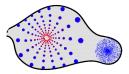
Certified Optimization for System Verification

Victor Magron, CNRS

17 Mai 2018

68nqrt Seminar, Irisa, INRIA Rennes



Research Field

CERTIFIED OPTIMIZATION

Input: linear problem (LP), geometric, semidefinite (SDP)

Output: value + numerical/symbolic/formal certificate

Research Field

CERTIFIED OPTIMIZATION

Input: linear problem (LP), geometric, semidefinite (SDP)

Output: value + numerical/symbolic/formal certificate

VERIFICATION OF CRITICAL SYSTEMS

Safety of embedded software/hardware Mathematical formal proofs CPS, robotics, analysers, ...

Research Field

CERTIFIED OPTIMIZATION

Input: linear problem (LP), geometric, semidefinite (SDP)

Output: value + numerical/symbolic/formal certificate

VERIFICATION OF CRITICAL SYSTEMS

Safety of embedded software/hardware Mathematical formal proofs CPS, robotics, analysers, ...

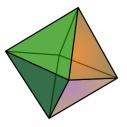
Efficient certification for nonlinear systems

- Certified optimization of polynomial systems analysis / synthesis / control
- Efficiency symmetry reduction, sparsity
- Certified approximation algorithms convergence, error analysis

What is Semidefinite Optimization?

■ Linear Programming (LP):

$$\begin{aligned} & \underset{z}{\text{min}} & & \underset{z}{c}^{\top} z \\ & \text{s.t.} & & A z \geqslant d \end{aligned}.$$



- Linear cost c
- Linear inequalities " $\sum_i A_{ij} z_j \geqslant d_i$ "

Polyhedron

What is Semidefinite Optimization?

■ Semidefinite Programming (SDP):

$$\begin{aligned} & \underset{z}{\text{min}} & & \mathbf{c}^{\top}\mathbf{z} \\ & \text{s.t.} & & \sum_{i} \mathbf{F}_{i} z_{i} \succcurlyeq \mathbf{F}_{0} \end{aligned}.$$

- Linear cost c
- Symmetric matrices \mathbf{F}_0 , \mathbf{F}_i
- Linear matrix inequalities "F >> 0"
 (F has nonnegative eigenvalues)

Spectrahedron

What is Semidefinite Optimization?

■ Semidefinite Programming (SDP):

$$\begin{aligned} & \min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z} \\ & \text{s.t.} \quad \sum_{i} \mathbf{F}_{i} z_{i} \succcurlyeq \mathbf{F}_{0} \ , \quad \mathbf{A} \, \mathbf{z} = \mathbf{d} \ . \end{aligned}$$

- Linear cost c
- Symmetric matrices \mathbf{F}_0 , \mathbf{F}_i
- Linear matrix inequalities " $\mathbf{F} \geq 0$ " (\mathbf{F} has nonnegative eigenvalues)

Spectrahedron

Applications of SDP

- Combinatorial optimization
- Control theory
- Matrix completion
- Unique Games Conjecture (Khot '02): "A single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems." (Barak and Steurer survey at ICM'14)
- Solving polynomial optimization (Lasserre '01)

Theoretical approach for polynomial optimization

(Primal) (Dual)
$$\inf \int f \, d\mu \qquad \sup \lambda$$
 avec μ probabilité \Rightarrow **LP** INFINI \Leftarrow avec $f - \lambda \geqslant 0$

Practical approach for polynomial optimization

(Primal **Relaxation**)

moments $\int x^{\alpha} d\mu$

finite \Rightarrow

(Dual **Strengthening**)

 $f - \lambda =$ sums of squares

SDP

P ← **fixed** degree

Practical approach for polynomial optimization

moments $\int x^{\alpha} d\mu$

finite \Rightarrow

(Dual **Strengthening**)

 $f - \lambda =$ sums of squares

SDP

← fixed degree

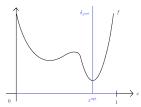
Hierarchy of **SDP** $\uparrow f^*$

$$\Rightarrow \binom{n+2k}{n}$$
 SDP VARIABLES

Lasserre's hierarchy

♥ Cast polynomial optimization as *infinite-dimensional* LP over measures [Lasserre 01]

