Certification of inequalities involving transcendental functions using Semi-Definite Programming
 Joint Work with B. Werner, S. Gaubert and X. Allamigeon

Second year PhD Victor MAGRON

LIX/INRIA, École Polytechnique

ISMP 2012 Friday August $24^{\text {th }}$

$$
\text { Unian } \quad \boldsymbol{I}_{X}
$$

Kepler Conjecture (1611):

The maximal density of sphere packings in 3 -space is $\frac{\pi}{18}$

- It corresponds to the way people would intuitively stack oranges, as a pyramid shape
- The proof of T. Hales (1998) consists of thousands of non-linear inequalities
- Many recent efforts have been done to give a formal proof of these inequalities: Flyspeck Project
- Motivation: get positivity certificates and check them with Proof assistants like COQ

Flyspeck-Like Problems

Lemma Example

Inequalities issued from Flyspeck non-linear part involve:
(1) Semi-Algebraic functions algebra \mathcal{A} : composition of polynomials with $|\cdot|,(\cdot)^{\frac{1}{p}}\left(p \in \mathbb{N}_{0}\right),+,-, \times, /$, sup, inf
(2) Transcendental functions \mathcal{T} : composition of semi-algebraic functions with arctan, arcos, arcsin, exp $\log ,|\cdot|$, $(\cdot)^{\frac{1}{p}}\left(p \in \mathbb{N}_{0}\right),+,-, \times, /$, sup, inf

Lemma9922699028 from Flyspeck

$K:=[4 ; 6.3504]^{3} \times[6.3504 ; 8] \times[4 ; 6.3504]^{2}$
$\Delta x:=x_{1} x_{4}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right)+x_{2} x_{5}\left(x_{1}-x_{2}+x_{3}+x_{4}-x_{5}+\right.$
$\left.x_{6}\right)+x_{3} x_{6}\left(x_{1}+x_{2}-x_{3}+x_{4}+x_{5}-x_{6}\right)-x_{2} x_{3} x_{4}-x_{1} x_{3} x_{5}-x_{1} x_{2} x_{6}-x_{4} x_{5} x_{6}$
$\forall x \in K,-\frac{\pi}{2}+\arctan \frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}+1.6294-0.2213\left(\sqrt{x_{2}}+\sqrt{x_{3}}+\right.$
$\left.\sqrt{x_{5}}+\sqrt{x_{6}}-8.0\right)+0.913\left(\sqrt{x_{4}}-2.52\right)+0.728\left(\sqrt{x_{1}}-2.0\right) \geq 0$.
Tight inequality: global optimum $=1.7 \times 10^{-4}$

Contents

- Flyspeck-Like Problems
(2) General Framework
- Sums of Squares (SOS) and Semi-Definite Programming (SDP) Relaxations
- Transcendental Functions Underestimators
- Adaptative Semi-algebraic Approximations
(3) Local Solutions to Global Issues
- Compute $\lambda_{\text {min }}$ by Robust-SDP
- Branch and Bound Algorithm
- Preliminary Results
(4) Conclusions and Further Work

Flyspeck-Like Problems [Hales and Solovyev Method]

- Real numbers are represented by interval arithmetic
- Analytic functions $\mathrm{f}\left(\mathrm{e} . \mathrm{g} . \sqrt{\cdot}, \frac{1}{-}\right.$, arctan) are approximated with Taylor expansions and the error terms are bounded:
$\left|f(x)-f\left(x_{0}\right)-\mathcal{D}_{f}\left(x_{0}\right)\left(x-x_{0}\right)\right|<\sum_{i, j} m_{i j} \epsilon_{i} \epsilon_{j}$
$\epsilon_{i}:=\left|x^{i}-x_{0}^{i}\right|$
- To satisfy the inequalities, the initial box K is partitioned into smaller boxes until the Taylor approximations are accurate enough (the error terms become small enough)
- The Taylor expansions are generated by symbolic differentiation using the chain rule, product rule

General Framework

We consider the same problem: given K a compact set, and f a transcendental function, bound from below $f^{*}=\inf _{x \in K} f(x)$ and prove $f^{*} \geq 0$

- f is underestimated by a semi-algebraic function $f_{s a}$ on a compact set $K_{s a} \supset K$
(2) Reduce the problem $\inf ^{f} f_{s a}(x)$ to a polynomial optimization problem (POP) in a lifted space $K_{\text {pop }}$
(3) Solve classicaly the POP problem inf $f_{\text {pop }}(x)$ using a
hierarchy of SDP relaxations by Lasserre

If the relaxations are accurate enough

General Framework

We consider the same problem: given K a compact set, and f a transcendental function, bound from below $f^{*}=\inf _{x \in K} f(x)$ and prove $f^{*} \geq 0$
(1) f is underestimated by a semi-algebraic function $f_{s a}$ on a compact set $K_{\text {sa }} \supset K$
(2) Reduce the problem $\inf _{x \in K_{s a}} f_{s a}(x)$ to a polynomial optimization problem (POP) in a lifted space $K_{\text {pop }}$

- Solve classicaly the POP problem $\inf f_{\text {pop }}(x)$ using a hierarchy of SDP relaxations by Lasserre

General Framework

We consider the same problem: given K a compact set, and f a transcendental function, bound from below $f^{*}=\inf _{x \in K} f(x)$ and prove $f^{*} \geq 0$
(1) f is underestimated by a semi-algebraic function $f_{s a}$ on a compact set $K_{\text {sa }} \supset K$
(2) Reduce the problem $\inf _{x \in K_{s a}} f_{s a}(x)$ to a polynomial optimization problem (POP) in a lifted space $K_{\text {pop }}$
(0) Solve classicaly the POP problem $\inf _{x \in K_{\text {pop }}} f_{\text {pop }}(x)$ using a hierarchy of SDP relaxations by Lasserre

