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Flyspeck-Like Problems

The Kepler Conjecture

Kepler Conjecture (1611):

The maximal density of sphere packings in 3-space is 118

@ It corresponds to the way people would
intuitively stack oranges, as a pyramid shape

@ The proof of T. Hales (1998) consists of
thousands of non-linear inequalities

@ Many recent efforts have been done to give a
formal proof of these inequalities: Flyspeck
Project

@ Motivation: get positivity certificates and check
them with Proof assistants like COQ
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Flyspeck-Like Problems

Lemma Example

Inequalities issued from Flyspeck non-linear part involve:

@ Semi-Algebraic functions algebra .A: composition of
polynomials with | - |, ()%(p € No), +,—, X, /,sup, inf

© Transcendental functions 7 : composition of semi-algebraic
functions with arctan, arcos, arcsin, ezp, log, | - |,

()7 (p € No), +, —, X, /, sup, inf

Lemmagga2699028 from Flyspeck

K := [4;6.3504]% x [6.3504; 8] x [4;6.3504]2 P, Q € R[X]

T P(x)
Vo € K,—— + arctan ———= + 1.6294 — 0.2213 (\/x2 + /23 +
2 VQ(2)

VZ5 + /Tg — 8.0) + 0.913 (/x4 — 2.52) + 0.728 (/21 — 2.0) > 0.
Tight inequality: global optimum = 1.7 x 10~*
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General Framework

Given K a compact set, and f a transcendental function, bound
from below [* = inlf{ f(x) and prove [* >0
e

@ / is underestimated by a semi-algebraic function f, on a
compact set K;, O K
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General Framework

Given K a compact set, and f a transcendental function, bound
from below [* = inlf{ f(x) and prove [* >0
e

@ / is underestimated by a semi-algebraic function f, on a
compact set K;, O K

@ Reduce the problem 1nf fsa( ) to a polynomial optimization
problem (POP) in a Ilfted space Kpop
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General Framework

Given K a compact set, and f a transcendental function, bound
from below [* = inlf{ f(x) and prove [* >0
e

@ / is underestimated by a semi-algebraic function f, on a
compact set K;, O K

@ Reduce the problem 1nf fsa( ) to a polynomial optimization
problem (POP) in a Ilfted space Kpop
© Solve classicaly the POP problem 1[r%f fpop(2) using a
xre

pop

sparse variant hierarchy of SDP relaxations by Lasserre
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General Framework

Given K a compact set, and f a transcendental function, bound
from below [* = inlf{ f(x) and prove [* >0
e

@ / is underestimated by a semi-algebraic function f, on a
compact set K;, O K

@ Reduce the problem 1nf fsa( ) to a polynomial optimization
problem (POP) in a Ilfted space Kpop
© Solve classicaly the POP problem el[r%f fpop(x) using a

pop

sparse variant hierarchy of SDP relaxations by Lasserre

"2l Z fpop 2 0

If the relaxations are accurate enough
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Transcendental Functions Underestimators

@ Let f € 7 be a transcendental univariate elementary function
such as arctan, ezp, ..., defined on a real interval I.
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Transcendental Functions Underestimators

@ Let f € 7 be a transcendental univariate elementary function
such as arctan, ezp, ..., defined on a real interval I.

@ Basic convexity/semiconvexity properties and monotonicity of
f are used to find lower and upper semi-algebraic bounds.
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Transcendental Functions Underestimators

@ Let f € 7 be a transcendental univariate elementary function
such as arctan, ezxp, ..., defined on a real interval 1.

@ Basic convexity/semiconvexity properties and monotonicity of
f are used to find lower and upper semi-algebraic bounds.

Example with arctan:

. . C
@ arctan is semiconvex on I: 3¢ < Osuch that arctan — 5(-)2

is convex on [
@ Va € I = [m;M], arctan(a) > max {par, (a)} where C
i€ v
define an index collection of parabola tangent to the function
curve and underestimating f.
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Transcendental Functions Underestimators

Example with arctan:

Yy
pary
+
pary arctan
~_| pary
i | a
m M
-
par
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Adaptative Semi-algebraic Approximations Algorithm

@ The first step is to build the abstract syntax tree from an
inequality, where leaves are semi-algebraic functions and
nodes are univariate transcendental functions (arctan, exp, ...)
or basic operations (+, x, —, /).

o Withl := —g +1.6294 — 0.2213 (/T2 + /T3 + /@5 + V/T6 —
8.0) + 0.913 (/71 — 2.52) + 0.728 (/a1 — 2.0), the tree is:
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Adaptative Semi-algebraic Approximations

algoiter First iteration:

arctan

|
pary
1 1 1
m ar M

@ Evaluate f with randeval and obtain a minimizer guess .

@) _ o gaago
Q(x1)
@ Get the equation of pary

Compute a1 :=

D))
VQ(2)
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Adaptative Semi-algebraic Approximations

algoiter Second iteration:

Yy
arctan
pdrf
m ag ar M
pary
@ m; = —0.746 < 0, obtain a new minimizer x».
P
© Compute ay := ﬂ = —0.374 and par,
Q(ﬂcz)
© Compute mg < mln{l(az) + max {par; ( Plo) )}
X G/l"
2 ie{1,2} P Q(m)
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Adaptative Semi-algebraic Approximations

algoiter Ihird iteration:

Y

arctan
parsy
—~ :

i par,
I 1 1 I
m ag az air M

| —

pary

@ mo = —0.112 < 0, obtain a new minimizer 3.
P(x3)
Q(x3)

. __P()
< ;
© Compute m3 < ;ré%{l(x) + ie?%),(?)}{pam ( 0

@ Compute a3 := = 0.357 and par;

)
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Adaptative Semi-algebraic Approximations

@ mg = —0.0333 < 0, obtain a new minimizer x4 and iterate
again...
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Adaptative Semi-algebraic Approximations

@ mg = —0.0333 < 0, obtain a new minimizer x4 and iterate
again...

Theorem: Convergence of Semi-algebraic underestimators

Let f € T and (z, Py N be a sequence of control points obtained to
define the hlerarchy of f-underestimators in the previous algonthm
algoster and 2™ be an accumulation point of () ot en. Then, 2* is
a global minimizer of f on K.
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Local Solutions to Global Issues

@ Instead of increasing both relaxation orders, fix the SDP
relaxation order k < 3 and the number of control points p.

@ If algoiter returns a negative lower bound then cut the initial
box K in several boxes (K;)i<i<. and solve the inequality on
each K;.

.:}.
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Thank you for your attention!
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