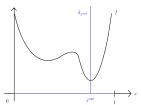
$$f^* := \inf_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x}) = \inf_{\mu \in \mathcal{M}_+(\mathbf{K})} \int_{\mathbf{K}} f(\mathbf{x}) d\mu$$



Lasserre's hierarchy

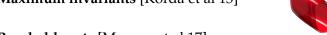
♥ Cast polynomial optimization as *infinite-dimensional* LP over measures [Lasserre 01]

$$f^* := \inf_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x}) = \inf_{\mu \in \mathcal{M}_+(\mathbf{K})} \int_{\mathbf{K}} f(\mathbf{x}) d\mu$$



→ Regions of attraction [Henrion-Korda 14]

→ Maximum invariants [Korda et al 13]



→ **Reachable sets** [Magron et al 17]

■ Prove **polynomial inequalities** with SDP:

$$f(a,b) := a^2 - 2ab + b^2 \geqslant 0$$
.

- Find **z** s.t. $f(a,b) = \begin{pmatrix} a & b \end{pmatrix} \underbrace{\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix}}_{\geq 0} \begin{pmatrix} a \\ b \end{pmatrix}$.
- Find z s.t. $a^2 2ab + b^2 = z_1a^2 + 2z_2ab + z_3b^2$ (A z = d)

■ Choose a cost \mathbf{c} e.g. (1,0,1) and solve:

$$\begin{aligned} & \min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z} \\ & \text{s.t.} \quad \sum_{i} \mathbf{F}_{i} z_{i} \succcurlyeq \mathbf{F}_{0} \ , \quad \mathbf{A} \mathbf{z} = \mathbf{d} \ . \end{aligned}$$

- Solution $\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \succcurlyeq 0$ (eigenvalues 0 and 2)
- $a^2 2ab + b^2 = (a \quad b) \underbrace{\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}}_{a = 0} \begin{pmatrix} a \\ b \end{pmatrix} = (a b)^2.$
- Solving SDP ⇒ Finding SUMS OF SQUARES certificates

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

■ Semialgebraic set $\mathbf{K} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0\}$

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

- Semialgebraic set $\mathbf{K} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \geqslant 0, \dots, g_m(\mathbf{x}) \geqslant 0\}$
- $\blacksquare := [0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \geqslant 0, \quad x_2(1-x_2) \geqslant 0 \}$

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

- Semialgebraic set $\mathbf{K} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \geqslant 0, \dots, g_m(\mathbf{x}) \geqslant 0\}$
- $\blacksquare := [0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \geqslant 0, \quad x_2(1-x_2) \geqslant 0 \}$

$$\overbrace{x_1 x_2}^f + \frac{1}{8} = \underbrace{\frac{1}{2} \left(x_1 + x_2 - \frac{1}{2} \right)^2}_{\sigma_0} + \underbrace{\frac{\sigma_1}{2}}_{\sigma_1} \underbrace{x_1 (1 - x_1)}_{\sigma_1} + \underbrace{\frac{\sigma_2}{2}}_{\sigma_2} \underbrace{x_2 (1 - x_2)}_{\sigma_2}$$

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

- Semialgebraic set $\mathbf{K} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \geqslant 0, \dots, g_m(\mathbf{x}) \geqslant 0\}$
- $\blacksquare := [0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \geqslant 0, \quad x_2(1-x_2) \geqslant 0 \}$

$$\overbrace{x_1x_2}^f + \frac{1}{8} = \overbrace{\frac{1}{2}\left(x_1 + x_2 - \frac{1}{2}\right)^2}^{\sigma_0} + \overbrace{\frac{1}{2}}^{\sigma_1} \underbrace{x_1(1 - x_1)}^{g_1} + \overbrace{\frac{1}{2}}^{\sigma_2} \underbrace{x_2(1 - x_2)}^{g_2}$$

