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Flyspeck-Like Problems
The Kepler Conjecture

Kepler Conjecture (1611):

The maximal density of sphere packings in 3-space is
π

18

It corresponds to the way people would
intuitively stack oranges, as a pyramid shape

The proof of T. Hales (1998) consists of
thousands of non-linear inequalities

Many recent efforts have been done to give a
formal proof of these inequalities: Flyspeck
Project

Motivation: get positivity certificates and check
them with Proof assistants like COQ
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Flyspeck-Like Problems
Lemma Example

Inequalities issued from Flyspeck non-linear part involve:

1 Semi-Algebraic functions algebra A: composition of
polynomials with | · |, (·)

1
p (p ∈ N0), +,−,×, /, sup, inf

2 Transcendental functions T : composition of semi-algebraic
functions with arctan, arcos, arcsin, exp, log, | · |,
(·)

1
p (p ∈ N0), +,−,×, /, sup, inf

Lemma9922699028 from Flyspeck

K := [4; 6.3504]3 × [6.3504; 8]× [4; 6.3504]2

∆x := x1x4(−x1+x2+x3−x4+x5+x6)+x2x5(x1−x2+x3+x4−x5+

x6)+x3x6(x1+x2−x3+x4+x5−x6)−x2x3x4−x1x3x5−x1x2x6−x4x5x6
∀x ∈ K,−π

2
+ arctan

∂4∆x√
4x1∆x

+ 1.6294− 0.2213 (
√
x2 +

√
x3 +

√
x5 +

√
x6 − 8.0) + 0.913 (

√
x4 − 2.52) + 0.728 (

√
x1 − 2.0) ≥ 0.

Tight inequality: global optimum = 1.7× 10−4
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Flyspeck-Like Problems [Hales and Solovyev Method]

Real numbers are represented by interval arithmetic

Analytic functions f (e.g.
√
·, 1

·
, arctan ) are approximated

with Taylor expansions and the error terms are bounded:
|f(x)− f(x0)−Df (x0) (x− x0)| <

∑
i,j

mij εi εj

εi := |xi − xi0|
To satisfy the inequalities, the initial box K is partitioned into
smaller boxes until the Taylor approximations are accurate
enough (the error terms become small enough)

The Taylor expansions are generated by symbolic
differentiation using the chain rule, product rule
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General Framework

We consider the same problem: given K a compact set, and f a
transcendental function, bound from below f∗ = inf

x∈K
f(x) and

prove f∗ ≥ 0

1 f is underestimated by a semi-algebraic function fsa on a
compact set Ksa ⊃ K

2 Reduce the problem inf
x∈Ksa

fsa(x) to a polynomial optimization

problem (POP) in a lifted space Kpop

3 Solve classicaly the POP problem inf
x∈Kpop

fpop(x) using a

hierarchy of SDP relaxations by Lasserre

f∗ ≥ f∗sa ≥ f∗pop ≥ 0︸︷︷︸
If the relaxations are accurate enough
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SOS and SDP Relaxations

Polynomial Optimization Problem (POP):

Let f, g1, · · · , gm ∈ R[X1, · · · , Xn]
Kpop := {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} is the feasible set
General POP: compute f∗pop = inf

x∈Kpop

f(x)

SOS Assumption: [e.g. Lasserre]

K is compact, ∃u ∈ R[X] s.t. the level set {x ∈ Rn : u(x) ≥ 0}

is compact and u = u0 +
m∑
j=1

uj gj for some sum of squares (SOS)

u0, u1, · · · , um ∈ Σ[X]

Normalize the feasibility set to get K ′ := [−1; 1]n

K ′ := {x ∈ Rn : g1 := 1− x21 ≥ 0, · · · , gn := 1− x2n ≥ 0}

The polynomial u(x) := n−
n∑
j=1

x2j satisfies the assumption
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SOS and SDP Relaxations

To convexify the problem, use the equivalent formulation:

f∗pop = inf
x∈Kpop

fpop(x) = inf
µ∈P(Kpop)

