Certification of inequalities involving transcendental functions using Semi-Definite Programming Joint Work with B. Werner, S. Gaubert and X. Allamigeon

Second year PhD Victor MAGRON

LIX/INRIA, École Polytechnique

ISMP 2012 Friday August 24 th

Inría

A (10) × (10) × (10) ×

Kepler Conjecture (1611):

The maximal density of sphere packings in 3-space is $\frac{\pi}{18}$

- It corresponds to the way people would intuitively stack oranges, as a pyramid shape
- The proof of T. Hales (1998) consists of thousands of non-linear inequalities
- Many recent efforts have been done to give a formal proof of these inequalities: Flyspeck Project
- Motivation: get positivity certificates and check them with Proof assistants like COQ

Flyspeck-Like Problems Lemma Example

Inequalities issued from Flyspeck non-linear part involve:

- Semi-Algebraic functions algebra A: composition of polynomials with | ⋅ |, (·)^{1/p} (p ∈ N₀), +, -, ×, /, sup, inf
- Transcendental functions *T*: composition of semi-algebraic functions with *arctan*, *arcos*, *arcsin*, *exp*, *log*, | · |, (·)^{1/p} (p ∈ ℕ₀), +, -, ×, /, sup, inf

Lemma₉₉₂₂₆₉₉₀₂₈ from Flyspeck

$$\begin{split} &K := [4; 6.3504]^3 \times [6.3504; 8] \times [4; 6.3504]^2 \\ &\Delta x := x_1 x_4 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) + x_2 x_5 (x_1 - x_2 + x_3 + x_4 - x_5 + x_6) + x_3 x_6 (x_1 + x_2 - x_3 + x_4 + x_5 - x_6) - x_2 x_3 x_4 - x_1 x_3 x_5 - x_1 x_2 x_6 - x_4 x_5 x_6 \\ &\forall x \in K, -\frac{\pi}{2} + \arctan \frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}} + 1.6294 - 0.2213 \left(\sqrt{x_2} + \sqrt{x_3} + \sqrt{x_5} + \sqrt{x_6} - 8.0\right) + 0.913 \left(\sqrt{x_4} - 2.52\right) + 0.728 \left(\sqrt{x_1} - 2.0\right) \ge 0. \\ &\text{Tight inequality: global optimum} = 1.7 \times 10^{-4} \end{split}$$

Contents

Flyspeck-Like Problems

- General Framework
 - Sums of Squares (SOS) and Semi-Definite Programming (SDP) Relaxations
 - Transcendental Functions Underestimators
 - Adaptative Semi-algebraic Approximations
- Local Solutions to Global Issues
 - Compute λ_{\min} by Robust-SDP
 - Branch and Bound Algorithm
 - Preliminary Results
- Conclusions and Further Work

(4 間) (4 回) (4 回) (4

Flyspeck-Like Problems [Hales and Solovyev Method]

- Real numbers are represented by interval arithmetic
- Analytic functions f (e.g. $\sqrt{\cdot}$, $\frac{1}{\cdot}$, arctan) are approximated with Taylor expansions and the error terms are bounded: $|f(x) - f(x_0) - \mathcal{D}_f(x_0) (x - x_0)| < \sum_{i,j} m_{ij} \epsilon_i \epsilon_j$

$$\epsilon_i := |x^i - x_0^i|$$

- To satisfy the inequalities, the initial box K is partitioned into smaller boxes until the Taylor approximations are accurate enough (the error terms become small enough)
- The Taylor expansions are generated by symbolic differentiation using the chain rule, product rule

We consider the same problem: given K a compact set, and f a transcendental function, bound from below $f^* = \inf_{x \in K} f(x)$ and prove $f^* > 0$

- f is underestimated by a semi-algebraic function f_{sa} on a compact set $K_{sa} \supset K$
- 2 Reduce the problem $\inf_{x \in K_{sa}} f_{sa}(x)$ to a polynomial optimization problem (POP) in a lifted space K_{pop}
- Solve classically the POP problem $\inf_{x \in K_{pop}} f_{pop}(x)$ using a hierarchy of SDP relaxations by Lasserre

$$f^* \ge f^*_{sa} \ge f^*_{pop} \ge 0$$

If the relaxations are accurate enough

イロト イポト イヨト イヨト

We consider the same problem: given K a compact set, and f a transcendental function, bound from below $f^* = \inf_{x \in K} f(x)$ and prove $f^* > 0$

• *f* is underestimated by a semi-algebraic function f_{sa} on a compact set $K_{sa} \supset K$

- **2** Reduce the problem $\inf_{x \in K_{sa}} f_{sa}(x)$ to a polynomial optimization problem (POP) in a lifted space K_{pop}
- 3 Solve classically the POP problem $\inf_{x \in K_{pop}} f_{pop}(x)$ using a hierarchy of SDP relaxations by Lasserre

$$f^* \ge f^*_{sa} \ge f^*_{pop} \ge 0$$

If the relaxations are accurate enough

We consider the same problem: given K a compact set, and f a transcendental function, bound from below $f^* = \inf_{x \in K} f(x)$ and

prove $f^* \ge 0$

- f is underestimated by a semi-algebraic function f_{sa} on a compact set $K_{sa} \supset K$
- **2** Reduce the problem $\inf_{x \in K_{sa}} f_{sa}(x)$ to a polynomial optimization problem (POP) in a lifted space K_{pop}
- Solve classically the POP problem $\inf_{x \in K_{pop}} f_{pop}(x)$ using a hierarchy of SDP relaxations by Lasserre