■ Sums of squares (SOS) σ_i

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$

- Semialgebraic set $\mathbf{K} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \geqslant 0, \dots, g_m(\mathbf{x}) \geqslant 0\}$
- \blacksquare := $[0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0 \}$

$$\underbrace{x_1 x_2}_{f} + \underbrace{\frac{1}{8}}_{f} = \underbrace{\frac{1}{2} \left(x_1 + x_2 - \frac{1}{2} \right)^2}_{\sigma_0} + \underbrace{\frac{\sigma_1}{2}}_{f} \underbrace{x_1 (1 - x_1)}_{\sigma_1} + \underbrace{\frac{\sigma_2}{2}}_{f} \underbrace{x_2 (1 - x_2)}_{\sigma_2}$$

- Sums of squares (SOS) σ_i
- Bounded degree:

$$Q_k(\mathbf{K}) := \left\{ \sigma_0 + \sum_{j=1}^m \sigma_j g_j, \text{ with } \deg \sigma_j g_j \leqslant 2k \right\}$$

■ Hierarchy of SDP relaxations:

$$\lambda_k := \sup_{\lambda} \left\{ \lambda : f - \lambda \in \mathcal{Q}_k(\mathbf{K}) \right\}$$

- Convergence guarantees $\lambda_k \uparrow f^*$ [Lasserre 01]
- Can be computed with SDP solvers (CSDP, SDPA)
- **"No Free Lunch" Rule**: $\binom{n+2k}{n}$ SDP variables

SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets

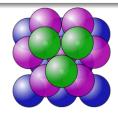
Exact Polynomial Optimization

Conclusion

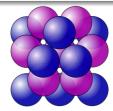
From Oranges Stack...

Kepler Conjecture (1611):

The maximal density of sphere packings in 3D-space is $\frac{\pi}{\sqrt{18}}$



Face-centered cubic Packing



Hexagonal Compact Packing

...to Flyspeck Nonlinear Inequalities

- The proof of T. Hales (1998) contains mathematical and computational parts
- Computation: check thousands of nonlinear inequalities
- Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture

...to Flyspeck Nonlinear Inequalities

- The proof of T. Hales (1998) contains mathematical and computational parts
- Computation: check thousands of nonlinear inequalities
- Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture
- Project Completion on August 2014 by the Flyspeck team

In the computational part:

■ Multivariate Polynomials:

$$\Delta \mathbf{x} := x_1 x_4 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) + x_2 x_5 (x_1 - x_2 + x_3 + x_4 - x_5 + x_6) + x_3 x_6 (x_1 + x_2 - x_3 + x_4 + x_5 - x_6) - x_2 (x_3 x_4 + x_1 x_6) - x_5 (x_1 x_3 + x_4 x_6)$$

In the computational part:

Semialgebraic functions: composition of polynomials with $|\cdot|$, $|\cdot|$, $|\cdot|$, $|\cdot|$, sup, inf, . . .

$$p(\mathbf{x}) := \partial_4 \Delta \mathbf{x}$$
 $q(\mathbf{x}) := 4x_1 \Delta \mathbf{x}$
 $r(\mathbf{x}) := p(\mathbf{x}) / \sqrt{q(\mathbf{x})}$

$$l(\mathbf{x}) := -\frac{\pi}{2} + 1.6294 - 0.2213 \left(\sqrt{x_2} + \sqrt{x_3} + \sqrt{x_5} + \sqrt{x_6} - 8.0\right) + 0.913 \left(\sqrt{x_4} - 2.52\right) + 0.728 \left(\sqrt{x_1} - 2.0\right)$$

In the computational part:

■ Transcendental functions \mathcal{T} : composition of semialgebraic functions with arctan, exp, $\sin_{t} + \int_{t}^{t} x^{2} dt$

In the computational part:

■ Feasible set $\mathbf{K} := [4, 6.3504]^3 \times [6.3504, 8] \times [4, 6.3504]^2$

Lemma₉₉₂₂₆₉₉₀₂₈ from Flyspeck:

$$\forall \mathbf{x} \in \mathbf{K}, \arctan\left(\frac{p(\mathbf{x})}{\sqrt{q(\mathbf{x})}}\right) + l(\mathbf{x}) \geqslant 0$$

Formal proofs for Global Optimization:

- Bernstein polynomial methods [Zumkeller's PhD 08]
- SMT methods [Gao et al. 12]
- Interval analysis and Sums of squares

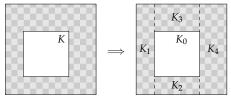
Interval analysis

- Certified interval arithmetic in CoQ [Melquiond 12]
- Taylor methods in HOL Light [Solovyev thesis 13]
 - Formal verification of floating-point operations
- robust but subject to the **Curse of Dimensionality**

Lemma₉₉₂₂₆₉₉₀₂₈ from Flyspeck:

$$\forall \mathbf{x} \in \mathbf{K}, \arctan\left(\frac{\partial_4 \Delta \mathbf{x}}{\sqrt{4x_1 \Delta \mathbf{x}}}\right) + l(\mathbf{x}) \geqslant 0$$

- Dependency issue using Interval Calculus:
 - One can bound $\partial_4 \Delta x / \sqrt{4x_1 \Delta x}$ and l(x) separately
 - Too coarse lower bound: -0.87
 - Subdivide **K** to prove the inequality



Sums of squares (SOS) techniques

- Formalized in HOL-LIGHT [Harrison 07] COQ [Besson 07]
- Precise methods but scalability and robustness issues (numerical)
- powerful: global optimality certificates without branching

but

- not so robust: handles moderate size problems
- Restricted to polynomials

■ Caprasse Problem:

$$\forall \mathbf{x} \in [-0.5, 0.5]^4, -x_1 x_3^3 + 4x_2 x_3^2 x_4 + 4x_1 x_3 x_4^2 + 2x_2 x_4^3 + 4x_1 x_3 + 4x_3^2 - 10x_2 x_4 - 10x_4^2 + 5.1801 \ge 0.$$

- Decompose the polynomial as SOS of degree at most 4
- Gives a nonnegative bound!

Approximation theory: Chebyshev/Taylor models

- mandatory for non-polynomial problems
- hard to combine with SOS techniques (degree of approximation)

Can we develop a new approach with both keeping the respective strength of interval and precision of SOS?

Proving Flyspeck Inequalities is challenging: medium-size and tight

Contribution: Publications and Software

M., Allamigeon, Gaubert, Werner. Formal Proofs for Nonlinear Optimization, Journal of Formalized Reasoning 8(1):1–24, 2015.

Hales, Adams, Bauer, Dang, Harrison, Hoang, Kaliszyk, M., Mclaughlin, Nguyen, Nguyen, Nipkow, Obua, Pleso, Rute, Solovyev, Ta, Tran, Trieu, Urban, Vu & Zumkeller, Forum of Mathematics, Pi, 5 2017

Software Implementation NLCertify:

15 000 lines of OCAML code

4000 lines of Coo code

M. NLCertify: A Tool for Formal Nonlinear Optimization, *ICMS*, 2014.

SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets Semialgebraic Maxplus Optimization

Pareto Curves
Polynomial Images of Semialgebraic Sets
Reachable Sets of Polynomial Systems
Invariant Measures of Polynomial Systems

Exact Polynomial Optimization

Conclusion

General informal Framework

Given **K** a compact set and f a transcendental function, bound $f^* = \inf_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$ and prove $f^* \geqslant 0$

- f is under-approximated by a semialgebraic function f_{sa}
- Reduce the problem $f_{sa}^* := \inf_{\mathbf{x} \in \mathbf{K}} f_{sa}(\mathbf{x})$ to a polynomial optimization problem (POP)

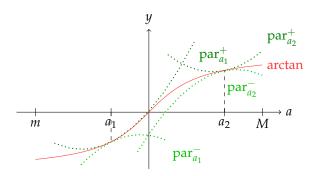
Maxplus Approximation

- Initially introduced to solve Optimal Control Problems [Fleming-McEneaney 00]
- Curse of dimensionality reduction [McEaneney Kluberg, Gaubert-McEneaney-Qu 11, Qu 13].
 Allowed to solve instances of dim up to 15 (inaccessible by grid methods)
- In our context: approximate transcendental functions

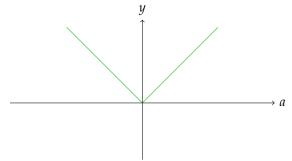
Maxplus Approximation

Definition

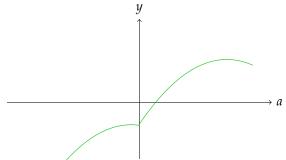
Let $\gamma \geqslant 0$. A function $\phi : \mathbb{R}^n \to \mathbb{R}$ is said to be γ -semiconvex if the function $\mathbf{x} \mapsto \phi(\mathbf{x}) + \frac{\gamma}{2} \|\mathbf{x}\|_2^2$ is convex.



