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Personal Background

2008− 2010: Master at Tokyo University
HIERARCHICAL DOMAIN DECOMPOSITION METHODS

2010− 2013: PhD at Inria Saclay LIX/CMAP
FORMAL PROOFS FOR NONLINEAR OPTIMIZATION

(S. Gaubert, B. Werner)

2014 Jan-Sept: Postdoc at LAAS-CNRS
MOMENT-SOS APPLICATIONS (D. Henrion, J.B. Lasserre)

2014− 2015: Postdoc at Imperial College
ROUDOFF ERRORS WITH POLYNOMIAL OPTIMIZATION

(G. Constantinides and A. Donaldson)

2015− 2017: CR2 CNRS-Verimag (Tempo Team)
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Research Field
CERTIFIED OPTIMIZATION

Input: linear problem (LP), geometric, semidefinite (SDP)
Output: value + numerical/symbolic/formal certificate

VERIFICATION OF CRITICAL SYSTEMS

Safety of embedded software/hardware
Mathematical formal proofs
biology, robotics, analysers, . . .

Efficient certification for nonlinear systems

Certified optimization of polynomial systems
analysis / synthesis / control

Efficiency
symmetry reduction, sparsity

Certified approximation algorithms
convergence, error analysis

Victor Magron Certified Optimization for System Verification 2 / 10



Research Field
CERTIFIED OPTIMIZATION

Input: linear problem (LP), geometric, semidefinite (SDP)
Output: value + numerical/symbolic/formal certificate

VERIFICATION OF CRITICAL SYSTEMS

Safety of embedded software/hardware
Mathematical formal proofs
biology, robotics, analysers, . . .

Efficient certification for nonlinear systems

Certified optimization of polynomial systems
analysis / synthesis / control

Efficiency
symmetry reduction, sparsity

Certified approximation algorithms
convergence, error analysis

Victor Magron Certified Optimization for System Verification 2 / 10



Research Field
CERTIFIED OPTIMIZATION

Input: linear problem (LP), geometric, semidefinite (SDP)
Output: value + numerical/symbolic/formal certificate

VERIFICATION OF CRITICAL SYSTEMS

Safety of embedded software/hardware
Mathematical formal proofs
biology, robotics, analysers, . . .

Efficient certification for nonlinear systems

Certified optimization of polynomial systems
analysis / synthesis / control

Efficiency
symmetry reduction, sparsity

Certified approximation algorithms
convergence, error analysis

Victor Magron Certified Optimization for System Verification 2 / 10



What is Semidefinite Optimization?

Linear Programming (LP):

min
z

c
>

z

s.t. A z > d .

Linear cost c

Linear inequalities “∑i Aij zj > di” Polyhedron
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What is Semidefinite Optimization?

Semidefinite Programming (SDP):

min
z

c
>

z

s.t. ∑
i

Fi zi < F0 .

Linear cost c

Symmetric matrices F0, Fi

Linear matrix inequalities “F < 0”
(F has nonnegative eigenvalues)

Spectrahedron
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Applications of SDP

Combinatorial optimization

Control theory

Matrix completion

Unique Games Conjecture (Khot ’02) :
“A single concrete algorithm provides optimal guarantees
among all efficient algorithms for a large class of
computational problems.”
(Barak and Steurer survey at ICM’14)

Solving polynomial optimization (Lasserre ’01)
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SDP for Polynomial Optimization

Theoretical approach for polynomial optimization

(Primal) (Dual)

inf
∫

p dµ sup λ

avec µ probabilité ⇒ LP INFINI ⇐ avec p− λ > 0

Hierarchy of SDP ↑ p∗

degree d
n vars

=⇒ (n+2d
n ) SDP VARIABLES
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SDP for Polynomial Optimization

Practical approach for polynomial optimization

(Primal Relaxation) (Dual Strengthening)

moments
∫

xα dµ p− λ = sums of squares

finite ⇒ SDP ⇐ fixed degree

Hierarchy of SDP ↑ p∗

degree d
n vars

=⇒ (n+2d
n ) SDP VARIABLES
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Introduction

SDP for Nonlinear Optimization

SDP for Polynomial Systems

Conclusion



From Oranges Stack...