$$f^* \ge f^*_{sa} \ge f^*_{pop} \ge 0$$

We consider the same problem: given K a compact set, and f a transcendental function, bound from below $f^* = \inf_{x \in K} f(x)$ and

prove $f^* \ge 0$

- f is underestimated by a semi-algebraic function f_{sa} on a compact set $K_{sa} \supset K$
- **2** Reduce the problem $\inf_{x \in K_{sa}} f_{sa}(x)$ to a polynomial optimization problem (POP) in a lifted space K_{pop}
- Solve classically the POP problem $\inf_{x \in K_{pop}} f_{pop}(x)$ using a hierarchy of SDP relaxations by Lasserre

$$f^* \ge f^*_{sa} \ge f^*_{pop} \ge 0$$

If the relaxations are accurate enough

SOS and SDP Relaxations

Polynomial Optimization Problem (POP):

Let $f, g_1, \dots, g_m \in \mathbb{R}[X_1, \dots, X_n]$ $K_{pop} := \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}$ is the feasible set General POP: compute $f_{pop}^* = \inf_{x \in K_{pop}} f(x)$

SOS Assumption: [e.g. Lasserre]

K is compact, $\exists u \in \mathbb{R}[X]$ s.t. the level set $\{x \in \mathbb{R}^n : u(x) \ge 0\}$ is compact and $u = u_0 + \sum_{j=1}^m u_j g_j$ for some sum of squares (SOS) $u_0, u_1, \cdots, u_m \in \Sigma[X]$

- Normalize the feasibility set to get $K' := [-1; 1]^n$ $K' := \{x \in \mathbb{R}^n : g_1 := 1 - x_1^2 \ge 0, \cdots, g_n := 1 - x_n^2 \ge 0\}$
- The polynomial $u(x):=n-\sum_{j=1}x_j^2$ satisfies the assumption

SOS and SDP Relaxations

To convexify the problem, use the equivalent formulation:

 $f_{pop}^* = \inf_{x \in K_{pop}} f_{pop}(x) = \inf_{\mu \in \mathcal{P}(K_{pop})} \int f_{pop} d\mu, \text{ where } \mathcal{P}(K_{pop}) \text{ is the set of all probability measures } \mu \text{ supported on the set } K_{nop}.$

Theorem [Putinar]:

Given $L: \mathbb{R}[X] \to \mathbb{R}$, the following are equivalent:

$$\exists \mu \in \mathcal{P}(K_{pop}), \forall p \in \mathbb{R}[X], L(p) = \int p \, d\mu$$

$$\mathbf{2} \ L(1) = 1, \ L(s_0 + \sum_{j=1}^m s_j g_j) \ge 0 \text{ for any } s_0, \cdots, s_m \in \Sigma[X]$$

Equivalent formulation:

$$\begin{array}{rcl} f_{pop}^{*} &=& \min \left\{ L(f) &: \ L \,: \, \mathbb{R}[X] \, \rightarrow \, \mathbb{R} \text{ linear, } L(1) \,=\, 1 \text{ and} \\ \text{each } \mathcal{L}_{g_{j}} \text{ is SDP } \right\}, \text{ with } g_{0} &=& 1, \ \mathcal{L}_{g_{0}}, \cdots, \mathcal{L}_{g_{m}} \text{ defined by:} \\ \mathcal{L}_{g_{j}} &:& \mathbb{R}[X] \times \mathbb{R}[X] \rightarrow & \mathbb{R} \\ && (p, q) & \mapsto & L(p \cdot q \cdot g_{j}) \end{array}$$

SOS and SDP Relaxations: Lasserre Hierarchy

- Let $\mathcal{B} := (X^{\alpha})_{\alpha \in \mathbb{N}^n}$ denote the monomial basis and set $y_{\alpha} = L(X^{\alpha})$, this identifies L with the infinite series $y = (y_{\alpha})_{\alpha \in \mathbb{N}^n}$.
- The infinite moment matrix M associated to y indexed by \mathcal{B} is: $M(y)_{u,v} := L(u \cdot v), \ u, v \in \mathcal{B}.$
- The localizing matrix $M(g_j y)$ is: $M(g_j y)_{u,v} := L(u \cdot v \cdot g_j), \ u, v \in \mathcal{B}.$
- Let

 $k \ge k_0 := \max\{\lceil \deg f_{pop} \rceil/2, \lceil \deg g_0/2 \rceil, \cdots, \lceil \deg g_m/2 \rceil\}$. Truncate the previous matrices by considering only rows and columns indexed by elements in \mathcal{B} of degree at most k, and consider the hierarchy Q_k of semidefinite relaxations:

$$Q_k : \begin{cases} \inf_y L(f) = \int f_\alpha x^\alpha \, d\mu(x) = \sum_\alpha f_\alpha \, y_\alpha \\ M_{k - \lceil \deg g_j/2 \rceil}(g_j y) \geqslant 0, \quad 0 \le j \le m, \\ y_1 = 1 \end{cases}$$

Convergence Theorem [Lasserre]:

The sequence $\inf(Q_k)_{k \ge k_0}$ is non-decreasing and under the SOS assumption converges to f_{pop}^* .

