Lower bounds certification for multivariate real functions using SDP

Joint Work with B. Werner, S. Gaubert and X. Allamigeon

Victor MAGRON

LIX/INRIA, École Polytechnique

LIX PhD Seminar Friday $18^{t h}$ January

$$
\text { Inian } \quad \boldsymbol{I}_{X}
$$

Two Problems

$K \subset \mathbb{R}^{n}:$ a compact set
$f: K \rightarrow \mathbb{R}$: a real multivariate function

Two challenging problems:
(1) $\inf _{x \in K} f(x)$ when f is a multivariate polynomial of degree d Number of variables n is large, no sparsity \Longrightarrow very hard to solve using Interval Arithmetic

Example:

$K:=[0,1]_{n}^{n}$, random numbers $\left(r_{i}\right)_{1 \leq i \leq n}$:
$f_{d}:=\left(\frac{1}{n} \sum_{i=1}^{n} \frac{4}{r_{i}^{2}} x_{i}\left(r_{i}-x_{i}\right)\right)^{\lceil d / 2\rceil}$, the range of f_{d} is $[0,1]$
(2) $\inf _{x \in K} f(x)$ when f is a multivariate real function involving transcendental univariate functions

Contents

0 Solving Polynomial Problems using Sum of Squares (SOS) and Semidefinite Programming (SDP)
(1) Lower bounds of multivariate polynomial with large number of variables
(2) Lower bounds of transcendental multivariate functions

SOS and SDP Relaxations

Polynomial Optimization Problem (POP):
Let $f, g_{1}, \cdots, g_{m} \in \mathbb{R}\left[X_{1}, \cdots, X_{n}\right]$
$K_{\text {pop }}:=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \cdots, g_{m}(x) \geq 0\right\}$ is the feasible set
General POP: compute $f_{\text {pop }}^{*}=\inf _{x \in K_{p o p}} f(x)$
Example:

$$
\begin{aligned}
& f:=10-x_{1}^{2}-x_{2}^{2}, g_{1}:=1-x_{1}^{2}-x_{2}^{2} \\
& K_{\text {pop }}:=\left\{x \in \mathbb{R}^{2}: g_{1}(x) \geq 0\right\} \text { is the feasible set }
\end{aligned}
$$

SOS and SDP Relaxations

Convexify the problem:
$f_{\text {pop }}^{*}=\inf _{x \in K_{\text {pop }}} f_{\text {pop }}(x)=\inf _{\mu \in \mathcal{P}\left(K_{\text {pop }}\right)} \int f_{\text {pop }} d \mu$, where $\mathcal{P}\left(K_{\text {pop }}\right)$ is the set of all probability measures μ supported on the set $K_{\text {pop }}$.
Equivalent formulation:
$f_{\text {pop }}^{*}=\min \{L(f): L: \mathbb{R}[X] \rightarrow \mathbb{R}$ linear, $L(1)=1$ and each $\mathcal{L}_{g_{j}}$ is SDP $\}$, with $g_{0}=1, \mathcal{L}_{g_{0}}, \cdots, \mathcal{L}_{g_{m}}$ defined by:

$$
\begin{array}{rlcc}
\mathcal{L}_{g_{j}}: \mathbb{R}[X] \times \mathbb{R}[X] & \rightarrow & \mathbb{R} \\
(p, q) & \mapsto & L\left(p \cdot q \cdot g_{j}\right)
\end{array}
$$

SOS and SDP Relaxations: Lasserre Hierarchy

- $\mathcal{B}:=\left(X^{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$: the monomial basis and $y_{\alpha}=L\left(X^{\alpha}\right)$, this identifies L with the infinite series $y=\left(y_{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$
- Infinite moment matrix M :
$M(y)_{u, v}:=L(u \cdot v), u, v \in \mathcal{B}$
- Localizing matrix $M\left(g_{j} y\right)$:
$M\left(g_{j} y\right)_{u, v}:=L\left(u \cdot v \cdot g_{j}\right), u, v \in \mathcal{B}$
- $k \geq k_{0}:=\max \left\{\left\lceil\operatorname{deg} f_{\text {pop }}\right\rceil / 2,\left\lceil\operatorname{deg} g_{0} / 2\right\rceil, \cdots,\left\lceil\operatorname{deg} g_{m} / 2\right\rceil\right\}$ Index $M(y)$ and $M\left(g_{j} y\right)$ with elements in \mathcal{B} of degree at most k, it gives the semidefinite relaxations hierarchy:
$Q_{k}:\left\{\begin{aligned} \inf _{y} L(f) & =\int f_{\alpha} x^{\alpha} d \mu(x)=\sum_{\alpha} f_{\alpha} y_{\alpha} \\ M_{k-\left\lceil\operatorname{deg} g_{j} / 2\right\rceil}\left(g_{j} y\right) & \succcurlyeq 0, \quad 0 \leq j \leq m, \\ y_{1} & =1\end{aligned}\right.$