∫
fpop dµ, where P(Kpop) is the

set of all probability measures µ supported on the set Kpop.
Theorem [Putinar]:

Given L : R[X]→ R, the following are equivalent:

1 ∃µ ∈ P(Kpop), ∀p ∈ R[X], L(p) =

∫
p dµ

2 L(1) = 1, L(s0 +

m∑
j=1

sjgj) ≥ 0 for any s0, · · · , sm ∈ Σ[X]

Equivalent formulation:

f∗pop = min {L(f) : L : R[X] → R linear, L(1) = 1 and
each Lgj is SDP }, with g0 = 1, Lg0 , · · · ,Lgm defined by:

Lgj : R[X]× R[X] → R

(p, q) 7→ L(p · q · gj)
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SOS and SDP Relaxations: Lasserre Hierarchy

Let B := (Xα)α∈Nn denote the monomial basis and set
yα = L(Xα), this identifies L with the infinite series
y = (yα)α∈Nn .
The infinite moment matrix M associated to y indexed by B is:
M(y)u,v := L(u · v), u, v ∈ B.
The localizing matrix M(gjy) is:
M(gjy)u,v := L(u · v · gj), u, v ∈ B.
Let
k ≥ k0 := max{ddeg fpope/2, ddeg g0/2e, · · · , ddeg gm/2e}.
Truncate the previous matrices by considering only rows and
columns indexed by elements in B of degree at most k, and
consider the hierarchy Qk of semidefinite relaxations:

Qk :


inf
y
L(f) =

∫
fα x

α dµ(x) =
∑
α

fα yα

Mk−ddeg gj/2e(gjy) < 0, 0 ≤ j ≤ m,

y1 = 1
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SOS and SDP Relaxations

Convergence Theorem [Lasserre]:

The sequence inf(Qk)k≥k0 is non-decreasing and under the SOS
assumption converges to f∗pop.

SDP relaxations:
Many solvers (e.g. Sedumi [?], SDPA) solve the pair of (standard
form) semidefinite programs:

(SDP )



P : min
y

∑
α

cαyα

subject to
∑
α

Fα yα − F0 < 0

D : max
Y

Trace (F0 Y )

subject to Trace (Fα Y ) = cα
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Basic Semi-Algebraic Relaxations

Let A be a set of semi-algebraic functions and fsa ∈ A.

We consider the problem f∗sa = inf
x∈Ksa

fsa(x) with

Ksa := {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} a basic
semi-algebraic set

Basic Semi-Algebraic Lifting:

A function fsa ∈ A is said to have a basic semi-algebraic lifting
(b.s.a.l.) if ∃ p, s ∈ N, polynomials h1, · · ·hs ∈ R[X,Z1, · · · , Zp]
and a b.s.a. set Kpop defined by:

Kpop := {(x, z1, · · · , zp) ∈ Rn+p : x ∈ Ksa,

h1(x, z1, · · · , zp) ≥ 0, · · · , hs(x, z1, · · · , zp) ≥ 0}

such that the graph of fsa (denoted Ψfsa) satisfies:
Ψfsa := {(x, fsa(x)) : x ∈ Ksa} = {(x, zp) : (x, z) ∈ Kpop}
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Basic Semi-Algebraic Relaxations

b.s.a.l. lemma [Lasserre, Putinar] :

LetA be the semi-algebraic functions algebra obtained by composi-
tion of polynomials with | · |, (·)

1
p (p ∈ N0), +,−,×, /, sup, inf. Then

every well-defined fsa ∈ A has a basic semi-algebraic lifting.

Example from Flyspeck:

fsa :=
∂4∆x√
4x1∆x

, Ksa := [4; 6.3504]3 × [6.3504; 8]× [4; 6.3504]2.

Define z1 :=
√

4x1∆x, m1 ≤ inf
x∈Ksa

z1(x), M1 ≥ sup
x∈Ksa

z1(x),

z2 :=
∂4∆x√
4x1∆x

How to compute m2 ≤ inf
x∈Ksa

z2(x)?