SDP relaxations:

Many solvers (e.g. Sedumi [?], SDPA) solve the pair of (standard form) semidefinite programs:

$$(SDP) \begin{cases} \mathcal{P}: \min_{y} \sum_{\alpha} c_{\alpha} y_{\alpha} \\ \text{subject to} \sum_{\alpha} F_{\alpha} y_{\alpha} - F_{0} \succcurlyeq 0 \\ \mathcal{D}: \max_{Y} & \text{Trace } (F_{0} Y) \\ \text{subject to} & \text{Trace } (F_{\alpha} Y) = c_{\alpha} \end{cases}$$

Basic Semi-Algebraic Relaxations

- Let \mathcal{A} be a set of semi-algebraic functions and $f_{sa} \in \mathcal{A}$.
- We consider the problem $f_{sa}^* = \inf_{x \in K_{sa}} f_{sa}(x)$ with $K_{sa} := \{x \in \mathbb{R}^n : g_1(x) \ge 0, \cdots, g_m(x) \ge 0\}$ a basic semi-algebraic set

Basic Semi-Algebraic Lifting:

A function $f_{sa} \in \mathcal{A}$ is said to have a basic semi-algebraic lifting (b.s.a.l.) if $\exists p, s \in \mathbb{N}$, polynomials $h_1, \dots h_s \in \mathbb{R}[X, Z_1, \dots, Z_p]$ and a b.s.a. set K_{pop} defined by:

$$K_{pop} := \{ (x, z_1, \cdots, z_p) \in \mathbb{R}^{n+p} : x \in K_{sa}, \\ h_1(x, z_1, \cdots, z_p) \ge 0, \cdots, h_s(x, z_1, \cdots, z_p) \ge 0 \}$$

such that the graph of f_{sa} (denoted $\Psi_{f_{sa}}$) satisfies: $\Psi_{f_{sa}} := \{(x, f_{sa}(x)) : x \in K_{sa}\} = \{(x, z_p) : (x, z) \in K_{pop}\}$

ヘロマ ヘ動 マイ ヨマ ヘヨマ

Basic Semi-Algebraic Relaxations

b.s.a.l. lemma [Lasserre, Putinar] :

Let \mathcal{A} be the semi-algebraic functions algebra obtained by composition of polynomials with $|\cdot|$, $(\cdot)^{\frac{1}{p}}(p \in \mathbb{N}_0)$, $+, -, \times, /, \sup$, inf. Then every well-defined $f_{sa} \in \mathcal{A}$ has a basic semi-algebraic lifting.

Example from Flyspeck:

$$f_{sa} := \frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}, K_{sa} := [4; 6.3504]^3 \times [6.3504; 8] \times [4; 6.3504]^2.$$

$$\bullet \text{ Define } z_1 := \sqrt{4x_1 \Delta x}, m_1 \leq \inf_{x \in K_{sa}} z_1(x), M_1 \geq \sup_{x \in K_{sa}} z_1(x), z_2 := \frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}} \text{ How to compute } m_2 \leq \inf_{x \in K_{sa}} z_2(x)?$$

$$\bullet \text{ Define } h_1 := z_1 - m_1, h_2 := M_1 - z_1, h_3 := z_1^2 - 4x_1 \Delta x, h_4 := -z_1^2 + 4x_1 \Delta x, h_5 := z_1, h_6 := z_2 z_1 - \partial_4 \Delta x, h_7 := -z_2 z_1 + \partial_4 \Delta x$$

$$\bullet K_{pop} := \{(x, z) \in \mathbb{R}^{6+2} : x \in K_{sa}, h_k(x, z) \geq 0, k = 1, \cdots, 7\}.$$

$$\bullet \Psi_{f_{sa}} := \{(x, f_{sa}(x)) : x \in K_{sa}\} = \{(x, z_2) : (x, z) \in K_{pop}\}.$$

Example from Flyspeck:

$$\begin{split} f_{sa} &:= \frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}, K_{sa} := [4; 6.3504]^3 \times [6.3504; 8] \times [4; 6.3504]^2. \\ \bullet & \text{Define } g_1 := x_1 - 4, \, g_2 := 6.3504 - x_1, \cdots, g_{11} := x_6 - 4, \\ g_{12} := 6.3504 - x_6. \text{ Solve:} \\ & \left\{ \begin{array}{c} \inf_y L(f_{pop}) &= \inf_y y_{0\cdots 01} &= \int z_2 \, d\mu \\ M_{k-\lceil \deg g_j/2 \rceil}(g_j \, y) &\succcurlyeq & 0, \quad 1 \leq j \leq 12, \\ M_{k-\lceil \deg h_k/2 \rceil}(h_k \, y) &\succcurlyeq & 0, \quad 1 \leq k \leq 7, \\ y_{0\cdots 0} &= & 1 \end{array} \right. \end{split}$$

イロト イヨト イヨト イヨト

æ

Basic Semi-Algebraic Relaxations

Example from Flyspeck:

$$\begin{split} f_{sa} &:= \frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}, \, K_{sa} := [4; 6.3504]^3 \times [6.3504; 8] \times [4; 6.3504]^2. \\ \bullet \text{ Define } g_1 &:= x_1 - 4, \, g_2 := 6.3504 - x_1 \cdots g_{11} := \\ x_6 - 4, \, g_{12} := 6.3504 - x_6. \text{ Solve:} \\ \\ Q_k &: \begin{cases} & \inf_y L(f_{pop}) \ = \ \inf_y y_{0 \cdots 01} \ = \int z_2 \, d\mu \\ & M_{k-1}(g_j \, y) \ \succcurlyeq \ 0, \quad 1 \le j \le 12, \\ & M_{k-\lceil \deg h_k/2 \rceil}(h_k \, y) \ \succcurlyeq \ 0, \quad 1 \le k \le 7, \\ & y_{0 \cdots 0} \ = \ 1 \end{split}$$

b.s.a.l. Convergence: (Special case of Convergence Theorem)

- Let $k \ge k_0 := \max\{1, \lceil \deg h_1/2 \rceil, \cdots, \lceil \deg h_7/2 \rceil\}.$
- The sequence inf(Q_k)_{k≥k0} is monotically non-decreasing and converges to f^{*}_{sa}.