SOS and SDP Relaxations

Convergence Theorem [Lasserre]:

The sequence $\inf \left(Q_{k}\right)_{k \geq k_{0}}$ is non-decreasing and under the SOS assumption converges to $f_{\text {pop }}^{*}$.

SDP relaxations:

Many solvers (e.g. Sedumi, SDPA) solve the pair of (standard form) semidefinite programs:
$(S D P)\left\{\begin{array}{ccl}\mathcal{P}: & \min _{y} & \sum_{\alpha} c_{\alpha} y_{\alpha} \\ & \text { subject to } & \sum_{\alpha} F_{\alpha} y_{\alpha}-F_{0} \succcurlyeq 0 \\ \mathcal{D}: & \max _{Y} & \text { Trace }\left(F_{0} Y\right) \\ & \text { subject to } & \text { Trace }\left(F_{\alpha} Y\right)=c_{\alpha}\end{array}\right.$

Large-scale POP

Complexity issues

SDP relaxation Q_{k} at order $k \geq \max _{j}\left\{\left\lceil\operatorname{deg} f_{\text {pop }} / 2\right\rceil,\left\lceil\operatorname{deg} g_{j} / 2\right\rceil\right\}$:

- $\mathcal{O}\left(n^{2 k}\right)$ moment variables
- linear matrix inequalities (LMIs) of size $\mathcal{O}\left(n^{k}\right)$
polynomial in n, exponential in k
On our example:
$K:=[0,1]^{n}$, random numbers $\left(r_{i}\right)_{1 \leq i \leq n}$:
$f_{d}:=\left(\frac{1}{n} \sum_{i=1}^{n} \frac{4}{r_{i}^{2}} x_{i}\left(r_{i}-x_{i}\right)\right)^{\lceil d / 2\rceil}$
$\operatorname{deg} g_{j}=1, k \geq d \Longrightarrow$ at least $\mathcal{O}\left(n^{2 d}\right)$ moment variables with LMIs of size $\mathcal{O}\left(n^{d}\right)!!$

Large-scale POP

Multivariate Taylor-Models Underestimators:

- $f: K \rightarrow \mathbb{R}$ is a multivariate polynomial
- Consider a minimizer guess x_{c} obtained by heuristics
- Let $q_{x_{c}}$ be the quadratic form defined by:

$$
\begin{array}{rll}
q_{x_{c}}: K & \longrightarrow & \mathbb{R} \\
x & \longmapsto & f\left(x_{c}\right)+\mathcal{D}_{f}\left(x_{c}\right)\left(x-x_{c}\right) \\
& +\frac{1}{2}\left(x-x_{c}\right)^{T} \mathcal{D}_{f}^{2}\left(x_{c}\right)\left(x-x_{c}\right)+\lambda\left(x-x_{c}\right)^{2}
\end{array}
$$

with $\lambda:=\min _{x \in K}\left\{\lambda_{\min }\left(\mathcal{D}_{f}^{2}(x)-\mathcal{D}_{f}^{2}\left(x_{c}\right)\right)\right\}$

Theorem:

$\forall x \in K, f(x) \geq q_{x_{c}}$, that is $q_{x_{c}}$ understimates f on K.
$q_{x_{c}}$ is called a quadratic cut.
How to compute λ ? How to compute a lower bound of f ?