Define h1 := z1 −m1, h2 := M1 − z1, h3 := z21 − 4x1∆x,
h4 := −z21 + 4x1∆x, h5 := z1, h6 := z2 z1 − ∂4∆x,
h7 := −z2 z1 + ∂4∆x

Kpop := {(x, z) ∈ R6+2 : x ∈ Ksa, hk(x, z) ≥ 0, k = 1, · · · , 7}.
Ψfsa := {(x, fsa(x)) : x ∈ Ksa} = {(x, z2) : (x, z) ∈ Kpop}.
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Basic Semi-Algebraic Relaxations

Example from Flyspeck:

fsa :=
∂4∆x√
4x1∆x

, Ksa := [4; 6.3504]3 × [6.3504; 8]× [4; 6.3504]2.

Define g1 := x1 − 4, g2 := 6.3504− x1, · · · , g11 := x6 − 4,
g12 := 6.3504− x6. Solve:

Qk :



inf
y
L(fpop) = inf

y
y0···01 =

∫
z2 dµ

Mk−ddeg gj/2e(gj y) < 0, 1 ≤ j ≤ 12,

Mk−ddeg hk/2e(hk y) < 0, 1 ≤ k ≤ 7,

y0···0 = 1
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Basic Semi-Algebraic Relaxations

Example from Flyspeck:

fsa :=
∂4∆x√
4x1∆x

, Ksa := [4; 6.3504]3 × [6.3504; 8]× [4; 6.3504]2.

Define g1 := x1 − 4, g2 := 6.3504− x1 · · · g11 :=
x6 − 4, g12 := 6.3504− x6. Solve:

Qk :



inf
y
L(fpop) = inf

y
y0···01 =

∫
z2 dµ

Mk−1(gj y) < 0, 1 ≤ j ≤ 12,

Mk−ddeg hk/2e(hk y) < 0, 1 ≤ k ≤ 7,

y0···0 = 1

b.s.a.l. Convergence: (Special case of Convergence Theorem)

Let k ≥ k0 := max{1, ddeg h1/2e, · · · , ddeg h7/2e}.
The sequence inf(Qk)k≥k0 is monotically non-decreasing and
converges to f∗sa.

Second year PhD Victor MAGRON Certification of transcendental inequalities using SDP



Decrease the SDP Problems Size

Exploiting symmetries in SDP-relaxations for POP [Riener,
Theobald, Andren, Lasserre] to replace one SDP problem Qk
of size O(nk) by several smaller SDPS of size O(ηki ).

SOS and SDP Relaxations for Polynomial Optimization
Problems with Structured Sparsity [Waki, Kim, Kojima,
Muramatsu] to replace one SDP problem Qk of size O(nk) by
a SDP problem of size O(κk) where κ is the average size of
the maximal cliques correlation pattern of the polynomial
variables.
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Issues and Solutions

Issues:
1 How to deal with transcendant functions?
2 Even when exploiting sparsity and symmetries, a direct

implementation of basic-semialgebraic relaxation is not
enough to prove Hales’s lemmas (inequalities are too tight,
requiring high order relaxations, and so a high execution time)

Solutions:
An adaptative basic-semialgebraic relaxation, with a max-plus
semi-convex approximation (lower approximate a transcendant
functions by a sup of quadratic forms)
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Transcendental Functions Underestimators

Let f ∈ T be a transcendental univariate elementary function
such as arctan, exp, ..., defined on a real interval I.
Basic convexity/quasiconvexity properties and monotonicity of
f are used to find lower and upper semi-algebraic bounds.