- Exploiting symmetries in SDP-relaxations for POP [Riener, Theobald, Andren, Lasserre] to replace one SDP problem Q_k of size $\mathcal{O}(n^k)$ by several smaller SDPS of size $\mathcal{O}(\eta_i^k)$.
- SOS and SDP Relaxations for Polynomial Optimization Problems with Structured Sparsity [Waki, Kim, Kojima, Muramatsu] to replace one SDP problem Q_k of size $\mathcal{O}(n^k)$ by a SDP problem of size $\mathcal{O}(\kappa^k)$ where κ is the average size of the maximal cliques correlation pattern of the polynomial variables.

- Exploiting symmetries in SDP-relaxations for POP [Riener, Theobald, Andren, Lasserre] to replace one SDP problem Q_k of size $\mathcal{O}(n^k)$ by several smaller SDPS of size $\mathcal{O}(\eta_i^k)$.
- SOS and SDP Relaxations for Polynomial Optimization Problems with Structured Sparsity [Waki, Kim, Kojima, Muramatsu] to replace one SDP problem Q_k of size $\mathcal{O}(n^k)$ by a SDP problem of size $\mathcal{O}(\kappa^k)$ where κ is the average size of the maximal cliques correlation pattern of the polynomial variables.

Issues:

How to deal with transcendant functions?

Even when exploiting sparsity and symmetries, a direct implementation of basic-semialgebraic relaxation is not enough to prove Hales's lemmas (inequalities are too tight, requiring high order relaxations, and so a high execution time)

Solutions:

An adaptative basic-semialgebraic relaxation, with a max-plus semi-convex approximation (lower approximate a transcendant functions by a sup of quadratic forms)

ヘロト ヘヨト ヘヨト

Issues:

- How to deal with transcendant functions?
- Even when exploiting sparsity and symmetries, a direct implementation of basic-semialgebraic relaxation is not enough to prove Hales's lemmas (inequalities are too tight, requiring high order relaxations, and so a high execution time)

Solutions:

An adaptative basic-semialgebraic relaxation, with a max-plus semi-convex approximation (lower approximate a transcendant functions by a sup of quadratic forms)

Issues:

- How to deal with transcendant functions?
- Even when exploiting sparsity and symmetries, a direct implementation of basic-semialgebraic relaxation is not enough to prove Hales's lemmas (inequalities are too tight, requiring high order relaxations, and so a high execution time)

Solutions:

An adaptative basic-semialgebraic relaxation, with a max-plus semi-convex approximation (lower approximate a transcendant functions by a sup of quadratic forms)

- Let *f* ∈ *T* be a transcendental univariate elementary function such as *arctan*, *exp*, ..., defined on a real interval *I*.
- Basic convexity/quasiconvexity properties and monotonicity of *f* are used to find lower and upper semi-algebraic bounds.

Example with *arctan*:

- arctan is quasiconvex on I: $\exists c < 0$ such that $arctan - \frac{c}{2}(\cdot)^2$ is convex on I
- ∀a ∈ I = [m; M], arctan(a) ≥ max_{i∈C} {par_{ai}(a)} where C define an index collection of parabola tangent to the function curve and underestimating f.

•
$$par_{a_i}^- := \frac{c_i}{2}(a-a_i)^2 + f'_{a_i}(a-a_i) + f(a_i),$$

 $f'_{a_i} = \frac{1}{1+a_i^2}, f(a_i) = \arctan(a_i).$

• c_p depends on a_p and the curvature variations of *arctan* on the considered interval *I*.

- Let *f* ∈ *T* be a transcendental univariate elementary function such as *arctan*, *exp*, ..., defined on a real interval *I*.
- Basic convexity/quasiconvexity properties and monotonicity of *f* are used to find lower and upper semi-algebraic bounds.

Example with *arctan*:

- arctan is quasiconvex on *I*: $\exists c < 0$ such that $\arctan - \frac{c}{2}(\cdot)^2$ is convex on *I*
- $\forall a \in I = [m; M]$, $arctan(a) \ge \max_{i \in C} \{par_{a_i}^-(a)\}$ where C define an index collection of parabola tangent to the function curve and underestimating f.

•
$$par_{a_i}^- := \frac{c_i}{2}(a-a_i)^2 + f'_{a_i}(a-a_i) + f(a_i),$$

 $f'_{a_i} = \frac{1}{1+a_i^2}, f(a_i) = \arctan(a_i).$

• c_p depends on a_p and the curvature variations of *arctan* on the considered interval *I*.

Certification of transcendental inequalities using SDP

- Let *f* ∈ *T* be a transcendental univariate elementary function such as *arctan*, *exp*, ..., defined on a real interval *I*.
- Basic convexity/quasiconvexity properties and monotonicity of *f* are used to find lower and upper semi-algebraic bounds.

Example with *arctan*:

- arctan is quasiconvex on I: $\exists c < 0 \text{ such that } arctan - \frac{c}{2}(\cdot)^2 \text{ is convex on } I$
- $\forall a \in I = [m; M]$, $arctan(a) \geq \max_{i \in C} \{par_{a_i}^-(a)\}$ where C define an index collection of parabola tangent to the function curve and underestimating f.