General Framework

We consider the same problem: given K a compact set, and f a transcendental function, bound from below $f^{*}=\inf _{x \in K} f(x)$ and prove $f^{*} \geq 0$
(1) f is underestimated by a semi-algebraic function $f_{s a}$ on a compact set $K_{\text {sa }} \supset K$
(2) Reduce the problem $\inf _{x \in K_{s a}} f_{s a}(x)$ to a polynomial optimization problem (POP) in a lifted space $K_{\text {pop }}$
(0) Solve classicaly the POP problem $\inf _{x \in K_{\text {pop }}} f_{\text {pop }}(x)$ using a hierarchy of SDP relaxations by Lasserre

$$
f^{*} \geq f_{s a}^{*} \geq f_{p o p}^{*} \geq 0
$$

If the relaxations are accurate enough

SOS and SDP Relaxations

Polynomial Optimization Problem (POP):

Let $f, g_{1}, \cdots, g_{m} \in \mathbb{R}\left[X_{1}, \cdots, X_{n}\right]$
$K_{\text {pop }}:=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \cdots, g_{m}(x) \geq 0\right\}$ is the feasible set
General POP: compute $f_{\text {pop }}^{*}=\inf _{x \in K_{p o p}} f(x)$

SOS Assumption: [e.g. Lasserre]

K is compact, $\exists u \in \mathbb{R}[X]$ s.t. the level set $\left\{x \in \mathbb{R}^{n}: u(x) \geq 0\right\}$
is compact and $u=u_{0}+\sum_{j=1}^{m} u_{j} g_{j}$ for some sum of squares (SOS)
$u_{0}, u_{1}, \cdots, u_{m} \in \Sigma[X]$

- Normalize the feasibility set to get $K^{\prime}:=[-1 ; 1]^{n}$ $K^{\prime}:=\left\{x \in \mathbb{R}^{n}: g_{1}:=1-x_{1}^{2} \geq 0, \cdots, g_{n}:=1-x_{n}^{2} \geq 0\right\}$
- The polynomial $u(x):=n-\sum_{j=1}^{n} x_{j}^{2}$ satisfies the assumption

SOS and SDP Relaxations

To convexify the problem, use the equivalent formulation:
$f_{\text {pop }}^{*}=\inf _{x \in K_{\text {pop }}} f_{\text {pop }}(x)=\inf _{\mu \in \mathcal{P}\left(K_{\text {pop }}\right)} \int f_{\text {pop }} d \mu$, where $\mathcal{P}\left(K_{\text {pop }}\right)$ is the
set of all probability measures μ supported on the set $K_{\text {pop }}$.

Theorem [Putinar]:

Given $L: \mathbb{R}[X] \rightarrow \mathbb{R}$, the following are equivalent:
(1) $\exists \mu \in \mathcal{P}\left(K_{\text {pop }}\right), \forall p \in \mathbb{R}[X], L(p)=\int p d \mu$
(2) $L(1)=1, L\left(s_{0}+\sum_{j=1}^{m} s_{j} g_{j}\right) \geq 0$ for any $s_{0}, \cdots, s_{m} \in \Sigma[X]$

Equivalent formulation:

$f_{\text {pop }}^{*}=\min \{L(f): L: \mathbb{R}[X] \rightarrow \mathbb{R}$ linear, $L(1)=1$ and each $\mathcal{L}_{g_{j}}$ is SDP $\}$, with $g_{0}=1, \mathcal{L}_{g_{0}}, \cdots, \mathcal{L}_{g_{m}}$ defined by:

$$
\begin{array}{rlcc}
\mathcal{L}_{g_{j}}: \mathbb{R}[X] \times \mathbb{R}[X] & \rightarrow & \mathbb{R} \\
(p, q) & \mapsto & L\left(p \cdot q \cdot g_{j}\right)
\end{array}
$$

SOS and SDP Relaxations: Lasserre Hierarchy

- Let $\mathcal{B}:=\left(X^{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$ denote the monomial basis and set $y_{\alpha}=L\left(X^{\alpha}\right)$, this identifies L with the infinite series $y=\left(y_{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$.
- The infinite moment matrix M associated to y indexed by \mathcal{B} is: $M(y)_{u, v}:=L(u \cdot v), u, v \in \mathcal{B}$.
- The localizing matrix $M\left(g_{j} y\right)$ is: $M\left(g_{j} y\right)_{u, v}:=L\left(u \cdot v \cdot g_{j}\right), u, v \in \mathcal{B}$.
- Let
$k \geq k_{0}:=\max \left\{\left\lceil\operatorname{deg} f_{p o p}\right\rceil / 2,\left\lceil\operatorname{deg} g_{0} / 2\right\rceil, \cdots,\left\lceil\operatorname{deg} g_{m} / 2\right\rceil\right\}$. Truncate the previous matrices by considering only rows and columns indexed by elements in \mathcal{B} of degree at most k, and consider the hierarchy Q_{k} of semidefinite relaxations:
$\inf _{y} L(f)=\int f_{\alpha} x^{\alpha} d \mu(x)=\sum_{\alpha} f_{\alpha} y_{\alpha}$
$Q_{k}:$

$$
\begin{aligned}
M_{k-\left\lceil\operatorname{deg} g_{j} / 2\right\rceil}\left(g_{j} y\right) & \succcurlyeq 0, \quad 0 \leq j \leq m, \\
y_{1} & =1
\end{aligned}
$$

SOS and SDP Relaxations

Convergence Theorem [Lasserre]:

The sequence $\inf \left(Q_{k}\right)_{k \geq k_{0}}$ is non-decreasing and under the SOS assumption converges to $f_{\text {pop }}^{*}$.