Example with arctan :

arctan is quasiconvex on I:
∃ c < 0 such that arctan− c

2
(·)2 is convex on I

∀a ∈ I = [m;M ], arctan (a) ≥ max
i∈C
{par−ai(a)} where C

define an index collection of parabola tangent to the function
curve and underestimating f .

par−ai :=
ci
2

(a− ai)2 + f
′
ai(a− ai) + f(ai),

f
′
ai =

1

1 + a2i
, f(ai) = arctan (ai).

cp depends on ap and the curvature variations of arctan on
the considered interval I.
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Transcendental Functions Underestimators

Example with arctan:

a

y

par+
1

par+
2

par−2

par−1

arctan

m M

Second year PhD Victor MAGRON Certification of transcendental inequalities using SDP



Transcendental Functions Underestimators

max(p1, p2) =
p1 + p2 + |p1 − p2|

2
z = |p1−p2| ⇐⇒ z2 = (p1−p2)2∧z ≥ 0

Lemma9922699028 from Flyspeck:

K := [4; 6.3504]3 × [6.3504; 8]× [4; 6.3504]2

f := −π
2

+ l(x) + arctan
∂4∆x√
4x1∆x

Using semi-algebraic optimization methods:

∀x ∈ K, m ≤ ∂4∆x√
4x1∆x

≤M

Using the arctan properties: ∀a ∈ I = [m;M ],
arctan (a) ≥ msa(a) = max { par−a1(a); par−a2(a)}

f∗ ≥ f∗sa = min
x∈K
{fsa(x) = −π

2
+ l(x) +msa(x)}
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Adaptative Semi-algebraic Approximations Algorithm

The first step is to build the abstract syntax tree from an
inequality, where leaves are semi-algebraic functions and
nodes are univariate transcendental functions (arctan, exp, ...)
or basic operations (+, ×, −, /).
With l := 1.6294− 0.2213 (

√
x2 +

√
x3 +

√
x5 +

√
x6 − 8.0) +

0.913 (
√
x4 − 2.52) + 0.728 (

√
x1 − 2.0), the tree for the

flyspeck example is:

+

−π
2

+ l(x) arctan

∂4∆x√
4x1∆x
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Adaptative Semi-algebraic Approximations Algorithm

algoT

Input: tree t, box K, control points finite sequence s = x1, · · · , xr ∈ K
Output: lower bound m, upper bound M , lower tree t−, upper tree t+

1: if t is semialgebraic then
2: return min t, max t, t, t
3: else if t is a transcendental node with a child c then
4: mc, Mc, c−, c+ := algoT (t, K, s)
5: par−, par+ := buildpar (t, mc, Mc, s)
6: t−, t+ := compose (par−, par+, c−, c+)
7: return min t−, max t+, t−, t+

8: else if t is a dyadic operation node bop parent of c1 and c2 then
9: mci , Mci , c

−
i , c+i := algoT (ci, K, s)

10: t−, t+ := composebop (c−1 , c
+
1 , c

−
2 , c

+
2 )

11: return min t−, max t+, t−, t+

12: end
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Adaptative Semi-algebraic Approximations Algorithm

algoiter

Input: tree t , box K, itermax

Output: lower bound m, feasible solution xopt
1: s := [ argmin (randeval t) ] . s ∈ K
2: n := 0
3: m := −∞
4: while m < 0 or n ≤ itermax do
5: m,M, t−, t+ := algoT (t, K, s)
6: xopt := guess of argmin (t−) . t− (xopt) = m
7: s := s ∪ {xopt }
8: n := n+ 1
9: done

10: return m, xopt
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Adaptative Semi-algebraic Approximations

Example from Flyspeck:

fsa :=
∂4∆x√
4x1∆x

, Ksa := [4; 6.3504]3 × [6.3504; 8]× [4; 6.3504]2.

Here, t = fsa, this is the first cell of algoT , a lower bound m
of min fsa is computed by rewritting the problem into a POP.

For a relaxation order k = 2, we find m2 = −0.618 and
M2 = 0.891. The feasibility error is too big.

For a relaxation order k = 3, we find m3 = −0.445 and
M3 = 0.87 with a low feasibility error.