•
$$par_{a_i}^- := \frac{c_i}{2}(a-a_i)^2 + f'_{a_i}(a-a_i) + f(a_i),$$

 $f'_{a_i} = \frac{1}{1+a_i^2}, f(a_i) = arctan(a_i).$

• c_p depends on a_p and the curvature variations of *arctan* on the considered interval *I*.

イロト イヨト イヨト イヨト

æ

$$\max(p_1, p_2) = \frac{p_1 + p_2 + |p_1 - p_2|}{2}$$
$$z = |p_1 - p_2| \iff z^2 = (p_1 - p_2)^2 \land z \ge 0$$

Lemma₉₉₂₂₆₉₉₀₂₈ from Flyspeck:

•
$$K := [4; 6.3504]^3 \times [6.3504; 8] \times [4; 6.3504]^2$$

 $f := -\frac{\pi}{2} + l(x) + \arctan\frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}$

Using semi-algebraic optimization methods:

$$\forall x \in K, \ m \le \frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}} \le M$$

• Using the arctan properties: $\forall a \in I = [m; M]$, arctan $(a) \geq m_{sa}(a) = \max \{ par_{a_1}^-(a); par_{a_2}^-(a) \}$

•
$$f^* \ge f^*_{sa} = \min_{x \in K} \{ f_{sa}(x) = -\frac{\pi}{2} + l(x) + m_{sa}(x) \}$$

æ

・ロト ・ 日 ト ・ ヨ ト ・

Adaptative Semi-algebraic Approximations Algorithm

- The first step is to build the abstract syntax tree from an inequality, where leaves are semi-algebraic functions and nodes are univariate transcendental functions (arctan, exp, ...) or basic operations (+, ×, -, /).
- With $l := 1.6294 0.2213 (\sqrt{x_2} + \sqrt{x_3} + \sqrt{x_5} + \sqrt{x_6} 8.0) + 0.913 (\sqrt{x_4} 2.52) + 0.728 (\sqrt{x_1} 2.0)$, the tree for the flyspeck example is:

Adaptative Semi-algebraic Approximations Algorithm

 $\texttt{algo}_{\mathcal{T}}$

Input: tree t, box K, control points finite sequence $s = x_1, \dots, x_r \in K$ **Output:** lower bound m, upper bound M, lower tree t^- , upper tree t^+

1: if t is semialgebraic then

2: return min
$$t$$
, max t , t , t

3: else if t is a transcendental node with a child c then

4:
$$m_c, M_c, c^-, c^+ := \text{algo}_{\mathcal{T}}(t, K, s)$$

5:
$$par^{-}, par^{+} := \text{build}_{par}(t, m_c, M_c, s)$$

6:
$$t^-, t^+ := \text{compose}(par^-, par^+, c^-, c^+)$$

7: **return** min
$$t^-$$
, max t^+ , t^- , t^+

8: else if t is a dyadic operation node bop parent of c_1 and c_2 then

9:
$$m_{c_i}, M_{c_i}, c_i^-, c_i^+ := \text{algo}_{\mathcal{T}}(c_i, K, s)$$

10:
$$t^-, t^+ := \text{compose}_{\text{bop}}(c_1^-, c_1^+, c_2^-, c_2^+)$$

11: return min
$$t^-$$
, max t^+ , t^- , t^+

12: end

Adaptative Semi-algebraic Approximations Algorithm

 $algo_{iter}$ **Input:** tree t, box K, $iter_{max}$ **Output:** lower bound m, feasible solution x_{opt} 1: $s := [\operatorname{argmin} (\operatorname{randeval} t)]$ $\triangleright s \in K$ 2: n := 03. $m := -\infty$ 4: while m < 0 or $n \leq iter_{\max}$ do $m, M, t^-, t^+ := \operatorname{algo}_{\mathcal{T}}(t, K, s)$ 5: $x_{opt} := \texttt{guess_of_argmin}(t^-)$ 6: $\triangleright t^{-}(x_{opt}) = m$ 7: $s := s \cup \{x_{opt}\}$ 8: n := n + 19: done 10: return m, x_{opt}

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Example from Flyspeck:

$$f_{sa} := \frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}, K_{sa} := [4; 6.3504]^3 \times [6.3504; 8] \times [4; 6.3504]^2.$$

- Here, t = f_{sa}, this is the first cell of algo_T, a lower bound m of min f_{sa} is computed by rewritting the problem into a POP.
- For a relaxation order k = 2, we find $m_2 = -0.618$ and $M_2 = 0.891$. The feasibility error is too big.
- For a relaxation order k = 3, we find $m_3 = -0.445$ and $M_3 = 0.87$ with a low feasibility error.
- The argument of arctan lies in $[m_3; M_3]$. Notice that it lies also in $[m_2; M_2]$ but the parabola approximations would be less accurate.

algo_{iter} First iteration:

Solution Evaluate f with randowal and obtain a minimizer guess x_1 . Compute $a_1 := \frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}} (x_1) = f_{sa} (x_1) = 0.84460$

- **2** Get the equation of par_1^- with build_{par}
- Sompute $m_1 \leq \min_{x \in K} \{ -\frac{\pi}{2} + l(x) + par_1^-(f_{sa}(x)) \}$

algo_{iter} Second iteration:

• For $k = 3, m_1 = -0.746 < 0$, obtain a new minimizer x_2 .

- 2 Compute $a_2 := f_{sa}(x_2) = -0.374$ and par_2^-
- **3** Compute $m_2 \leq \min_{x \in K} \{ -\frac{\pi}{2} + l(x) + \max_{i \in \{1,2\}} \{ par_i^-(f_{sa}(x)) \} \}$

algo_{iter} Third iteration:

• For $k = 3, m_2 = -0.112 < 0$, obtain a new minimizer x_3 .