SDP relaxations:

Many solvers (e.g. Sedumi [?], SDPA) solve the pair of (standard form) semidefinite programs:
$(S D P)\left\{\begin{array}{ccl}\mathcal{P}: & \min _{y} & \sum_{\alpha} c_{\alpha} y_{\alpha} \\ & \text { subject to } & \sum_{\alpha} F_{\alpha} y_{\alpha}-F_{0} \succcurlyeq 0 \\ \mathcal{D}: & \max _{Y} & \text { Trace }\left(F_{0} Y\right) \\ & \text { subject to } & \text { Trace }\left(F_{\alpha} Y\right)=c_{\alpha}\end{array}\right.$

Basic Semi-Algebraic Relaxations

- Let \mathcal{A} be a set of semi-algebraic functions and $f_{s a} \in \mathcal{A}$.
- We consider the problem $f_{s a}^{*}=\inf _{x \in K_{s a}} f_{s a}(x)$ with $K_{s a}:=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \cdots, g_{m}(x) \geq 0\right\}$ a basic semi-algebraic set

Basic Semi-Algebraic Lifting:

A function $f_{s a} \in \mathcal{A}$ is said to have a basic semi-algebraic lifting (b.s.a.l.) if $\exists p, s \in \mathbb{N}$, polynomials $h_{1}, \cdots h_{s} \in \mathbb{R}\left[X, Z_{1}, \cdots, Z_{p}\right]$ and a b.s.a. set $K_{p o p}$ defined by:

$$
\begin{aligned}
K_{\text {pop }}:= & \left\{\left(x, z_{1}, \cdots, z_{p}\right) \in \mathbb{R}^{n+p}: x \in K_{s a}\right. \\
& \left.h_{1}\left(x, z_{1}, \cdots, z_{p}\right) \geq 0, \cdots, h_{s}\left(x, z_{1}, \cdots, z_{p}\right) \geq 0\right\}
\end{aligned}
$$

such that the graph of $f_{s a}$ (denoted $\Psi_{f_{s a}}$) satisfies:

$$
\Psi_{f_{s a}}:=\left\{\left(x, f_{s a}(x)\right): x \in K_{s a}\right\}=\left\{\left(x, z_{p}\right):(x, z) \in K_{p o p}\right\}
$$

Basic Semi-Algebraic Relaxations

b.s.a.I. Iemma [Lasserre, Putinar] :

Let \mathcal{A} be the semi-algebraic functions algebra obtained by composition of polynomials with $|\cdot|,(\cdot)^{\frac{1}{p}}\left(p \in \mathbb{N}_{0}\right),+,-, \times, /$, sup, inf. Then every well-defined $f_{s a} \in \mathcal{A}$ has a basic semi-algebraic lifting.

Example from Flyspeck:

$$
f_{s a}:=\frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}, K_{s a}:=[4 ; 6.3504]^{3} \times[6.3504 ; 8] \times[4 ; 6.3504]^{2}
$$

- Define $z_{1}:=\sqrt{4 x_{1} \Delta x}, m_{1} \leq \inf _{x \in K_{s a}} z_{1}(x), M_{1} \geq \sup _{x \in K_{s a}} z_{1}(x)$,

$$
z_{2}:=\frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}} \text { How to compute } m_{2} \leq \inf _{x \in K_{s a}} z_{2}(x) ?
$$

- Define $h_{1}:=z_{1}-m_{1}, h_{2}:=M_{1}-z_{1}, h_{3}:=z_{1}^{2}-4 x_{1} \Delta x$,

$$
\begin{aligned}
& h_{4}:=-z_{1}^{2}+4 x_{1} \Delta x, h_{5}:=z_{1}, h_{6}:=z_{2} z_{1}-\partial_{4} \Delta x, \\
& h_{7}:=-z_{2} z_{1}+\partial_{4} \Delta x
\end{aligned}
$$

$$
\text { - } K_{p o p}:=\left\{(x, z) \in \mathbb{R}^{6+2}: x \in K_{s a}, h_{k}(x, z) \geq 0, k=1, \cdots, 7\right\} .
$$

$$
\text { - } \Psi_{f_{s a}}:=\left\{\left(x, f_{s a}(x)\right): x \in K_{s a}\right\}=\left\{\left(x, z_{2}\right):(x, z) \in K_{p o p}\right\} .
$$

Basic Semi-Algebraic Relaxations

Example from Flyspeck:

$$
f_{s a}:=\frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}, K_{s a}:=[4 ; 6.3504]^{3} \times[6.3504 ; 8] \times[4 ; 6.3504]^{2}
$$

- Define $g_{1}:=x_{1}-4, g_{2}:=6.3504-x_{1}, \cdots, g_{11}:=x_{6}-4$, $g_{12}:=6.3504-x_{6}$. Solve:

$$
Q_{k}:\left\{\begin{array}{rlrl}
\inf _{y} L\left(f_{p o p}\right) & =\inf _{y} y_{0 \cdots 01} & =\int z_{2} d \mu \\
M_{k-\left\lceil\operatorname{deg} g_{j} / 2\right\rceil}\left(g_{j} y\right) & \succcurlyeq & 0, & 1 \leq j \leq 12, \\
M_{k-\left\lceil\operatorname{deg} h_{k} / 2\right\rceil}\left(h_{k} y\right) & \succcurlyeq & 0, & 1 \leq k \leq 7, \\
y_{0 \cdots 0} & = & 1 &
\end{array}\right.
$$

Basic Semi-Algebraic Relaxations

Example from Flyspeck:

$$
f_{s a}:=\frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}, K_{s a}:=[4 ; 6.3504]^{3} \times[6.3504 ; 8] \times[4 ; 6.3504]^{2}
$$

- Define $g_{1}:=x_{1}-4, g_{2}:=6.3504-x_{1} \cdots g_{11}:=$ $x_{6}-4, g_{12}:=6.3504-x_{6}$. Solve:

$$
Q_{k}:\left\{\begin{array}{rlrl}
\inf _{y} L\left(f_{p o p}\right) & =\inf _{y} y_{0 \cdots 01} & =\int z_{2} d \mu \\
M_{k-1}\left(g_{j} y\right) & \succcurlyeq & 0, & 1 \leq j \leq 12, \\
M_{k-\left\lceil\operatorname{deg} h_{k} / 2\right\rceil}\left(h_{k} y\right) & \succcurlyeq & 0, & 1 \leq k \leq 7, \\
y_{0 \cdots 0} & = & 1 &
\end{array}\right.
$$

b.s.a.l. Convergence: (Special case of Convergence Theorem)

- Let $k \geq k_{0}:=\max \left\{1,\left\lceil\operatorname{deg} h_{1} / 2\right\rceil, \cdots,\left\lceil\operatorname{deg} h_{7} / 2\right\rceil\right\}$.
- The sequence $\inf \left(Q_{k}\right)_{k \geq k_{0}}$ is monotically non-decreasing and converges to $f_{s a}^{*}$.

