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Two Problems

K � Rn: a compact set
f : K ! R: a real multivariate function

Two challenging problems:
1 inf

x2K
f(x) when f is a multivariate polynomial of degree d

Number of variables n is large, no sparsity =) very hard to
solve using Interval Arithmetic

Example:

K := [0; 1]n, random numbers (ri)1�i�n:

fd := (
1

n

nX
i=1

4

r2i
xi(ri � xi))

dd=2e, the range of fd is [0; 1]

2 inf
x2K

f(x) when f is a multivariate real function involving

transcendental univariate functions
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SOS and SDP Relaxations

Polynomial Optimization Problem (POP):

Let f; g1; � � � ; gm 2 R[X1; � � � ; Xn]
Kpop := fx 2 Rn : g1(x) � 0; � � � ; gm(x) � 0g is the feasible set
General POP: compute f�pop = inf

x2Kpop

f(x)

Example:

f := 10� x21 � x22; g1 := 1� x21 � x22
Kpop := fx 2 R2 : g1(x) � 0g is the feasible set
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SOS and SDP Relaxations

Convexify the problem:

f�pop = inf
x2Kpop

fpop(x) = inf
�2P(Kpop)

Z
fpop d�, where P(Kpop) is the

set of all probability measures � supported on the set Kpop.
Equivalent formulation:

f�pop = min fL(f) : L : R[X] ! R linear, L(1) = 1 and
each Lgj is SDP g, with g0 = 1, Lg0 ; � � � ;Lgm defined by:

Lgj : R[X]� R[X] ! R

(p; q) 7! L(p � q � gj)

Victor MAGRON Lower bounds certification



SOS and SDP Relaxations: Lasserre Hierarchy

B := (X�)�2Nn : the monomial basis and y� = L(X�), this
identifies L with the infinite series y = (y�)�2Nn

Infinite moment matrix M :
M(y)u;v := L(u � v); u; v 2 B
Localizing matrix M(gjy):
M(gjy)u;v := L(u � v � gj); u; v 2 B
k � k0 := maxfddeg fpope=2; ddeg g0=2e; � � � ; ddeg gm=2eg
Index M(y) and M(gjy) with elements in B of degree at most
k, it gives the semidefinite relaxations hierarchy:

Qk :

8>>>><
>>>>:

inf
y
L(f) =

Z
f� x

� d�(x) =
X
�

f� y�

Mk�ddeg gj=2e(gjy) < 0; 0 � j � m;

y1 = 1
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SOS and SDP Relaxations

Convergence Theorem [Lasserre]:

The sequence inf(Qk)k�k0 is non-decreasing and under the SOS
assumption converges to f�pop.

SDP relaxations:
Many solvers (e.g. Sedumi, SDPA) solve the pair of (standard form)
semidefinite programs:

(SDP )

8>>>>>>>>><
>>>>>>>>>:

P : min
y

X
�

c�y�

subject to
X
�

F� y� � F0 < 0

D : max
Y

Trace (F0 Y )

subject to Trace (F� Y ) = c�
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Large-scale POP
Complexity issues

SDP relaxation Qk at order k � max
j
fddeg fpop=2e; ddeg gj=2eg:

O(n2k) moment variables

linear matrix inequalities (LMIs) of size O(nk)

polynomial in n, exponential in k

On our example:

K := [0; 1]n, random numbers (ri)1�i�n:

fd := (
1

n

nX
i=1

4

r2i
xi(ri � xi))

dd=2e

deg gj = 1, k � d =) at least O(n2d) moment variables with LMIs
of size O(nd)!!
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Large-scale POP

Multivariate Taylor-Models Underestimators:

f : K ! R is a multivariate polynomial

Consider a minimizer guess xc obtained by heuristics

Let qxc be the quadratic form defined by:

qxc : K �! R

x 7�! f(xc) +Df (xc) (x� xc)

+
1

2
(x� xc)

TD2
f (xc) (x� xc) + �(x� xc)

2

with � := min
x2K

f�min(D2
f (x)�D2

f (xc))g

Theorem:

8x 2 K; f(x) � qxc , that is qxc understimates f on K.
qxc is called a quadratic cut.

