$279.00
- *213,95 $€(\mathrm{D})|219,94 €(\mathrm{~A})|$ CHF 287.00

© 9 eBook

For individual purchases buy at a
lower price on springer.com.
A free preview is available on SpringerLink.
Also available from libraries offering Springer's eBook Collection.

- springer.com/ebooks
(im) MyCopy
Printed eBook exclusively available to patrons whose library offers Springer's eBook Collection.***
- $€ \mid \$ 24.95$
- springer.com/mycopy

springer.com

M.F. Anjos, Polytechnique Montréal, QC, Canada; J.B. Lasserre, LAAS, Toulouse Cedex 4, France (Eds.)

Handbook on Semidefinite, Conic and Polynomial Optimization

Series: International Series in Operations Research \& Management Science

- Summarizes research and developments of last ten years and brings field up to date
- Individual sections covering theory, algorithms, software and applications
- Editors are quite prominent in the field.

Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940 s , its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems.
Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity.
This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook's thirty-one chapters are organized into four parts:Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization;Algorithms, documenting the directions of current algorithmic development;Software, providing an overview of the state-of-the-art;Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.

Next talks

1 Dynamical Systems \oplus Roundoff errors \oplus Verification

Next talks

1 Dynamical Systems \oplus Roundoff errors \oplus Verification

2 Exact certificates of positivity

Next talks

1 Dynamical Systems \oplus Roundoff errors \oplus Verification

2 Exact certificates of positivity

Thank you for your attention!
homepages.laas.fr/vmagron