Decrease the SDP Problems Size

- Exploiting symmetries in SDP-relaxations for POP [Riener, Theobald, Andren, Lasserre] to replace one SDP problem Q_{k} of size $\mathcal{O}\left(n^{k}\right)$ by several smaller SDPS of size $\mathcal{O}\left(\eta_{i}^{k}\right)$.
- SOS and SDP Relaxations for Polynomial Optimization Problems with Structured Sparsity [Waki, Kim, Kojima, Muramatsu] to replace one SDP problem Q_{k} of size $\mathcal{O}\left(n^{k}\right)$ by a SDP problem of size $\mathcal{O}\left(\kappa^{k}\right)$ where κ is the average size of the maximal cliques correlation pattern of the polynomial variables.

Decrease the SDP Problems Size

- Exploiting symmetries in SDP-relaxations for POP [Riener, Theobald, Andren, Lasserre] to replace one SDP problem Q_{k} of size $\mathcal{O}\left(n^{k}\right)$ by several smaller SDPS of size $\mathcal{O}\left(\eta_{i}^{k}\right)$.
- SOS and SDP Relaxations for Polynomial Optimization Problems with Structured Sparsity [Waki, Kim, Kojima, Muramatsu] to replace one SDP problem Q_{k} of size $\mathcal{O}\left(n^{k}\right)$ by a SDP problem of size $\mathcal{O}\left(\kappa^{k}\right)$ where κ is the average size of the maximal cliques correlation pattern of the polynomial variables.

Issues and Solutions

Issues:
© How to deal with transcendant functions?
(2) Even when exploiting sparsity and symmetries, a direct implementation of basic-semialgebraic relaxation is not enough to prove Hales's lemmas (inequalities are too tight, requiring high order relaxations, and so a high execution time)

Solutions:
An adaptative basic-semialgebraic relaxation, with a max-plus semi-convex approximation (lower approximate a transcendant functions by a sup of quadratic forms)

Issues and Solutions

Issues:
(1) How to deal with transcendant functions?
(2) Even when exploiting sparsity and symmetries, a direct implementation of basic-semialgebraic relaxation is not enough to prove Hales's lemmas (inequalities are too tight, requiring high order relaxations, and so a high execution time)

An adaptative basic-semialgebraic relaxation, with a max-plus semi-convex approximation (lower approximate a transcendant functions by a sup of quadratic forms)

Issues and Solutions

Issues:
(How to deal with transcendant functions?
(2) Even when exploiting sparsity and symmetries, a direct implementation of basic-semialgebraic relaxation is not enough to prove Hales's lemmas (inequalities are too tight, requiring high order relaxations, and so a high execution time)

Solutions:

An adaptative basic-semialgebraic relaxation, with a max-plus semi-convex approximation (lower approximate a transcendant functions by a sup of quadratic forms)

Transcendental Functions Underestimators

- Let $f \in \mathcal{T}$ be a transcendental univariate elementary function such as arctan, exp, ... defined on a real interval I.
- Basic convexity/quasiconvexity properties and monotonicity of f are used to find lower and upper semi-algebraic bounds.

- c_{p} depends on a_{p} and the curvature variations of arctan on the considered interval I.

Transcendental Functions Underestimators

- Let $f \in \mathcal{T}$ be a transcendental univariate elementary function such as arctan, exp, ... defined on a real interval I.
- Basic convexity/quasiconvexity properties and monotonicity of f are used to find lower and upper semi-algebraic bounds.
- arctan is quasiconvex on I

- $\forall a \in I=[m ; M], \arctan (a) \geq \max \left\{\operatorname{par}_{a_{i}}^{-}(a)\right\}$ where C define an index collection of parabola tangent to the function curve and underestimating
- par
\square $\left.a_{i}\right)=\arctan \left(a_{i}\right)$
- c_{p} depends on a_{p} and the curvature variations of arctan on the considered interval I.

Transcendental Functions Underestimators

- Let $f \in \mathcal{T}$ be a transcendental univariate elementary function such as arctan, exp, ... defined on a real interval I.
- Basic convexity/quasiconvexity properties and monotonicity of f are used to find lower and upper semi-algebraic bounds.

Example with arctan:

- arctan is quasiconvex on I :
$\exists c<0$ such that $\arctan -\frac{c}{2}(\cdot)^{2}$ is convex on I
- $\forall a \in I=[m ; M]$, $\arctan (a) \geq \max _{i \in \mathcal{C}}\left\{\right.$ par $\left._{a_{i}}^{-}(a)\right\}$ where \mathcal{C} define an index collection of parabola tangent to the function curve and underestimating f.
$\begin{aligned} & \text { - } \operatorname{par}_{a_{i}}^{-} \\ &:=\frac{c_{i}}{2}\left(a-a_{i}\right)^{2}+f_{a_{i}}^{\prime}\left(a-a_{i}\right)+f\left(a_{i}\right), \\ & f_{a_{i}}^{\prime}=\frac{1}{1+a_{i}^{2}}, f\left(a_{i}\right)=\arctan \left(a_{i}\right) .\end{aligned}$
- c_{p} depends on a_{p} and the curvature variations of arctan on the considered interval I.