Large-scale POP

Computation of λ by Robust SDP

- $\lambda:=\min _{x \in K}\left\{\lambda_{\min }\left(\mathcal{D}_{f}^{2}(x)-\mathcal{D}_{f}^{2}\left(x_{c}\right)\right)\right\}$
- Bound the Hessian difference on K by POP (using SDP relaxations) to get $\overline{\mathcal{D}}_{f}^{2}$:
- Define the symmetric matrix B containing the bounds on the entries of $\overline{\mathcal{D}}_{f}^{2}$.
- Let \mathcal{S}^{n} be the set of diagonal matrices of sign.
$\mathcal{S}^{n}:=\left\{\operatorname{diag}\left(s_{1}, \cdots, s_{n}\right), s_{1}= \pm 1, \cdots s_{n}= \pm 1\right\}$
$\lambda:=\lambda_{\text {min }}\left(\overline{\mathcal{D}}_{f}^{2}-\mathcal{D}_{f}^{2}\left(x_{c}\right) \bar{I}\right):$ minimal eigenvalue of an interval matrix

Robut Optimization with Reduced Vertex Set [Calafiore, Dabbene]

The robust interval SDP problem $\lambda_{\min }\left(\overline{\mathcal{D}}_{f}^{2}-\mathcal{D}_{f}^{2}\left(x_{c}\right) \bar{I}\right)$ is equivalent to the following SDP in the single variable $t \in \mathbb{R}$:
$\begin{cases}\min & -t \\ \text { s.t. } & -t I-\mathcal{D}_{f}^{2}\left(x_{c}\right)-S B S \succeq 0, S=\operatorname{diag}(1, \tilde{S}), \forall \tilde{S} \in \mathcal{S}^{n-1}\end{cases}$

Large-scale POP

Computation of λ by approximation and simpler SDP

Solving the previous SDP is expensive because the dimension of \mathcal{S}^{n} grows exponentially. Instead, we can underestimate λ :

- Write $\overline{\mathcal{D}}_{f}^{2}-\mathcal{D}_{f}^{2}\left(x_{c}\right) \bar{I}:=\bar{X}+\bar{Y}$ with

$$
\bar{X}_{i j}:=\left[\frac{a_{i j}+b_{i j}}{2}, \frac{a_{i j}+b_{i j}}{2}\right] \text { and } \bar{Y}_{i j}:=\left[-\frac{b_{i j}-a_{i j}}{2}, \frac{b_{i j}-a_{i j}}{2}\right]
$$

- $\lambda_{\min }(\bar{X}+\bar{Y}) \geq \lambda_{\min }(\bar{X})+\lambda_{\min }(\bar{Y})=\lambda_{\min }(\bar{X})-\lambda_{\max }(-\bar{Y})$
- $\lambda_{\max }(\bar{Y}) \leq \max _{i} \sum_{j} \frac{b_{i j}-a_{i j}}{2}$

Computing a lower bound of $\lambda_{\min }(\bar{X})$ is easier because \bar{X} is a real matrix We can do it again by SDP. $\{\min -t$ matrix. We can do it again by SDP: s.t. $\quad-t I-\bar{X} \succeq 0$
... and how to compute a lower bound of the polynomial f ?

Large-scale POP
 Computing lower bounds

Input: f, box K, SDP relaxation order k, control points sequence $s=\left(x_{1}\right) \in K, n_{\text {cuts }}$ (final number of quadratic cuts)
Output: lower bound m of f
1: cuts :=1
2: while cuts $\leq n_{\text {cuts }}$ do
3: For $c \in\{1, \ldots, \# s\}$: compute λ using robust SDP or $\lambda_{\text {min }}$ approximation and compute $q_{x_{c}}$
4: $\quad f_{p}:=\max _{1 \leq c \leq p} q_{x_{c}}, K_{\text {pop }}:=\left\{x \in K: z \geq q_{x_{1}}(x), \cdots, z \geq q_{x_{p}}(x)\right\}$
5: \quad Compute a lower bound m of f_{p} by POP at the SDP relaxation order $k: m \leq \inf _{x \in K_{\text {pop }}} z$
6: $\quad x_{\text {opt }}:=$ guess_argmin $\left(f_{p}\right)$: a minimizer candidate for f_{p}
7: $\quad s:=s \cup\left\{x_{o p t}\right\}$
8: cuts $:=$ cuts +1
9: done

Large-scale POP

Comparisons w.r.t the $\boldsymbol{\lambda}$ computation
$\begin{aligned} K & :=[0,1]^{n} \\ f_{6} & :=\left(\frac{1}{n} \sum_{i=1}^{n} \frac{4}{r_{i}^{2}} x_{i}\left(r_{i}-x_{i}\right)\right)^{3}\end{aligned}$

- We compare the quality of the successive lower bounds (previous algorithm) with different λ underestimators
- $\lambda_{\text {robust }} \geq \lambda_{\text {approx }} \Longrightarrow$

Better quadratic approximations when using the Robust SDP approach

Large-scale POP
 Scalability Issues

- When n is large, Robust SDP approach is too expensive. It becomes impossible to compute λ and the quadratic cuts $q_{x_{c}}$.