How to compute �? How to compute a lower bound of f?
Victor MAGRON Lower bounds certification



Large-scale POP
Computation of � by Robust SDP

� := min
x2K

f�min(D2
f (x)�D2

f (xc))g
Bound the Hessian difference on K by POP (using SDP
relaxations) to get �D2

f :
Define the symmetric matrix B containing the bounds on the
entries of �D2

f .
Let Sn be the set of diagonal matrices of sign.
Sn := fdiag (s1; � � � ; sn); s1 = �1; � � � sn = �1g
� := �min( �D2

f �D2
f (xc)

�I): minimal eigenvalue of an interval
matrix

Robut Optimization with Reduced Vertex Set [Calafiore, Dabbene]

The robust interval SDP problem �min( �D2
f �D2

f (xc)
�I) is equivalent

to the following SDP in the single variable t 2 R:8<
:

min �t
s.t. �t I �D2

f (xc)� S B S � 0; S = diag (1; ~S); 8 ~S 2 Sn�1
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Large-scale POP
Computation of � by approximation and simpler SDP

Solving the previous SDP is expensive because the dimension of
Sn grows exponentially. Instead, we can underestimate �:

Write �D2
f �D2

f (xc)
�I := �X + �Y with

�Xij := [
aij + bij

2
;
aij + bij

2
] and �Yij := [�bij � aij

2
;
bij � aij

2
]

�min( �X + �Y ) � �min( �X) + �min( �Y ) = �min( �X)� �max(� �Y )

�max( �Y ) � max
i

X
j

bij � aij
2

Computing a lower bound of �min( �X) is easier because �X is a real

matrix. We can do it again by SDP:

8<
:

min �t
s.t. �t I � �X � 0

... and how to compute a lower bound of the polynomial f?
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Large-scale POP
Computing lower bounds

Input: f , box K, SDP relaxation order k, control points sequence
s = (x1) 2 K, ncuts (final number of quadratic cuts)

Output: lower bound m of f
1: cuts := 1
2: while cuts � ncuts do
3: For c 2 f1; : : : ;#sg: compute � using robust SDP or �min

approximation and compute qxc
4: fp := max

1�c�p
qxc , Kpop := fx 2 K : z � qx1(x); � � � ; z � qxp(x)g

5: Compute a lower bound m of fp by POP at the SDP relaxation
order k: m � inf

x2Kpop

z

6: xopt := guess argmin (fp): a minimizer candidate for fp
7: s := s [ fxoptg
8: cuts := cuts+ 1
9: done
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Large-scale POP
Comparisons w.r.t the � computation

K := [0; 1]n

f6 := (
1

n

nX
i=1

4

r2i
xi(ri � xi))

3

We compare the quality
of the successive lower
bounds (previous
algorithm) with different
� underestimators

�robust � �approx =)
Better quadratic
approximations when
using the Robust SDP
approach

n = 2
n = 3
n = 4
n = 5
n = 6

Robust SDP

Approx �min

0 10 20 30 40 50

�8

�6

�4

�2

Quadratic cuts

Lower

bounds

errors
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Large-scale POP
Scalability Issues

When n is large, Robust SDP approach is too expensive. It
becomes impossible to compute � and the quadratic cuts qxc .

n = 2

n = 10

n = 20

0 5 10 15 20

�6

�4

�2

0

Quadratic cuts

Lower

bounds

errors

(a) d = 4

n = 2

n = 9

0 5 10 15 20

�12

�10

�8

�6

�4

�2

0

Quadratic cuts

Lower

bounds

errors

(b) d = 6

Bottleneck: computation of the n(n+ 1) bounds of the
Hessian entries �D2

f �D2
f (xc)

�I (multivariate polynomial of
degree d� 2)
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Bounding multivariate transcendental functions

Now, consider a semialgebraic compact set K � Rn and
f : K ! R a multivariate transcendental function

We want to compute a precise lower bound of f . The previous
approach only gives a hierarchy of coarse bounds

Motivations?
How to approach the univariate transcendental functions involved
in f?
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Flyspeck-Like Problems
The Kepler Conjecture

Kepler Conjecture (1611):

The maximal density of sphere packings in 3-space is
�

18

It corresponds to the way people would
intuitively stack oranges, as a pyramid shape

The proof of T. Hales (1998) consists of
thousands of non-linear inequalities

Many recent efforts have been done to give a
formal proof of these inequalities: Flyspeck
Project

Motivation: get positivity certificates and check
them with Proof assistants like COQ
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Flyspeck-Like Problems
Lemma Example

Inequalities issued from Flyspeck non-linear part involve:

1 Semi-Algebraic functions algebra A: composition of
polynomials with j � j, (�) 1p (p 2 N0), +;�;�; =; sup; inf

2 Transcendental functions T : composition of semi-algebraic
functions with arctan, arcos, arcsin, exp, log, j � j,
(�) 1p (p 2 N0), +;�;�; =; sup; inf

Lemma9922699028 from Flyspeck

K := [4; 6:3504]3 � [6:3504; 8]� [4; 6:3504]2 P; Q 2 R[X]

8x 2 K;��

2
+ arctan

P (x)p
Q(x)