Transcendental Functions Underestimators

Example with arctan:

Transcendental Functions Underestimators

$$
\begin{aligned}
& \max \left(p_{1}, p_{2}\right)=\frac{p_{1}+p_{2}+\left|p_{1}-p_{2}\right|}{2} \\
& z=\left|p_{1}-p_{2}\right| \Longleftrightarrow z^{2}=\left(p_{1}-p_{2}\right)^{2} \wedge z \geq 0
\end{aligned}
$$

Lemma9922699028 from Flyspeck:

$$
\begin{aligned}
-K & :=[4 ; 6.3504]^{3} \times[6.3504 ; 8] \times[4 ; 6.3504]^{2} \\
& f:=-\frac{\pi}{2}+l(x)+\arctan \frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}
\end{aligned}
$$

- Using semi-algebraic optimization methods:

$$
\forall x \in K, m \leq \frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}} \leq M
$$

- Using the arctan properties: $\forall a \in I=[m ; M]$, $\arctan (a) \geq m_{s a}(a)=\max \left\{\operatorname{par}_{a_{1}}^{-}(a) ; \operatorname{par}_{a_{2}}^{-}(a)\right\}$
- $f^{*} \geq f_{s a}^{*}=\min _{x \in K}\left\{f_{s a}(x)=-\frac{\pi}{2}+l(x)+m_{s a}(x)\right\}$

Adaptative Semi-algebraic Approximations Algorithm

- The first step is to build the abstract syntax tree from an inequality, where leaves are semi-algebraic functions and nodes are univariate transcendental functions (arctan, exp, ...) or basic operations $(+, \times,-, /)$.
- With $l:=1.6294-0.2213\left(\sqrt{x_{2}}+\sqrt{x_{3}}+\sqrt{x_{5}}+\sqrt{x_{6}}-8.0\right)+$ $0.913\left(\sqrt{x_{4}}-2.52\right)+0.728\left(\sqrt{x_{1}}-2.0\right)$, the tree for the flyspeck example is:

Adaptative Semi-algebraic Approximations Algorithm

algo \mathcal{T}
Input: tree t, box K, control points finite sequence $s=x_{1}, \cdots, x_{r} \in K$ Output: lower bound m, upper bound M, lower tree t^{-}, upper tree t^{+}
1: if t is semialgebraic then
2: return $\min t, \max t, t, t$
else if t is a transcendental node with a child c then
4: $\quad m_{c}, M_{c}, c^{-}, c^{+}:=\operatorname{algo}_{\mathcal{T}}(t, K, s)$
5: \quad par $^{-}$, par $^{+}:=$build $_{\text {par }}\left(\mathrm{t}, \mathrm{m}_{\mathrm{c}}, \mathrm{M}_{\mathrm{c}}, \mathrm{s}\right)$
6: $\quad t^{-}, t^{+}:=$compose $\left(\right.$par $^{-}$, par $\left.^{+}, \mathrm{c}^{-}, \mathrm{c}^{+}\right)$
7: \quad return $\min t^{-}, \max t^{+}, t^{-}, t^{+}$
8: else if t is a dyadic operation node bop parent of c_{1} and c_{2} then
9: $\quad m_{c_{i}}, M_{c_{i}}, c_{i}^{-}, c_{i}^{+}:=\operatorname{algo}_{\mathcal{T}}\left(c_{i}, K, s\right)$
10: $\quad t^{-}, t^{+}:=$compose ${ }_{\text {bop }}\left(\mathrm{c}_{1}^{-}, \mathrm{c}_{1}^{+}, \mathrm{c}_{2}^{-}, \mathrm{c}_{2}^{+}\right)$
11: return $\min t^{-}, \max t^{+}, t^{-}, t^{+}$
12: end

Adaptative Semi-algebraic Approximations Algorithm

$\overline{a l g o}_{\text {iter }}$
Input: tree t, box K, iter $_{\text {max }}$
Output: lower bound m, feasible solution $x_{o p t}$
$1: s:=[\operatorname{argmin}($ randeval $t)] \quad \triangleright s \in K$
2. $n:=0$

3: $m:=-\infty$
4: while $m<0$ or $n \leq$ iter $_{\text {max }}$ do
5: $\quad m, M, t^{-}, t^{+}:=\operatorname{algo} \mathcal{T}(t, K, s)$
6: $\quad x_{\text {opt }}:=$ guess_of_argmin $\left(t^{-}\right) \quad \triangleright t^{-}\left(x_{o p t}\right)=m$
7: $\quad s:=s \cup\left\{x_{\text {opt }}\right\}$
8: $\quad n:=n+1$
9: done
10: return $m, x_{o p t}$

Adaptative Semi-algebraic Approximations

Example from Flyspeck:

$$
f_{s a}:=\frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}, K_{s a}:=[4 ; 6.3504]^{3} \times[6.3504 ; 8] \times[4 ; 6.3504]^{2}
$$

- Here, $t=f_{s a}$, this is the first cell of algo \mathcal{T}, a lower bound m of $\min f_{s a}$ is computed by rewritting the problem into a POP.
- For a relaxation order $k=2$, we find $m_{2}=-0.618$ and $M_{2}=0.891$. The feasibility error is too big.
- For a relaxation order $k=3$, we find $m_{3}=-0.445$ and $M_{3}=0.87$ with a low feasibility error.
- The argument of arctan lies in $\left[m_{3} ; M_{3}\right]$. Notice that it lies also in $\left[m_{2} ; M_{2}\right]$ but the parabola approximations would be less accurate.

Adaptative Semi-algebraic Approximations

algo ${ }_{\text {iter }}$ First iteration:

(1) Evaluate f with randeval and obtain a minimizer guess x_{1}.