The argument of arctan lies in [m3;M3]. Notice that it lies
also in [m2;M2] but the parabola approximations would be
less accurate.
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Adaptative Semi-algebraic Approximations

algoiter First iteration:

+

−π
2

+ l(x) arctan

∂4∆x√
4x1∆x

a

y

par−1

arctan

m Ma1

1 Evaluate f with randeval and obtain a minimizer guess x1.

Compute a1 :=
∂4∆x√
4x1∆x

(x1) = fsa (x1) = 0.84460

2 Get the equation of par−1 with buildpar

3 Compute m1 ≤ min
x∈K
{−π

2
+ l(x) + par −1 (fsa (x))}
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Adaptative Semi-algebraic Approximations

algoiter Second iteration:

+

−π
2

+ l(x) arctan

∂4∆x√
4x1∆x

a

y

par−1

par−2

arctan

m Ma1a2

1 For k = 3,m1 = −0.746 < 0, obtain a new minimizer x2.
2 Compute a2 := fsa (x2) = −0.374 and par−2

3 Compute m2 ≤ min
x∈K
{−π

2
+ l(x) + max

i∈{1,2}
{par −i (fsa (x))}}
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Adaptative Semi-algebraic Approximations

algoiter Third iteration:

+

−π
2

+ l(x) arctan

∂4∆x√
4x1∆x

a

y

par−1

par−2

par−3

arctan

m Ma1a2 a3

1 For k = 3,m2 = −0.112 < 0, obtain a new minimizer x3.
2 Compute a3 := fsa (x3) = 0.357 and par−3

3 Compute m3 ≤ min
x∈K
{−π

2
+ l(x) + max

i∈{1,2,3}
{par −i (fsa (x))}}
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Adaptative Semi-algebraic Approximations

For k = 3,m3 = −0.0333 < 0, obtain a new minimizer x4 and
iterate again...

Actually, many iterations are needed and if we take k = 3 then
that is not enough to ensure convergence of algoiter.

But the following convergence theorem holds:

Theorem: Convergence of Semi-algebraic underestimators

Let f ∈ T and (xoptp )p∈N be a sequence of control points obtained to
define the hierarchy of f -underestimators in the previous algorithm
algoiter and x∗ be an accumulation point of (xoptp )p∈N. Then, x∗ is
a global minimizer of f on K.

Proof
It comes from the convergence of Lasserre’ hierarchy of SDP (the
SOS assumption holds) and the properties of the accumulation
point.
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Local Solutions to Global Issues

Two relaxation parameters:
1 Semi-algebraic relaxation order which is the number of

parabola, and the size of the sequence s in algoiter
2 SDP relaxation order k ≥ max{ddeg fpope/2, ddeg gj/2e}.

The size of the moment SDP matrices grows with the
SDP-relaxation order and the number of lifting variables:
O((n+ p)2k) variables and linear matrix inequalities (LMIs) of
size O((n+ p)k): polynomial in p, exponential in k

The number of parabola increases
⇓

The number p of lifting variables increases:
2 by argument of the max)

⇓
The size of the SDP problems grows exponentially with the SDP

relaxation order
algoiter may not converge in a reasonable time
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Local Solutions to Global Issues

Instead of increasing both relaxation orders, fix the SDP
relaxation order k ≤ 3 (computable SDP in practice) and the
number of control points (the number of lifting variables p).

If algoiter returns a negative lower bound then cut the initial
box K in several boxes (Ki)1≤i≤c and solve the inequality on
each Ki. But...

How to partition K?
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Local Solutions to Global Issues
Multivariate Taylor-Models Underestimators

Multivariate Taylor-Models Underestimators:

Consider a global minimizer x∗c candidate obtained after
algoiter returned a negative value mk. For a given r, define
the L∞-ball Bx∗c , r := {x ∈ K : ||x− x∗c || ≤ r}.
Then, let fx∗c , r be the quadratic form defined by:

fx∗c , r : Bx∗c , r −→ R
x 7−→ f(x∗c) +Df (x∗c) (x− x∗c)

+
1

2
(x− x∗c)TD2

f (x∗c) (x− x∗c) + λ(x− x∗c)2

with λ := min
x∈Bx∗c , r

{λmin(D2
f (x)−D2

f (x∗c))}

Theorem:

∀x ∈ Bx∗c , r, f(x) ≥ fx∗c , r, that is fx∗c , r understimates f on Bx∗c , r.
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Local Solutions to Global Issues
Compute λmin by Robust SDP