Exact parsimonious maxplus representations



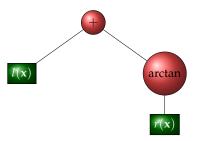
Exact parsimonious maxplus representations



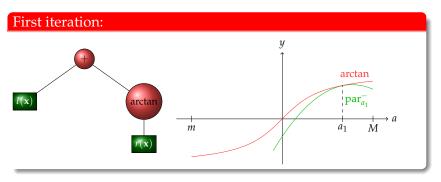
Abstract syntax tree representations of multivariate transcendental functions:

- \blacksquare leaves are semialgebraic functions of \mathcal{A}
- nodes are univariate functions of \mathcal{D} or binary operations

■ For the "Simple" Example from Flyspeck:

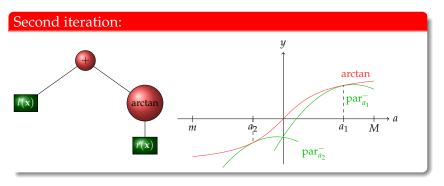


Maxplus Optimization Algorithm



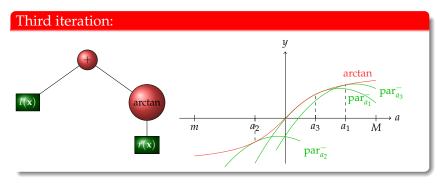
1 control point $\{a_1\}$: $m_1 = -4.7 \times 10^{-3} < 0$

Maxplus Optimization Algorithm



2 control points $\{a_1, a_2\}$: $m_2 = -6.1 \times 10^{-5} < 0$

Maxplus Optimization Algorithm



3 control points
$$\{a_1, a_2, a_3\}$$
: $m_3 = 4.1 \times 10^{-6} > 0$
OK!

SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets

Semialgebraic Maxplus Optimization

Roundoff Error Bounds

Pareto Curves

Polynomial Images of Semialgebraic Sets

Reachable Sets of Polynomial Systems

Invariant Measures of Polynomial Systems

Exact Polynomial Optimization

Conclusion

Exact:

$$f(\mathbf{x}) := x_1 x_2 + x_3 x_4$$

■ Floating-point:

$$\hat{f}(\mathbf{x}, \mathbf{e}) := [x_1 x_2 (1 + e_1) + x_3 x_4 (1 + e_2)] (1 + e_3)$$

 $\mathbf{x} \in \mathbf{X}$, $|e_i| \leq 2^{-p}$ p = 24 (single) or 53 (double)

Input: exact $f(\mathbf{x})$, floating-point $\hat{f}(\mathbf{x}, \mathbf{e})$

Output: Bounds for $f - \hat{f}$

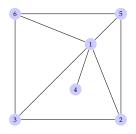
1: Error
$$r(\mathbf{x}, \mathbf{e}) := f(\mathbf{x}) - \hat{f}(\mathbf{x}, \mathbf{e}) = \sum_{\alpha} r_{\alpha}(\mathbf{e}) \mathbf{x}^{\alpha}$$

- 2: Decompose r(x, e) = l(x, e) + h(x, e), *l* linear in e
- 3: Bound h(x, e) with interval arithmetic
- 4: Bound l(x, e) with Sparse Sums of Squares

Sparse SDP Optimization [Waki, Lasserre 06]

■ Correlative sparsity pattern (csp) of vars

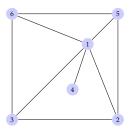
$$x_2x_5 + x_3x_6 - x_2x_3 - x_5x_6 + x_1(-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$