Compute $a_{1}:=\frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}\left(x_{1}\right)=f_{s a}\left(x_{1}\right)=0.84460$
(2) Get the equation of $p a r_{1}^{-}$with build $\mathrm{d}_{\mathrm{par}}$
(3) Compute $m_{1} \leq \min _{x \in K}\left\{-\frac{\pi}{2}+l(x)+\operatorname{par}_{1}^{-}\left(f_{s a}(x)\right)\right\}$

Adaptative Semi-algebraic Approximations

$\mathrm{algo}_{\text {iter }}$ Second iteration:

(1) For $k=3, m_{1}=-0.746<0$, obtain a new minimizer x_{2}.
(2) Compute $a_{2}:=f_{s a}\left(x_{2}\right)=-0.374$ and par $_{2}^{-}$
(8) Compute $m_{2} \leq \min _{x \in K}\left\{-\frac{\pi}{2}+l(x)+\max _{i \in\{1,2\}}\left\{\operatorname{par}_{i}^{-}\left(f_{s a}(x)\right)\right\}\right\}$

Adaptative Semi-algebraic Approximations

$\operatorname{algo}_{\text {iter }}$ Third iteration:

(1) For $k=3, m_{2}=-0.112<0$, obtain a new minimizer x_{3}.
(2) Compute $a_{3}:=f_{s a}\left(x_{3}\right)=0.357$ and par $_{3}^{-}$
(3) Compute $m_{3} \leq \min _{x \in K}\left\{-\frac{\pi}{2}+l(x)+\max _{i \in\{1,2,3\}}\left\{\operatorname{par}_{i}^{-}\left(f_{s a}(x)\right)\right\}\right\}$

Adaptative Semi-algebraic Approximations

- For $k=3, m_{3}=-0.0333<0$, obtain a new minimizer x_{4} and iterate again...
- Actually, many iterations are needed and if we take $k=3$ then that is not enough to ensure convergence of algo iter.
- But the following convergence theorem holds:

It comes from the convergence of Lasserre' hierarchy of SDP (the SOS assumption holds) and the properties of the accumulation point.

Adaptative Semi-algebraic Approximations

- For $k=3, m_{3}=-0.0333<0$, obtain a new minimizer x_{4} and iterate again...
- Actually, many iterations are needed and if we take $k=3$ then that is not enough to ensure convergence of algo iter.
- But the following convergence theorem holds:

Theorem: Convergence of Semi-algebraic underestimators

Let $f \in \mathcal{T}$ and $\left(x_{p}^{o p t}\right)_{p \in \mathbb{N}}$ be a sequence of control points obtained to define the hierarchy of f-underestimators in the previous algorithm algo $_{\text {iter }}$ and x^{*} be an accumulation point of $\left(x_{p}^{o p t}\right)_{p \in \mathbb{N}}$. Then, x^{*} is a global minimizer of f on K.

It comes from the convergence of Lasserre' hierarchy of SDP (the SOS assumption holds) and the properties of the accumulation

Adaptative Semi-algebraic Approximations

- For $k=3, m_{3}=-0.0333<0$, obtain a new minimizer x_{4} and iterate again...
- Actually, many iterations are needed and if we take $k=3$ then that is not enough to ensure convergence of algo iter.
- But the following convergence theorem holds:

Theorem: Convergence of Semi-algebraic underestimators

Let $f \in \mathcal{T}$ and $\left(x_{p}^{o p t}\right)_{p \in \mathbb{N}}$ be a sequence of control points obtained to define the hierarchy of f-underestimators in the previous algorithm algo $_{\text {iter }}$ and x^{*} be an accumulation point of $\left(x_{p}^{o p t}\right)_{p \in \mathbb{N}}$. Then, x^{*} is a global minimizer of f on K.

Proof

It comes from the convergence of Lasserre' hierarchy of SDP (the SOS assumption holds) and the properties of the accumulation point.

Local Solutions to Global Issues

Two relaxation parameters:
(1) Semi-algebraic relaxation order which is the number of parabola, and the size of the sequence s in algo ${ }_{\text {iter }}$

The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables $O\left((n+p)^{2 k}\right)$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}\left((n+p)^{k}\right)$: polynomial in p, exponential in k

The number of parabola increases

The number p of lifting variables increases: 2 by argument of the max)

The size of the SDP problems grows exponentially with the SDP relaxation order

Local Solutions to Global Issues

Two relaxation parameters:
(1) Semi-algebraic relaxation order which is the number of parabola, and the size of the sequence s in algo iter
(2) SDP relaxation order $k \geq \max \left\{\left\lceil\operatorname{deg} f_{\text {pop }}\right\rceil / 2,\left\lceil\operatorname{deg} g_{j} / 2\right\rceil\right\}$. The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables: $\mathcal{O}\left((n+p)^{2 k}\right)$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}\left((n+p)^{k}\right)$: polynomial in p, exponential in k

The number of parabola increases

The number p of lifting variables increases: 2 by argument of the max)

The size of the SDP problems grows exponentially with the SDP relaxation order

Local Solutions to Global Issues

Two relaxation parameters:
(1) Semi-algebraic relaxation order which is the number of parabola, and the size of the sequence s in algo iter
(2) SDP relaxation order $k \geq \max \left\{\left\lceil\operatorname{deg} f_{\text {pop }}\right\rceil / 2,\left\lceil\operatorname{deg} g_{j} / 2\right\rceil\right\}$. The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables: $\mathcal{O}\left((n+p)^{2 k}\right)$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}\left((n+p)^{k}\right)$: polynomial in p, exponential in k

The number of parabola increases

The number p of lifting variables increases: 2 by argument of the max)

The size of the SDP problems grows exponentially with the SDP relaxation order

Local Solutions to Global Issues

Two relaxation parameters:
(1) Semi-algebraic relaxation order which is the number of parabola, and the size of the sequence s in algo iter
(2) SDP relaxation order $k \geq \max \left\{\left\lceil\operatorname{deg} f_{\text {pop }}\right\rceil / 2,\left\lceil\operatorname{deg} g_{j} / 2\right\rceil\right\}$. The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables: $\mathcal{O}\left((n+p)^{2 k}\right)$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}\left((n+p)^{k}\right)$: polynomial in p, exponential in k