2 Compute
$$a_3 := f_{sa}(x_3) = 0.357$$
 and par_3^-

3 Compute
$$m_3 \leq \min_{x \in K} \{-\frac{\pi}{2} + l(x) + \max_{i \in \{1,2,3\}} \{ par_i^-(f_{sa}(x)) \} \}$$

- For $k = 3, m_3 = -0.0333 < 0$, obtain a new minimizer x_4 and iterate again...
- Actually, many iterations are needed and if we take k = 3 then that is not enough to ensure convergence of algo_{iter}.
- But the following convergence theorem holds:

Theorem: Convergence of Semi-algebraic underestimators

Let $f \in \mathcal{T}$ and $(x_p^{opt})_{p \in \mathbb{N}}$ be a sequence of control points obtained to define the hierarchy of f-underestimators in the previous algorithm $algo_{iter}$ and x^* be an accumulation point of $(x_p^{opt})_{p \in \mathbb{N}}$. Then, x^* is a global minimizer of f on K.

Proof

It comes from the convergence of Lasserre' hierarchy of SDP (the SOS assumption holds) and the properties of the accumulation point.

- For $k = 3, m_3 = -0.0333 < 0$, obtain a new minimizer x_4 and iterate again...
- Actually, many iterations are needed and if we take k = 3 then that is not enough to ensure convergence of algoiter.
- But the following convergence theorem holds:

Theorem: Convergence of Semi-algebraic underestimators

Let $f \in \mathcal{T}$ and $(x_p^{opt})_{p \in \mathbb{N}}$ be a sequence of control points obtained to define the hierarchy of f-underestimators in the previous algorithm $algo_{iter}$ and x^* be an accumulation point of $(x_p^{opt})_{p \in \mathbb{N}}$. Then, x^* is a global minimizer of f on K.

Proof

It comes from the convergence of Lasserre' hierarchy of SDP (the SOS assumption holds) and the properties of the accumulation point.

- For $k = 3, m_3 = -0.0333 < 0$, obtain a new minimizer x_4 and iterate again...
- Actually, many iterations are needed and if we take k = 3 then that is not enough to ensure convergence of algo_{iter}.
- But the following convergence theorem holds:

Theorem: Convergence of Semi-algebraic underestimators

Let $f \in \mathcal{T}$ and $(x_p^{opt})_{p \in \mathbb{N}}$ be a sequence of control points obtained to define the hierarchy of f-underestimators in the previous algorithm $algo_{iter}$ and x^* be an accumulation point of $(x_p^{opt})_{p \in \mathbb{N}}$. Then, x^* is a global minimizer of f on K.

Proof

It comes from the convergence of Lasserre' hierarchy of SDP (the SOS assumption holds) and the properties of the accumulation point.

- Semi-algebraic relaxation order which is the number of parabola, and the size of the sequence s in algo_{iter}
- **3** SDP relaxation order $k \ge \max\{\lceil \deg f_{pop} \rceil/2, \lceil \deg g_j/2 \rceil\}$. The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables: $\mathcal{O}((n+p)^{2k})$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}((n+p)^k)$: polynomial in p, exponential in k

- Semi-algebraic relaxation order which is the number of parabola, and the size of the sequence s in algoiter
- SDP relaxation order $k \ge \max\{\lceil \deg f_{pop} \rceil/2, \lceil \deg g_j/2 \rceil\}$. The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables: $\mathcal{O}((n+p)^{2k})$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}((n+p)^k)$: polynomial in p, exponential in k

```
The number of parabola increases

↓

The number p of lifting variables increases:

2 by argument of the max)

↓

The size of the SDP problems grows exponentially with the SDP

relaxation order

algo<sub>iter</sub> may not converge in a reasonable time

↓

Second year PhD Victor MAGRON

Certification of transcendental inegualities using SDP
```

- Semi-algebraic relaxation order which is the number of parabola, and the size of the sequence s in algoiter
- SDP relaxation order $k \ge \max\{\lceil \deg f_{pop} \rceil/2, \lceil \deg g_j/2 \rceil\}$. The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables: $\mathcal{O}((n+p)^{2k})$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}((n+p)^k)$: polynomial in p, exponential in k

```
The number of parabola increases

↓

The number p of lifting variables increases:

2 by argument of the max)

↓

The size of the SDP problems grows exponentially with the SDP

relaxation order

algo<sub>iter</sub> may not converge in a reasonable time

↓

Second year PhD Victor MAGRON

Certification of transcendental inegualities using SDP
```

Two relaxation parameters:

- Semi-algebraic relaxation order which is the number of parabola, and the size of the sequence s in algoiter
- SDP relaxation order $k \ge \max\{\lceil \deg f_{pop} \rceil/2, \lceil \deg g_j/2 \rceil\}$. The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables: $\mathcal{O}((n+p)^{2k})$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}((n+p)^k)$: polynomial in p, exponential in k

The number of parabola increases

The number p of lifting variables increases: 2 by argument of the max)

The size of the SDP problems grows exponentially with the SDP relaxation order

algo_{iter} may not converge in a reasonable time

Two relaxation parameters:

- Semi-algebraic relaxation order which is the number of parabola, and the size of the sequence s in algoiter
- SDP relaxation order $k \ge \max\{\lceil \deg f_{pop} \rceil/2, \lceil \deg g_j/2 \rceil\}$. The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables: $\mathcal{O}((n+p)^{2k})$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}((n+p)^k)$: polynomial in p, exponential in k