Sparse SDP Optimization [Waki, Lasserre 06]

■ Correlative sparsity pattern (csp) of vars

$$x_2x_5 + x_3x_6 - x_2x_3 - x_5x_6 + x_1(-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$



- **1** Maximal cliques C_1, \ldots, C_l
- 2 Average size $\kappa \leadsto \binom{\kappa + 2k}{\kappa}$ vars

$$C_1 := \{1,4\}$$
 $C_2 := \{1,2,3,5\}$
 $C_3 := \{1,3,5,6\}$
Dense SDP: 210 vars

Contributions

$$l(\mathbf{x}, \mathbf{e}) = \sum_{i=1}^{m} s_i(\mathbf{x}) e_i$$

Maximal cliques correspond to $\{x, e_1\}, \dots, \{x, e_m\}$

M., Constantinides, Donaldson. Certified Roundoff Error Bounds Using Semidefinite Programming, *Trans. Math. Soft.*, 2016

SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets

Semialgebraic Maxplus Optimization Roundoff Error Bounds

Pareto Curves

Polynomial Images of Semialgebraic Sets Reachable Sets of Polynomial Systems Invariant Measures of Polynomial Systems

Exact Polynomial Optimization

Conclusion

Bicriteria Optimization Problems

- Let $f_1, f_2 \in \mathbb{R}[x]$ two conflicting criteria
- Let $\mathbf{S} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0\}$ a semialgebraic set

$$(\mathbf{P}) \left\{ \min_{\mathbf{x} \in \mathbf{S}} (f_1(\mathbf{x}) f_2(\mathbf{x}))^\top \right\}$$

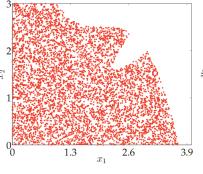
Assumption

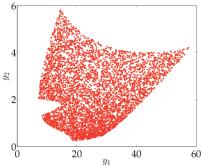
The image space \mathbb{R}^2 is partially ordered in a natural way (\mathbb{R}^2_+ is the ordering cone).

Bicriteria Optimization Problems

$$\begin{split} g_1 &:= -(x_1-2)^3/2 - x_2 + 2.5 \ , \\ g_2 &:= -x_1 - x_2 + 8(-x_1 + x_2 + 0.65)^2 + 3.85 \ , \\ \mathbf{S} &:= \left\{ \mathbf{x} \in \mathbb{R}^2 : g_1(\mathbf{x}) \geqslant 0, g_2(\mathbf{x}) \geqslant 0 \right\} \ . \end{split}$$

$$\begin{split} f_1 &:= (x_1 + x_2 - 7.5)^2 / 4 + (-x_1 + x_2 + 3)^2 \ , \\ f_2 &:= (x_1 - 1)^2 / 4 + (x_2 - 4)^2 / 4 \ . \end{split}$$





Parametric Sublevel Set Approximations

- Inspired by previous research on multiobjective linear optimization [Gorissen-den Hertog 12]
- Workaround: reduce **P** to a **parametric POP**

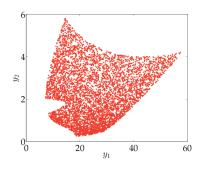
$$(\mathbf{P}_{\lambda}): f^*(\lambda) := \min_{\mathbf{x} \in \mathbf{S}} \{f_2(\mathbf{x}) : f_1(\mathbf{x}) \leqslant \lambda \}$$
,

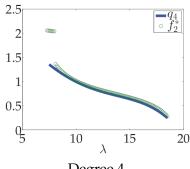
■ variable $(\mathbf{x}, \lambda) \in \mathbf{K} = \mathbf{S} \times [0, 1]$

Moment-SOS approach [Lasserre 10]:

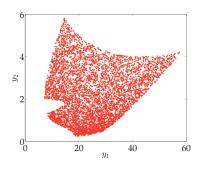
$$(D_k) \begin{cases} \max_{q \in \mathbb{R}_{2k}[\lambda]} & \sum_{i=0}^{2k} q_i / (1+i) \\ \text{s.t.} & f_2(\mathbf{x}) - q(\lambda) \in \mathcal{Q}_{2k}(\mathbf{K}) \end{cases}.$$