Kepler Conjecture (1611):

The maximal density of sphere packings in 3D-space is π√
18

Face-centered cubic Packing Hexagonal Compact Packing
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...to Flyspeck Nonlinear Inequalities

The proof of T. Hales (1998) contains mathematical and
computational parts

Computation: check thousands of nonlinear inequalities

Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture

Project Completion on August 2014 by the Flyspeck team
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Contribution: Publications and Software

M., Allamigeon, Gaubert, Werner.
Formal Proofs for Nonlinear Optimization,
Journal of Formalized Reasoning 8(1):1–24, 2015.

Hales, Adams, Bauer, Dang, Harrison, Hoang, Kaliszyk, M.,
Mclaughlin, Nguyen, Nguyen, Nipkow, Obua, Pleso, Rute,
Solovyev, Ta, Tran, Trieu, Urban, Vu & Zumkeller, Forum of
Mathematics, Pi, 5 2017

Software Implementation NLCertify:

15 000 lines of OCAML code

4000 lines of COQ code

M. NLCertify: A Tool for Formal Nonlinear Optimization, ICMS,
2014.

Victor Magron Certified Optimization for System Verification 6 / 10



Introduction

SDP for Nonlinear Optimization

SDP for Polynomial Systems

Conclusion



Roundoff Error Bounds

Exact:
f (x) := x1x2 + x3x4

Floating-point:

f̂ (x, ε) := [x1x2(1 + ε1) + x3x4(1 + ε2)](1 + ε3)

x ∈ S , | εi |6 2−p p = 24 (single) or 53 (double)

M., Constantinides, Donaldson. Certified Roundoff Error Bounds
Using Semidefinite Programming, Trans. Math. Soft., 2016
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Roundoff Error Bounds

Input: exact f (x), floating-point f̂ (x, ε)

Output: Bounds for f − f̂

1: Error r(x, ε) := f (x)− f̂ (x, ε) = ∑
α

rα(ε)xα

2: Decompose r(x, ε) = l(x, ε) + h(x, ε), l linear in ε

3: Bound h(x, ε) with interval arithmetic

4: Bound l(x, ε) with SPARSE SUMS OF SQUARES

M., Constantinides, Donaldson. Certified Roundoff Error Bounds
Using Semidefinite Programming, Trans. Math. Soft., 2016
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Reachable Sets of Polynomial Systems

Iterations xt+1 = f (xt)

Uncertain xt+1 = f (xt, u)

Converging SDP hierarchies
Image measure
Liouville equation (conservation)

µt + µ = f # µ + µ0

M., Henrion, Lasserre. Semidefinite Approximations of
Projections and Polynomial Images of SemiAlgebraic Sets. SIAM
J. Optim, 2015

M., Garoche, Henrion, Thirioux. Semidefinite Approximations of
Reachable Sets for Discrete-time Polynomial Systems, 2017.
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Invariant Measures of Polynomial Systems

Discrete xt+1 = f (xt) =⇒ f # µ− µ = 0
Continuous ẋ = f (x) =⇒ div f µ = 0

Converging SDP hierarchies
measures with density in Lp

singular measures =⇒ chaotic attractors

M., Forets, Henrion. Semidefinite Characterization of Invariant
Measures for Polynomial Systems. In Progress, 2017
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Conclusion

SDP/SOS powerful to handle NONLINEARITY:

Optimize nonlinear functions

Analysis of nonlinear systems (Reachability, Invariants)

FUTURE:

PDEs (with C. Prieur)

Exact methods for n = 1 (with M. Safey, M. Schweighofer)

Non polynomial functions
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End

Thank you for your attention!

http://www-verimag.imag.fr/~magron

http://www-verimag.imag.fr/~magron
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