The number of parabola increases $\downarrow\downarrow$ The number p of lifting variables increases: 2 by argument of the max)

The size of the SDP problems grows exponentially with the SDP relaxation order

algo_{iter} may not converge in a reasonable time

- Semi-algebraic relaxation order which is the number of parabola, and the size of the sequence s in algoiter
- SDP relaxation order $k \ge \max\{\lceil \deg f_{pop} \rceil/2, \lceil \deg g_j/2 \rceil\}$. The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables: $\mathcal{O}((n+p)^{2k})$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}((n+p)^k)$: polynomial in p, exponential in k

```
The number of parabola increases

\downarrow\downarrow

The number p of lifting variables increases:

2 by argument of the max)

\downarrow\downarrow

The size of the SDP problems grows exponentially with the SDP

relaxation order

algo<sub>iter</sub> may not converge in a reasonable time
```

- Instead of increasing both relaxation orders, fix the SDP relaxation order k ≤ 3 (computable SDP in practice) and the number of control points (the number of lifting variables p).
- If $algo_{iter}$ returns a negative lower bound then cut the initial box K in several boxes $(K_i)_{1 \le i \le c}$ and solve the inequality on each K_i . But...
- How to partition *K*?

(日)

Multivariate Taylor-Models Underestimators

Multivariate Taylor-Models Underestimators:

- Consider a global minimizer x_c^* candidate obtained after algoiter returned a negative value m_k . For a given r, define the L_{∞} -ball $\mathcal{B}_{x_c^*, r} := \{x \in K : ||x x_c^*|| \leq r\}.$
- Then, let $f_{x_c^*,r}$ be the quadratic form defined by:

$$f_{x_c^*,r} : \mathcal{B}_{x_c^*,r} \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x_c^*) + \mathcal{D}_f(x_c^*) (x - x_c^*)$$

$$+ \frac{1}{2} (x - x_c^*)^T \mathcal{D}_f^2(x_c^*) (x - x_c^*) + \lambda (x - x_c^*)^2$$

with
$$\lambda := \min_{x \in \mathcal{B}_{x_c^*, r}} \{\lambda_{\min}(\mathcal{D}_f^2(x) - \mathcal{D}_f^2(x_c^*))\}$$

Theorem:

 $\forall x \in \mathcal{B}_{x_c^*, r}, f(x) \ge f_{x_c^*, r}, \text{ that is } f_{x_c^*, r} \text{ understimates } f \text{ on } \mathcal{B}_{x_c^*, r}.$

Compute λ_{\min} by Robust SDP

•
$$\lambda := \min_{x \in \mathcal{B}_{x_c^*, r}} \{\lambda_{\min}(\mathcal{D}_f^2(x) - \mathcal{D}_f^2(x_c^*))\}$$

- Bound the hessian on B_{x^{*}_c, r} by interval artithmetic or SDP relaxations to get D
 ²_f:
- Define the symmetric matrix B containing the bounds on the entries of $\bar{\mathcal{D}}_f^2$.
- Let S^n be the set of diagonal matrices of sign.

$$\begin{aligned} \mathcal{S}^n &:= \{ \text{diag} \ (s_1, \cdots, s_n), \ s_1 = \pm 1, \cdots \ s_n = \pm 1 \} \\ \lambda &:= \lambda_{\min}(\bar{\mathcal{D}}_f^2 - \mathcal{D}_f^2(x_c^*)) \text{: minimal eigenvalue of an interva} \\ \text{matrix} \end{aligned}$$

Robut Optimization with Reduced Vertex Set [Calafiore, Dabbene]

The robust interval SDP problem $\lambda_{\min}(\overline{\mathcal{D}}_f^2 - \mathcal{D}_f^2(x_c^*))$ is equivalent to the following SDP in the single variable $t \in \mathbb{R}$:

$$\begin{array}{ll} \min & -t \\ \text{s.t.} & -t \ I - \mathcal{D}_f^2(x_c^*) - S \ B \ S \succeq 0, \ S = \text{diag} \ (1, \ \tilde{S}), \ \forall \tilde{S} \in \mathcal{S}^{n-1} \end{array}$$

Branch and Bound Algorithm

algo_{dicho} returns the L_{∞} -ball $\mathcal{B}_{x_c^*,r}$ of maximal radius r (by dichotomy) such that the underestimator $f_{x_c^*,r}$ is positive on $\mathcal{B}_{x_c^*,r}$

$algo_{bb}$

Input: tree t, K, $iter_{max}$ **Output:** lower bound *m* 1: $m, x_c^* := \text{algo}_{\text{iter}} (t, K, iter_{\text{max}})$ 2: if m < 0 then 3: $\mathcal{B}_{x_{\star}^*, r} := \operatorname{algo}_{\operatorname{dicho}} (t, K, x_c^*)$ Partition $K \setminus \mathcal{B}_{x_{a}^*, r} := (K_i)_{1 \le i \le c}$ 4: 5: $K_0 := \mathcal{B}_{x^*, r}$ 6: $m := \min_{0 \le i \le c} \{ algo_{bb} (t, K_i, iter_{max}) \}$ 7: return m 8: else return m 9: 10: end