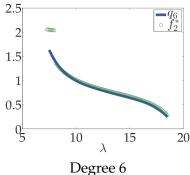
- The hierarchy (D_k) provides a sequence (q_k) of **polynomial under-approximations** of $f^*(\lambda)$.
- $\lim_{d\to\infty} \int_0^1 (f^*(\lambda) q_k(\lambda)) d\lambda = 0$

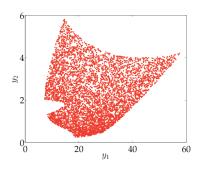


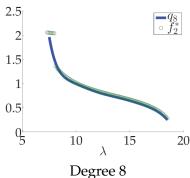


Degree 4









Contributions

- Numerical schemes that avoid computing finitely many points.
- Pareto curve approximation with polynomials, **convergence guarantees** in L_1 -norm
- M., Henrion, Lasserre. Approximating Pareto Curves using Semidefinite Relaxations. *Operations Research Letters*, 2014.

SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets

Semialgebraic Maxplus Optimization Roundoff Error Bounds Pareto Curves

Polynomial Images of Semialgebraic Sets

Reachable Sets of Polynomial Systems Invariant Measures of Polynomial Systems

Exact Polynomial Optimization

Conclusion

Polynomial Images of Semialgebraic Sets

- Semialgebraic set $\mathbf{S} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \geqslant 0, \dots, g_l(\mathbf{x}) \geqslant 0\}$
- A polynomial map $f : \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{x} \mapsto f(\mathbf{x}) := (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$
- $deg f = d := \max\{ deg f_1, \dots, deg f_m \}$
- $\mathbf{F} := f(\mathbf{S}) \subseteq \mathbf{B}$, with $\mathbf{B} \subset \mathbb{R}^m$ a box or a ball
- Tractable approximations of **F**?

Polynomial Images of Semialgebraic Sets

- Includes important special cases:
 - **11** m = 1: polynomial optimization

$$\mathbf{F} \subseteq [\inf_{\mathbf{x} \in \mathbf{S}} f(\mathbf{x}), \sup_{\mathbf{x} \in \mathbf{S}} f(\mathbf{x})]$$

- **2** Approximate **projections** of **S** when $f(\mathbf{x}) := (x_1, \dots, x_m)$
- 3 Pareto curve approximations

For
$$f_1, f_2$$
 two conflicting criteria: (**P**) $\left\{ \min_{\mathbf{x} \in \mathbf{S}} (f_1(\mathbf{x}) f_2(\mathbf{x}))^{\top} \right\}$

Support of Image Measures

■ Pushforward $f_{\#}: \mathcal{M}(S) \to \mathcal{M}(B)$:

$$f_{\#}\mu_0(\mathbf{A}) := \mu_0(\{\mathbf{x} \in \mathbf{S} : f(\mathbf{x}) \in \mathbf{A}\}), \quad \forall \mathbf{A} \in \mathcal{B}(\mathbf{B}), \forall \mu_0 \in \mathcal{M}(\mathbf{S})$$

• $f_{\#}\mu_0$ is the **image measure** of μ_0 under f

Support of Image Measures

$$p^* := \sup_{\mu_0, \mu_1, \hat{\mu}_1} \int_{\mathbf{B}} \mu_1$$
s.t. $\mu_1 + \hat{\mu}_1 = \lambda_{\mathbf{B}}$,
$$\mu_1 = f_{\#}\mu_0$$
,
$$\mu_0 \in \mathcal{M}_+(\mathbf{S}), \quad \mu_1, \hat{\mu}_1 \in \mathcal{M}_+(\mathbf{B})$$
.

Lebesgue measure on **B** is $\lambda_{\mathbf{B}}(d\mathbf{y}) := \mathbf{1}_{\mathbf{B}}(\mathbf{y}) d\mathbf{y}$

Support of Image Measures

$$p^* := \sup_{\mu_0, \mu_1, \hat{\mu}_1} \int_{\mathbf{B}} \mu_1$$
s.t. $\mu_1 + \hat{\mu}_1 = \lambda_{\mathbf{B}}$,
$$\mu_1 = f_{\#}\mu_0$$
,
$$\mu_0 \in \mathcal{M}_+(\mathbf{S}), \quad \mu_1, \hat{\mu}_1 \in \mathcal{M}_+(\mathbf{B})$$
.