- Bottleneck: computation of the $n(n+1)$ bounds of the Hessian entries $\overline{\mathcal{D}}_{f}^{2}-\mathcal{D}_{f}^{2}\left(x_{c}\right) \bar{I}$ (multivariate polynomial of degree $d-2$)

Bounding multivariate transcendental functions

- Now, consider a semialgebraic compact set $K \subset \mathbb{R}^{n}$ and $f: K \rightarrow \mathbb{R}$ a multivariate transcendental function
- We want to compute a precise lower bound of f. The previous approach only gives a hierarchy of coarse bounds

Motivations?
How to approach the univariate transcendental functions involved in f ?

Kepler Conjecture (1611):

The maximal density of sphere packings in 3 -space is $\frac{\pi}{18}$

- It corresponds to the way people would intuitively stack oranges, as a pyramid shape
- The proof of T. Hales (1998) consists of thousands of non-linear inequalities
- Many recent efforts have been done to give a formal proof of these inequalities: Flyspeck Project
- Motivation: get positivity certificates and check them with Proof assistants like COQ

Flyspeck-Like Problems

Lemma Example

Inequalities issued from Flyspeck non-linear part involve:
(1) Semi-Algebraic functions algebra \mathcal{A} : composition of polynomials with $|\cdot|,(\cdot)^{\frac{1}{p}}\left(p \in \mathbb{N}_{0}\right),+,-, \times, /$, sup, inf
(2) Transcendental functions \mathcal{T} : composition of semi-algebraic functions with $\arctan , \operatorname{arcos}, \arcsin , \exp , \log ,|\cdot|$, $(\cdot)^{\frac{1}{p}}\left(p \in \mathbb{N}_{0}\right),+,-, \times, /, \sup , \inf$

Lemma9922699028 from Flyspeck

$K:=[4,6.3504]^{3} \times[6.3504,8] \times[4,6.3504]^{2} \quad P, Q \in \mathbb{R}[X]$
$\forall x \in K,-\frac{\pi}{2}+\arctan \frac{P(x)}{\sqrt{Q(x)}}+1.6294-0.2213\left(\sqrt{x_{2}}+\sqrt{x_{3}}+\right.$
$\left.\sqrt{x_{5}}+\sqrt{x_{6}}-8.0\right)+0.913\left(\sqrt{x_{4}}-2.52\right)+0.728\left(\sqrt{x_{1}}-2.0\right) \geq 0$.
Tight inequality: global optimum $\simeq 1.7 \times 10^{-4}$

Bounding multivariate transcendental functions

General Framework

Given K a compact set, and f a transcendental function, bound from below $f^{*}=\inf _{x \in K} f(x)$ and prove $f^{*} \geq 0$
(1) f is approximated by a semi-algebraic function $f_{s a}$
(2) Reduce the problem $\inf _{x \in K} f_{s a}(x)$ to a polynomial optimization problem (POP) in a lifted space $K_{p o p}$
(3) Solve classically the POP problem $\inf _{x \in K_{\text {pop }}} f_{p o p}(x)$ using a sparse variant hierarchy of SDP relaxations by Lasserre

$$
f^{*} \geq f_{s a}^{*} \geq f_{p o p}^{*} \underbrace{\geq 0}
$$

If the relaxations are accurate enough

Bounding multivariate transcendental functions

General Framework

- The first step is to build the abstract syntax tree from an inequality, where leaves are semi-algebraic functions and nodes are univariate transcendental functions (arctan, exp, ...) or basic operations $(+, \times,-, /)$.
- With $l:=-\frac{\pi}{2}+1.6294-0.2213\left(\sqrt{x_{2}}+\sqrt{x_{3}}+\sqrt{x_{5}}+\sqrt{x_{6}}-\right.$ $8.0)+0.913\left(\sqrt{x_{4}}-2.52\right)+0.728\left(\sqrt{x_{1}}-2.0\right)$, the tree of the example is:

Bounding multivariate transcendental functions

Transcendental Functions Approximations

- Let $t \in \mathcal{T}$ be a transcendental univariate elementary function such as arctan, exp, ..., defined on a real interval I. Let $d \in \mathbb{N}$ given.
- Minimax: Best uniform degree d polynomial approximation \hat{t} : solution of $\|\epsilon\|_{\infty}:=\min _{p \in \mathbb{R}_{d}[X]}\|t-p\|_{\infty}$
- Existence and uniqueness of \hat{t}
- Remez algorithm implementation in Sollya: computes \hat{t} for each univariate transcendental function involved in the Flyspeck inequalities with given $I:=[a, b]$ and $d \in \mathbb{N}$
- Also computes a certified upper bound of $\|\epsilon\|_{\infty}$ related to the minimax polynomial

Bounding multivariate transcendental functions

General Framework

Two kinds of semialgebraic leaves:

- multivariate functions: $\frac{P(x)}{\sqrt{Q(x)}}$: we can
get the bounds by POP using lifting variables
- sum of univariate functions:
$l:=-\frac{\pi}{2}+1.6294-0.2213\left(\sqrt{x_{2}}+\sqrt{x_{3}}+\right.$
$\left.\sqrt{x_{5}}+\sqrt{x_{6}}-8.0\right)+0.913\left(\sqrt{x_{4}}-2.52\right)+$ $0.728\left(\sqrt{x_{1}}-2.0\right)$: we can approximate $\sqrt{ } \cdot$ by a minimax polynomial with Sollya

Bounding multivariate transcendental functions

General Framework

$\frac{P(x)}{\sqrt{Q(x)}}$ on $K:=[4,6.3504]^{3} \times[6.3504,8] \times[4,6.3504]^{2} ?$

Lifting procedure by POP:

(1) Get bounds of $P(x)$ by POP
(2) Get bounds of $Q(x)$ by POP and $\sqrt{Q(x)}$ by interval arithmetic
(3) Lifting variable representing $\sqrt{Q(x)}: q \in I_{q}$
(9) Coarse bounds of $\frac{P(x)}{\sqrt{Q(x)}}$ by interval arithmetic: interval I_{z}
(5) Lifting variable representing $\frac{P(x)}{\sqrt{Q(x)}}: z \in I_{z}$
(6) Lifting space:
$K_{\mathrm{pop}}:=\left\{(x, q, z) \in K \times I_{q} \times I_{z}: q^{2}=Q(x), z q=P(x)\right\}$
(7) Solving $\inf _{(x, q, z) \in K_{\text {pop }}} z$ by POP gives a lower bound of $\frac{P(x)}{\sqrt{Q(x)}}$

Bounding multivariate transcendental functions

Univariate approximations
(8) We get an interval I enclosing $\frac{P(x)}{\sqrt{Q(x)}}$ from POP.
(0) Minimax polynomials for the univariate real functions of f :

t	d	Upper bound of $\\|\epsilon\\|_{\infty}$
\arctan on I	5	2.01×10^{-4}
$\sqrt{ }$ on $[4,6.3504]$	4	2.50×10^{-5}
$\sqrt{ }$ on $[6.3504,8]$	2	9.34×10^{-8}

(0) We obtain a minimax polynomial for arctan. With the minimax polynomial for $\sqrt{ }$: we can approach l by \hat{l}.

Bounding multivariate transcendental functions

Again by using POP:

- Lifting variable representing $\sqrt{Q(x)}: q \in I_{q}$
- Lifting variable representing $\frac{P(x)}{\sqrt{Q(x)}}: z \in I_{z}$
- Lifting space:

$$
K_{\mathrm{pop}}:=\left\{(x, q, z) \in K \times I_{q} \times I_{z}: q^{2}=Q(x), z q=P(x),\right\}
$$

- Solving $\inf _{(x, q, z) \in K_{\text {pop }}} \hat{l}(x)+\hat{\arctan }(z)$ by POP gives a lower $(x, q, z) \in K_{\text {pop }}$ bound of $\hat{f}:=\hat{l}(x)+\arctan (z)$
- Finally, Subtract the minimax errors $\|\epsilon\|_{\infty}$ to \hat{f} gives a lower bound of f

End

Thanks for your attention! Questions?