 \Downarrow

algobb Results for Simple inequalities

Ineq. id	$n_{\mathcal{T}}$	n_{vars}	k_{\max}	n_{pop}	n _{cuts}	m	cpu time
9922	1	6	2	222	27	3.07×10^{-5}	20min
3526	1	6	2	156	17	4.89×10^{-6}	13.4min
6836	1	6	2	173	22	4.68×10^{-5}	14min
6619	1	6	2	163	21	4.57×10^{-5}	13.4min
3872	1	6	2	250	30	7.72×10^{-5}	20.3min
3139	1	6	2	162	17	$1.03 imes 10^{-5}$	13.2min
4841	1	6	2	624	73	2.34×10^{-6}	50.4min
3020	1	5	3	80	9	2.96×10^{-5}	31min
3318	1	6	3	26	2	3.12×10^{-5}	1.2 h

Second year PhD Victor MAGRON Certification of transcen

Certification of transcendental inequalities using SDP

algo_{bb} Results for Harder inequalities

Lemma₇₃₉₄₆ from Flyspeck

$$\begin{split} &K := [4; 6.3504]^6 \\ &\forall x \in K, \frac{\pi}{2} + \sum_{i=1}^{3} \arctan_i \frac{-\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}} - 0.55125 - 0.196 \left(\sqrt{x_4} + \sqrt{x_5} + \sqrt{x_6} - 6.0\right) + 0.38 \left(\sqrt{x_1} + \sqrt{x_2} + \sqrt{x_3} - 6.0\right) \ge 0. \end{split}$$

Ineq. id	$n_{\mathcal{T}}$	n_{vars}	k_{\max}	n_{pop}	n _{cuts}	m	cpu time
7726	3	6	2	450	70	1.22×10^{-6}	3.4 h
7394_{3}	3	3	3	1	0	3.44×10^{-5}	11 s
7394_{4}	3	4	3	47	10	3.55×10^{-5}	26min
7394_{5}	3	5	3	290	55	3.55×10^{-5}	12 h

Second year PhD Victor MAGRON Certification of transcendental inequalities using SDP

イロト イヨト イヨト イヨト

æ

- Results are encouraging for the easiest inequalities even if disjunctions occur.
- We could reduce the computation time by computing underestimators for some semi-algebraic functions like $\frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}$ by using SDP again [e.g. Lasserre, Tanh].
- Obtain good feasible points is necessary to get fast convergence of algoiter, "joint+marginal" algorithms are available for POP [e.g. Lasserre, Tanh]. Randomization methods could also work out.
- Maybe a hybrid method using both SDP certificates and Solovyev method (interval arithmetic with Taylor-Models) on appropriate subsets of *K* would be more performant.
- It is possible to perform exact certification for polynomials with rational coefficients [e.g. Kaltofen, Parrilo] in order to verify the positivity certificates with the formal proof assistant COQ.

- Results are encouraging for the easiest inequalities even if disjunctions occur.
- We could reduce the computation time by computing underestimators for some semi-algebraic functions like $\frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}$ by using SDP again [e.g. Lasserre, Tanh].
- Obtain good feasible points is necessary to get fast convergence of algoiter, "joint+marginal" algorithms are available for POP [e.g. Lasserre, Tanh]. Randomization methods could also work out.
- Maybe a hybrid method using both SDP certificates and Solovyev method (interval arithmetic with Taylor-Models) on appropriate subsets of *K* would be more performant.
- It is possible to perform exact certification for polynomials with rational coefficients [e.g. Kaltofen, Parrilo] in order to verify the positivity certificates with the formal proof assistant COQ.

- Results are encouraging for the easiest inequalities even if disjunctions occur.
- We could reduce the computation time by computing underestimators for some semi-algebraic functions like $\frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}$ by using SDP again [e.g. Lasserre, Tanh].
- Obtain good feasible points is necessary to get fast convergence of algoiter, "joint+marginal" algorithms are available for POP [e.g. Lasserre, Tanh]. Randomization methods could also work out.
- Maybe a hybrid method using both SDP certificates and Solovyev method (interval arithmetic with Taylor-Models) on appropriate subsets of *K* would be more performant.
- It is possible to perform exact certification for polynomials with rational coefficients [e.g. Kaltofen, Parrilo] in order to verify the positivity certificates with the formal proof assistant COQ.

- Results are encouraging for the easiest inequalities even if disjunctions occur.
- We could reduce the computation time by computing underestimators for some semi-algebraic functions like $\frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}$ by using SDP again [e.g. Lasserre, Tanh].
- Obtain good feasible points is necessary to get fast convergence of algoiter, "joint+marginal" algorithms are available for POP [e.g. Lasserre, Tanh]. Randomization methods could also work out.
- Maybe a hybrid method using both SDP certificates and Solovyev method (interval arithmetic with Taylor-Models) on appropriate subsets of *K* would be more performant.
- It is possible to perform exact certification for polynomials with rational coefficients [e.g. Kaltofen, Parrilo] in order to verify the positivity certificates with the formal proof assistant COQ.

- Results are encouraging for the easiest inequalities even if disjunctions occur.
- We could reduce the computation time by computing underestimators for some semi-algebraic functions like $\frac{\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}$ by using SDP again [e.g. Lasserre, Tanh].
- Obtain good feasible points is necessary to get fast convergence of algoiter, "joint+marginal" algorithms are available for POP [e.g. Lasserre, Tanh]. Randomization methods could also work out.
- Maybe a hybrid method using both SDP certificates and Solovyev method (interval arithmetic with Taylor-Models) on appropriate subsets of *K* would be more performant.
- It is possible to perform exact certification for polynomials with rational coefficients [e.g. Kaltofen, Parrilo] in order to verify the positivity certificates with the formal proof assistant COQ.

Thank you for your attention!

ヘロト ヘ部ト ヘヨト ヘヨト

æ