The number of parabola increases

The number p of lifting variables increases: 2 by argument of the max)

The size of the SDP problems grows exponentially with the SDP relaxation order

Local Solutions to Global Issues

Two relaxation parameters:
(1) Semi-algebraic relaxation order which is the number of parabola, and the size of the sequence s in algo iter
(2) SDP relaxation order $k \geq \max \left\{\left\lceil\operatorname{deg} f_{\text {pop }}\right\rceil / 2,\left\lceil\operatorname{deg} g_{j} / 2\right\rceil\right\}$. The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables: $\mathcal{O}\left((n+p)^{2 k}\right)$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}\left((n+p)^{k}\right)$: polynomial in p, exponential in k

The number of parabola increases

The number p of lifting variables increases:
2 by argument of the max)

The size of the SDP problems grows exponentially with the SDP relaxation order

Local Solutions to Global Issues

Two relaxation parameters:
(1) Semi-algebraic relaxation order which is the number of parabola, and the size of the sequence s in algo iter
(2) SDP relaxation order $k \geq \max \left\{\left\lceil\operatorname{deg} f_{\text {pop }}\right\rceil / 2,\left\lceil\operatorname{deg} g_{j} / 2\right\rceil\right\}$. The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables:
$\mathcal{O}\left((n+p)^{2 k}\right)$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}\left((n+p)^{k}\right)$: polynomial in p, exponential in k

The number of parabola increases

The number p of lifting variables increases:
2 by argument of the max)
\Downarrow
The size of the SDP problems grows exponentially with the SDP relaxation order
algo ${ }_{\text {iter }}$ may not converge in a reasonable time

Local Solutions to Global Issues

- Instead of increasing both relaxation orders, fix the SDP relaxation order $k \leq 3$ (computable SDP in practice) and the number of control points (the number of lifting variables p).
- If algo ${ }_{\text {iter }}$ returns a negative lower bound then cut the initial box K in several boxes $\left(K_{i}\right)_{1 \leq i \leq c}$ and solve the inequality on each K_{i}. But...
- How to partition K ?

Local Solutions to Global Issues

Multivariate Taylor-Models Underestimators

Multivariate Taylor-Models Underestimators:

- Consider a global minimizer x_{c}^{*} candidate obtained after algo ${ }_{i \text { iter }}$ returned a negative value m_{k}. For a given r, define the L_{∞}-ball $\mathcal{B}_{x_{c}^{*}, r}:=\left\{x \in K:\left\|x-x_{c}^{*}\right\| \leq r\right\}$.
- Then, let $f_{x_{c}^{*}, r}$ be the quadratic form defined by:

$$
\begin{aligned}
f_{x_{c}^{*}, r}: \mathcal{B}_{x_{c}^{*}, r} & \longrightarrow \mathbb{R} \\
x & \longmapsto
\end{aligned}
$$

$$
\text { with } \lambda:=\min _{x \in \mathcal{B}_{x_{c}^{*}, r}}\left\{\lambda_{\min }\left(\mathcal{D}_{f}^{2}(x)-\mathcal{D}_{f}^{2}\left(x_{c}^{*}\right)\right)\right\}
$$

Theorem:

$\forall x \in \mathcal{B}_{x_{c}^{*}, r}, f(x) \geq f_{x_{c}^{*}, r}$, that is $f_{x_{c}^{*}, r}$ understimates f on $\mathcal{B}_{x_{c}^{*}, r}$.

Local Solutions to Global Issues

Compute $\lambda_{\min }$ by Robust SDP

- $\lambda:=\min _{x \in \mathcal{B}_{x_{c}^{*}, r}}\left\{\lambda_{\min }\left(\mathcal{D}_{f}^{2}(x)-\mathcal{D}_{f}^{2}\left(x_{c}^{*}\right)\right)\right\}$
- Bound the hessian on $\mathcal{B}_{x_{c}^{*}, r}$ by interval artithmetic or SDP relaxations to get $\overline{\mathcal{D}}_{f}^{2}$:
- Define the symmetric matrix B containing the bounds on the entries of $\overline{\mathcal{D}}_{f}^{2}$.
- Let \mathcal{S}^{n} be the set of diagonal matrices of sign.
$\mathcal{S}^{n}:=\left\{\operatorname{diag}\left(s_{1}, \cdots, s_{n}\right), s_{1}= \pm 1, \cdots s_{n}= \pm 1\right\}$
$\lambda:=\lambda_{\text {min }}\left(\overline{\mathcal{D}}_{f}^{2}-\mathcal{D}_{f}^{2}\left(x_{c}^{*}\right)\right)$: minimal eigenvalue of an interval matrix

Robut Optimization with Reduced Vertex Set [Calafiore, Dabbene]

The robust interval SDP problem $\lambda_{\min }\left(\overline{\mathcal{D}}_{f}^{2}-\mathcal{D}_{f}^{2}\left(x_{c}^{*}\right)\right)$ is equivalent to the following SDP in the single variable $t \in \mathbb{R}$:

$$
\begin{cases}\min & -t \\ \text { s.t. } & -t I-\mathcal{D}_{f}^{2}\left(x_{c}^{*}\right)-S B S \succeq 0, S=\operatorname{diag}(1, \tilde{S}), \forall \tilde{S} \in \mathcal{S}^{n-1}\end{cases}
$$

Local Solutions to Global Issues

Branch and Bound Algorithm

algo $_{\text {dicho }}$ returns the L_{∞}-ball $\mathcal{B}_{x_{c}^{*}, r}$ of maximal radius r (by dichotomy) such that the underestimator $f_{x_{c}^{*}, r}$ is positive on $\mathcal{B}_{x_{c}^{*}, r}$
$\overline{\text { algo }}_{\mathrm{bb}}$
Input: tree t, K, iter $_{\text {max }}$
Output: lower bound m

