Certified Optimization for System Verification

Victor Magron, CNRS

26 Juin 2017

SMAI-MODE Meeting

Personal Background

- 2008 2010: Master at Tokyo University
 HIERARCHICAL DOMAIN DECOMPOSITION METHODS
- 2010 2013: PhD at Inria Saclay LIX/CMAP
 FORMAL PROOFS FOR NONLINEAR OPTIMIZATION (S. Gaubert, B. Werner)
- 2014 Jan-Sept: Postdoc at LAAS-CNRS
 MOMENT-SOS APPLICATIONS (D. Henrion, J.B. Lasserre)
- 2014 2015: Postdoc at Imperial College
 ROUDOFF ERRORS WITH POLYNOMIAL OPTIMIZATION (G. Constantinides and A. Donaldson)

```
■ 2015 – 2017: CR2 CNRS-Verimag (Tempo Team)
```

Research Field

CERTIFIED OPTIMIZATION Input: linear problem (LP), geometric, semidefinite (SDP) Output: value + numerical/symbolic/formal certificate

Research Field

CERTIFIED OPTIMIZATION Input: linear problem (LP), geometric, semidefinite (SDP) Output: value + numerical/symbolic/formal certificate

VERIFICATION OF CRITICAL SYSTEMS

Safety of embedded software/hardware Mathematical formal proofs biology, robotics, analysers, ...

Research Field

CERTIFIED OPTIMIZATION Input: linear problem (LP), geometric, semidefinite (SDP) Output: value + numerical/symbolic/formal certificate

VERIFICATION OF CRITICAL SYSTEMS

Safety of embedded software/hardware Mathematical formal proofs

biology, robotics, analysers, ...

Efficient certification for nonlinear systems

- Certified optimization of polynomial systems analysis / synthesis / control
- Efficiency

symmetry reduction, sparsity

Certified approximation algorithms

convergence, error analysis

What is Semidefinite Optimization?

Linear Programming (LP):

 $\min_{\mathbf{z}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{z} \\ \text{s.t.} \quad \mathbf{A} \mathbf{z} \ge \mathbf{d} \ .$

Linear cost c

• Linear inequalities " $\sum_i A_{ij} z_j \ge d_i$ "

Polyhedron

What is Semidefinite Optimization?

Semidefinite Programming (SDP):

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z} \\ \text{s.t.} \quad \sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} \ .$$

- Symmetric matrices **F**₀, **F**_{*i*}
- Linear matrix inequalities "F ≽ 0" (F has nonnegative eigenvalues)

Spectrahedron

What is Semidefinite Optimization?

Semidefinite Programming (SDP):

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{z} \\ \text{s.t.} \quad \sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} \quad , \quad \mathbf{A} \mathbf{z} = \mathbf{d} \quad .$$

- Symmetric matrices **F**₀, **F**_{*i*}
- Linear matrix inequalities "F ≽ 0" (F has nonnegative eigenvalues)

Spectrahedron

Applications of SDP

- Combinatorial optimization
- Control theory
- Matrix completion
- Unique Games Conjecture (Khot '02) : "A single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems." (Barak and Steurer survey at ICM'14)
- Solving polynomial optimization (Lasserre '01)

SDP for Polynomial Optimization

Theoretical approach for polynomial optimization

SDP for Polynomial Optimization

Practical approach for polynomial optimization

(Dual Strengthening)

$$p - \lambda =$$
 sums of squares

finite \Rightarrow

SDP

 \Leftarrow **fixed** degree

SDP for Polynomial Optimization

Practical approach for polynomial optimization

Hierarchy of **SDP** \uparrow *p*^{*}

 $\frac{\text{degree } d}{n \text{ vars}} \Rightarrow \binom{n+2d}{n} \text{ SDP VARIABLES}$

Introduction

SDP for Nonlinear Optimization

SDP for Polynomial Systems

Conclusion

Kepler Conjecture (1611):

The maximal density of sphere packings in 3D-space is $\frac{\pi}{\sqrt{18}}$

Face-centered cubic Packing

Hexagonal Compact Packing

- The proof of T. Hales (1998) contains mathematical and computational parts
- Computation: check thousands of nonlinear inequalities
- Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture

- The proof of T. Hales (1998) contains mathematical and computational parts
- Computation: check thousands of nonlinear inequalities
- Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture
- Project Completion on August 2014 by the Flyspeck team

Contribution: Publications and Software

- M., Allamigeon, Gaubert, Werner. Formal Proofs for Nonlinear Optimization, Journal of Formalized Reasoning 8(1):1–24, 2015.
- Hales, Adams, Bauer, Dang, Harrison, Hoang, Kaliszyk, M., Mclaughlin, Nguyen, Nguyen, Nipkow, Obua, Pleso, Rute, Solovyev, Ta, Tran, Trieu, Urban, Vu & Zumkeller, Forum of Mathematics, Pi, 5 2017

Software Implementation NLCertify:

15 000 lines of OCAML code

4000 lines of COQ code

M. NLCertify: A Tool for Formal Nonlinear Optimization, *ICMS*, 2014.

Introduction

SDP for Nonlinear Optimization

SDP for Polynomial Systems

Conclusion

Exact:

$$f(\mathbf{x}) := x_1 x_2 + x_3 x_4$$

Floating-point:

$$\hat{f}(\mathbf{x},\boldsymbol{\epsilon}) := [x_1 x_2 (1+\epsilon_1) + x_3 x_4 (1+\epsilon_2)](1+\epsilon_3)$$

• $\mathbf{x} \in \mathbf{S}$, $|\epsilon_i| \leq 2^{-p}$ p = 24 (single) or 53 (double)

Roundoff Error Bounds

Input: exact $f(\mathbf{x})$, floating-point $\hat{f}(\mathbf{x}, \boldsymbol{\epsilon})$ **Output:** Bounds for $f - \hat{f}$

1: Error
$$r(\mathbf{x}, \boldsymbol{\epsilon}) := f(\mathbf{x}) - \hat{f}(\mathbf{x}, \boldsymbol{\epsilon}) = \sum_{\alpha} r_{\alpha}(\boldsymbol{\epsilon}) \mathbf{x}^{\alpha}$$

- 2: Decompose $r(x, \epsilon) = l(x, \epsilon) + h(x, \epsilon)$, *l* linear in ϵ
- 3: Bound $h(\mathbf{x}, \boldsymbol{\epsilon})$ with interval arithmetic
- 4: Bound $l(x, \epsilon)$ with SPARSE SUMS OF SQUARES

Roundoff Error Bounds

Input: exact $f(\mathbf{x})$, floating-point $\hat{f}(\mathbf{x}, \boldsymbol{\epsilon})$ **Output:** Bounds for $f - \hat{f}$

1: Error
$$r(\mathbf{x}, \boldsymbol{\epsilon}) := f(\mathbf{x}) - \hat{f}(\mathbf{x}, \boldsymbol{\epsilon}) = \sum_{\alpha} r_{\alpha}(\boldsymbol{\epsilon}) \mathbf{x}^{\alpha}$$

- 2: Decompose $r(x, \epsilon) = l(x, \epsilon) + h(x, \epsilon)$, *l* linear in ϵ
- 3: Bound $h(\mathbf{x}, \boldsymbol{\epsilon})$ with interval arithmetic
- 4: Bound $l(x, \epsilon)$ with SPARSE SUMS OF SQUARES
- M., Constantinides, Donaldson. Certified Roundoff Error Bounds Using Semidefinite Programming, *Trans. Math. Soft.*, 2016

Reachable Sets of Polynomial Systems

Iterations $\mathbf{x}_{t+1} = f(\mathbf{x}_t)$ Uncertain $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u})$

Converging SDP hierarchies
 Image measure
 Liouville equation (conservation)

$$\mu_t + \mu = f_\# \mu + \mu_0$$

Reachable Sets of Polynomial Systems

Iterations $\mathbf{x}_{t+1} = f(\mathbf{x}_t)$ Uncertain $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u})$

Converging SDP hierarchies
 Image measure
 Liouville equation (conservation)

$$\mu_t + \mu = f_\# \mu + \mu_0$$

- M., Henrion, Lasserre. Semidefinite Approximations of Projections and Polynomial Images of SemiAlgebraic Sets. SIAM J. Optim, 2015
- M., Garoche, Henrion, Thirioux. Semidefinite Approximations of Reachable Sets for Discrete-time Polynomial Systems, 2017.

Invariant Measures of Polynomial Systems

Discrete $\mathbf{x}_{t+1} = f(\mathbf{x}_t) \implies f_{\#} \mu - \mu = 0$ **Continuous** $\dot{\mathbf{x}} = f(\mathbf{x}) \implies \operatorname{div} f \mu = 0$

Converging SDP hierarchies **mathchart frequency** measures with density in L_p **mathchart frequency** singular measures \implies chaotic attractors

Invariant Measures of Polynomial Systems

Discrete $\mathbf{x}_{t+1} = f(\mathbf{x}_t) \implies f_{\#} \mu - \mu = 0$ **Continuous** $\dot{\mathbf{x}} = f(\mathbf{x}) \implies \operatorname{div} f \mu = 0$

Converging SDP hierarchies **mathchart measures** with density in L_p **mathchart measures** \implies chaotic attractors

M., Forets, Henrion. Semidefinite Characterization of Invariant Measures for Polynomial Systems. In Progress, 2017

Victor Magron

Introduction

SDP for Nonlinear Optimization

SDP for Polynomial Systems

Conclusion

Conclusion

SDP/SOS powerful to handle **NONLINEARITY**:

- Optimize nonlinear functions
- Analysis of nonlinear systems (Reachability, Invariants)

FUTURE:

- PDEs (with C. Prieur)
- Exact methods for n = 1 (with M. Safey, M. Schweighofer)
- Non polynomial functions

Thank you for your attention!

http://www-verimag.imag.fr/~magron