λ := min
x∈Bx∗c , r

{λmin(D2
f (x)−D2

f (x∗c))}

Bound the hessian on Bx∗c , r by interval artithmetic or SDP
relaxations to get D̄2

f :
Define the symmetric matrix B containing the bounds on the
entries of D̄2

f .
Let Sn be the set of diagonal matrices of sign.
Sn := {diag (s1, · · · , sn), s1 = ±1, · · · sn = ±1}
λ := λmin(D̄2

f −D2
f (x∗c)): minimal eigenvalue of an interval

matrix
Robut Optimization with Reduced Vertex Set [Calafiore, Dabbene]

The robust interval SDP problem λmin(D̄2
f − D2

f (x∗c)) is equivalent
to the following SDP in the single variable t ∈ R: min −t

s.t. −t I −D2
f (x∗c)− S B S � 0, S = diag (1, S̃), ∀S̃ ∈ Sn−1
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Local Solutions to Global Issues
Branch and Bound Algorithm

algodicho returns the L∞-ball Bx∗c , r of maximal
radius r (by dichotomy) such that the underesti-
mator fx∗c , r is positive on Bx∗c , r

algobb

Input: tree t , K, itermax

Output: lower bound m
1: m, x∗c := algoiter (t, K, itermax)
2: if m < 0 then
3: Bx∗

c , r
:= algodicho (t, K, x∗c)

4: Partition K�Bx∗
c , r

:= (Ki)1≤i≤c
5: K0 := Bx∗

c , r

6: m := min
0≤i≤c

{ algobb (t , Ki, itermax) }
7: return m
8: else
9: return m

10: end

x∗c•

Bx∗c , r

⇓

x∗c•

K0
K1

K2

K3

K4
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algobb Results for Simple inequalities

Ineq. id nT nvars kmax npop ncuts m cpu time

9922 1 6 2 222 27 3.07× 10−5 20min

3526 1 6 2 156 17 4.89× 10−6 13.4min

6836 1 6 2 173 22 4.68× 10−5 14min

6619 1 6 2 163 21 4.57× 10−5 13.4min

3872 1 6 2 250 30 7.72× 10−5 20.3min

3139 1 6 2 162 17 1.03× 10−5 13.2min

4841 1 6 2 624 73 2.34× 10−6 50.4min

3020 1 5 3 80 9 2.96× 10−5 31min

3318 1 6 3 26 2 3.12× 10−5 1.2h
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algobb Results for Harder inequalities

Lemma73946 from Flyspeck

K := [4; 6.3504]6

∀x ∈ K, π
2

+

3∑
i=1

arctan i
−∂4∆x√
4x1∆x

−0.55125−0.196 (
√
x4+
√
x5+

√
x6 − 6.0) + 0.38 (

√
x1 +

√
x2 +

√
x3 − 6.0) ≥ 0.

Ineq. id nT nvars kmax npop ncuts m cpu time

7726 3 6 2 450 70 1.22× 10−6 3.4h

73943 3 3 3 1 0 3.44× 10−5 11 s

73944 3 4 3 47 10 3.55× 10−5 26min

73945 3 5 3 290 55 3.55× 10−5 12h
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Conclusion and Further Work

Results are encouraging for the easiest inequalities even if
disjunctions occur.
We could reduce the computation time by computing
underestimators for some semi-algebraic functions like
∂4∆x√
4x1∆x

by using SDP again [e.g. Lasserre, Tanh].

Obtain good feasible points is necessary to get fast
convergence of algoiter, “joint+marginal” algorithms are
available for POP [e.g. Lasserre, Tanh]. Randomization
methods could also work out.
Maybe a hybrid method using both SDP certificates and
Solovyev method (interval arithmetic with Taylor-Models) on
appropriate subsets of K would be more performant.
It is possible to perform exact certification for polynomials with
rational coefficients [e.g. Kaltofen, Parrilo] in order to verify
the positivity certificates with the formal proof assistant COQ.
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End

Thank you for your attention!
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