\Downarrow

$\mathrm{algo}_{\mathrm{bb}}$ Results for Simple inequalities

Ineq. id	$n_{\mathcal{T}}$	$n_{\text {vars }}$	$k_{\max }$	$n_{\text {pop }}$	$n_{\text {cuts }}$	m	cpu time
9922	1	6	2	222	27	3.07×10^{-5}	20 min
3526	1	6	2	156	17	4.89×10^{-6}	13.4 min
6836	1	6	2	173	22	4.68×10^{-5}	14 min
6619	1	6	2	163	21	4.57×10^{-5}	13.4 min
3872	1	6	2	250	30	7.72×10^{-5}	20.3 min
3139	1	6	2	162	17	1.03×10^{-5}	13.2 min
4841	1	6	2	624	73	2.34×10^{-6}	50.4 min
3020	1	5	3	80	9	2.96×10^{-5}	31 min
3318	1	6	3	26	2	3.12×10^{-5}	1.2 h

$\mathrm{algo}_{\mathrm{bb}}$ Results for Harder inequalities

Lemma ${ }_{73946}$ from Flyspeck

$K:=[4 ; 6.3504]^{6}$
$\forall x \in K, \frac{\pi}{2}+\sum_{i=1}^{3} \arctan _{i} \frac{-\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}-0.55125-0.196\left(\sqrt{x_{4}}+\sqrt{x_{5}}+\right.$
$\left.\sqrt{x_{6}}-6.0\right)+0.38\left(\sqrt{x_{1}}+\sqrt{x_{2}}+\sqrt{x_{3}}-6.0\right) \geq 0$.

Ineq. id	$n_{\mathcal{T}}$	$n_{\text {vars }}$	$k_{\max }$	$n_{\text {pop }}$	$n_{\text {cuts }}$	m	cpu time
7726	3	6	2	450	70	1.22×10^{-6}	$3.4 h$
7394_{3}	3	3	3	1	0	3.44×10^{-5}	11 s
7394_{4}	3	4	3	47	10	3.55×10^{-5}	26 min
7394_{5}	3	5	3	290	55	3.55×10^{-5}	$12 h$

Conclusion and Further Work

- Results are encouraging for the easiest inequalities even if disjunctions occur.
- We could reduce the computation time by computing underestimators for some semi-algebraic functions like $\frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}$ by using SDP again [e g. I asserre, Tanh]
- Obtain good feasible points is necessary to get fast convergence of algo ${ }_{\text {iter }}$, "joint+marginal" algorithms are available for POP [e.g. Lasserre, Tanh]. Randomization methods could also work out.
- Maybe a hybrid method using both SDP certificates and Solovyev method (interval arithmetic with Taylor-Models) on appropriate subsets of K would be more performant.
- It is possible to perform exact certification for polynomials with rational coefficients [e.g. Kaltofen, Parrilo] in order to verify the positivity certificates with the formal proof assistant COQ.

Conclusion and Further Work

- Results are encouraging for the easiest inequalities even if disjunctions occur.
- We could reduce the computation time by computing underestimators for some semi-algebraic functions like $\frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}$ by using SDP again [e.g. Lasserre, Tanh].
- Obtain good feasible points is necessary to get fast convergence of algo ${ }_{i t e r}$, "joint+marginal" algorithms are available for POP [e.g. Lasserre, Tanh]. Randomization methods could also work out.
- Maybe a hybrid method using both SDP certificates and Solovyev method (interval arithmetic with Taylor-Models) on appropriate subsets of K would be more performant.
- It is possible to perform exact certification for polynomials with rational coefficients [e.g. Kaltofen, Parrilo] in order to verify the positivity certificates with the formal proof assistant COQ.

Conclusion and Further Work

- Results are encouraging for the easiest inequalities even if disjunctions occur.
- We could reduce the computation time by computing underestimators for some semi-algebraic functions like $\frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}$ by using SDP again [e.g. Lasserre, Tanh].
- Obtain good feasible points is necessary to get fast convergence of algo ${ }_{\text {iter }}$, "joint+marginal" algorithms are available for POP [e.g. Lasserre, Tanh]. Randomization methods could also work out.
- Maybe a hybrid method using both SDP certificates and Solovyev method (interval arithmetic with Taylor-Models) on appropriate subsets of K would be more performant.
- It is possible to perform exact certification for polynomials with rational coefficients [e.g. Kaltofen, Parrilo] in order to verify the positivity certificates with the formal proof assistant COQ.

Conclusion and Further Work

- Results are encouraging for the easiest inequalities even if disjunctions occur.
- We could reduce the computation time by computing underestimators for some semi-algebraic functions like $\frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}$ by using SDP again [e.g. Lasserre, Tanh].
- Obtain good feasible points is necessary to get fast convergence of algo ${ }_{\text {iter }}$, "joint+marginal" algorithms are available for POP [e.g. Lasserre, Tanh]. Randomization methods could also work out.
- Maybe a hybrid method using both SDP certificates and Solovyev method (interval arithmetic with Taylor-Models) on appropriate subsets of K would be more performant.

> It is possible to perform exact certification for polynomials with
> rational coefficients [e.g. Kaltofen, Parrilo] in order to verify
> the positivity certificates with the formal proof assistant COQ.

Conclusion and Further Work

- Results are encouraging for the easiest inequalities even if disjunctions occur.
- We could reduce the computation time by computing underestimators for some semi-algebraic functions like $\frac{\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}$ by using SDP again [e.g. Lasserre, Tanh].
- Obtain good feasible points is necessary to get fast convergence of algo ${ }_{\text {iter }}$, "joint+marginal" algorithms are available for POP [e.g. Lasserre, Tanh]. Randomization methods could also work out.
- Maybe a hybrid method using both SDP certificates and Solovyev method (interval arithmetic with Taylor-Models) on appropriate subsets of K would be more performant.
- It is possible to perform exact certification for polynomials with rational coefficients [e.g. Kaltofen, Parrilo] in order to verify the positivity certificates with the formal proof assistant COQ.

Thank you for your attention!