+ 1:6294 � 0:2213 (
p
x2 +

p
x3 +

p
x5 +

p
x6 � 8:0) + 0:913 (

p
x4 � 2:52) + 0:728 (

p
x1 � 2:0) � 0:

Tight inequality: global optimum ' 1:7� 10�4

Victor MAGRON Lower bounds certification



Bounding multivariate transcendental functions
General Framework

Given K a compact set, and f a transcendental function, bound
from below f� = inf

x2K
f(x) and prove f� � 0

1 f is approximated by a semi-algebraic function fsa
2 Reduce the problem inf

x2K
fsa(x) to a polynomial optimization

problem (POP) in a lifted space Kpop

3 Solve classically the POP problem inf
x2Kpop

fpop(x) using a

sparse variant hierarchy of SDP relaxations by Lasserre

f� � f�sa � f�pop � 0|{z}
If the relaxations are accurate enough
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Bounding multivariate transcendental functions
General Framework

The first step is to build the abstract syntax tree from an
inequality, where leaves are semi-algebraic functions and
nodes are univariate transcendental functions (arctan, exp, ...)
or basic operations (+, �, �, =).

With l := ��

2
+ 1:6294� 0:2213 (

p
x2 +

p
x3 +

p
x5 +

p
x6 �

8:0) + 0:913 (
p
x4 � 2:52) + 0:728 (

p
x1 � 2:0), the tree of the

example is:

+

l(x) arctan

P (x)p
Q(x)
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Bounding multivariate transcendental functions
Transcendental Functions Approximations

Let t 2 T be a transcendental univariate elementary function
such as arctan, exp, ..., defined on a real interval I. Let
d 2 N given.

Minimax: Best uniform degree d polynomial approximation t̂:
solution of jj�jj1 := min

p2Rd[X]
jjt� pjj1

Existence and uniqueness of t̂

Remez algorithm implementation in Sollya: computes t̂ for
each univariate transcendental function involved in the
Flyspeck inequalities with given I := [a; b] and d 2 N
Also computes a certified upper bound of jj�jj1 related to the
minimax polynomial
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Bounding multivariate transcendental functions
General Framework

+

l(x) arctan

P (x)p
Q(x)

Two kinds of semialgebraic leaves:

multivariate functions:
P (x)p
Q(x)

: we can

get the bounds by POP using lifting
variables

sum of univariate functions:
l := ��

2
+ 1:6294� 0:2213 (

p
x2 +

p
x3 +p

x5 +
p
x6� 8:0)+ 0:913 (

p
x4� 2:52)+

0:728 (
p
x1 � 2:0): we can approximatep� by a minimax polynomial with Sollya
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Bounding multivariate transcendental functions
General Framework

P (x)p
Q(x)

on K := [4; 6:3504]3 � [6:3504; 8]� [4; 6:3504]2?

Lifting procedure by POP:
1 Get bounds of P (x) by POP
2 Get bounds of Q(x) by POP and

p
Q(x) by interval arithmetic

3 Lifting variable representing
p
Q(x): q 2 Iq

4 Coarse bounds of
P (x)p
Q(x)

by interval arithmetic: interval Iz

5 Lifting variable representing
P (x)p
Q(x)

: z 2 Iz

6 Lifting space:
Kpop := f(x; q; z) 2 K � Iq � Iz : q2 = Q(x); zq = P (x)g

7 Solving inf
(x;q;z)2Kpop

z by POP gives a lower bound of
P (x)p
Q(x)
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Bounding multivariate transcendental functions
Univariate approximations

8 We get an interval I enclosing
P (x)p
Q(x)

from POP.

9 Minimax polynomials for the univariate real functions of f :

t d Upper bound of jj�jj1
arctan on I 5 2:01� 10�4

p on [4; 6:3504] 4 2:50� 10�5

p on [6:3504; 8] 2 9:34� 10�8

10 We obtain a minimax polynomial for arctan. With the minimax
polynomial for p: we can approach l by l̂.
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Bounding multivariate transcendental functions
Solving the inequality

Again by using POP:

Lifting variable representing
p
Q(x): q 2 Iq

Lifting variable representing
P (x)p
Q(x)

: z 2 Iz

Lifting space:
Kpop := f(x; q; z) 2 K � Iq � Iz : q2 = Q(x); zq = P (x); g
Solving inf

(x;q;z)2Kpop

l̂(x) + ^arctan(z) by POP gives a lower

bound of f̂ := l̂(x) + ^arctan(z)

Finally, Subtract the minimax errors jj�jj1 to f̂ gives a lower
bound of f
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End

Thanks for your attention! Questions?
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