Lemma

Let μ_1^* be an optimal solution of the above LP.

Then $\mu_1^* = \lambda_{\mathbf{F}}$ and $p^* = \text{vol } \mathbf{F}$.

Method 2: Primal-dual LP Formulation

Primal LP

$$\begin{split} p^* &:= \sup_{\mu_0, \mu_1, \hat{\mu}_1} \quad \int \mu_1 \qquad \qquad d^* := \inf_{v, w} \quad \int w(\mathbf{y}) \, \lambda_{\mathbf{B}}(d\mathbf{y}) \\ \text{s.t.} \quad \mu_1 + \hat{\mu}_1 &= \lambda_{\mathbf{B}}, \qquad \text{s.t.} \quad v(f(\mathbf{x})) \geqslant 0, \quad \forall \mathbf{x} \in \mathbf{S}, \\ \mu_1 &= f_\# \mu_0, \qquad \qquad w(\mathbf{y}) \geqslant 1 + v(\mathbf{y}), \quad \forall \mathbf{y} \in \mathbf{B}, \\ \mu_0 &\in \mathcal{M}_+(\mathbf{S}), \qquad w(\mathbf{y}) \geqslant 0, \quad \forall \mathbf{y} \in \mathbf{B}, \\ \mu_1, \hat{\mu}_1 &\in \mathcal{M}_+(\mathbf{B}). \qquad v, w \in \mathcal{C}(\mathbf{B}). \end{split}$$

Method 2: Strong Convergence Property

Strengthening of the dual LP:

$$egin{aligned} d_k^* &:= \inf_{v,w} & \sum_{eta \in \mathbf{N}_{2k}^m} w_eta z_eta^\mathbf{B} \ & ext{s.t.} & v \circ f \in \mathcal{Q}_{kd}(\mathbf{S}), \ & w - 1 - v \in \mathcal{Q}_k(\mathbf{B}), \ & w \in \mathcal{Q}_k(\mathbf{B}), \ & v, w \in \mathbb{R}_{2k}[\mathbf{y}]. \end{aligned}$$

Method 2: Strong Convergence Property

Theorem

Assuming that $\mathbf{F} \neq \emptyset$ and $\mathcal{Q}_k(\mathbf{S})$ is Archimedean,

1 The sequence (w_k) converges to $\mathbf{1}_{\mathbf{F}}$ w.r.t the $L_1(\mathbf{B})$ -norm:

$$\lim_{k\to\infty}\int_{\mathbf{B}}|w_k-\mathbf{1}_{\mathbf{F}}|d\mathbf{y}=0.$$

Method 2: Strong Convergence Property

Theorem

Assuming that $\mathbf{F} \neq \emptyset$ and $\mathcal{Q}_k(\mathbf{S})$ is Archimedean,

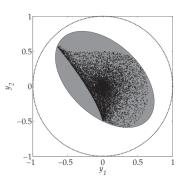
1 The sequence (w_k) converges to $\mathbf{1}_{\mathbf{F}}$ w.r.t the $L_1(\mathbf{B})$ -norm:

$$\lim_{k\to\infty}\int_{\mathbf{B}}|w_k-\mathbf{1}_{\mathbf{F}}|d\mathbf{y}=0.$$

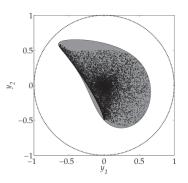
2 Let $\mathbf{F}_k := \{ \mathbf{y} \in \mathbf{B} : w_k(\mathbf{y}) \ge 1 \}$. Then,

$$\lim_{k \to \infty} \operatorname{vol}(\mathbf{F}_k \backslash \mathbf{F}) = 0 .$$

$$f(\mathbf{x}) := (x_1 + x_1 x_2, x_2 - x_1^3)/2$$

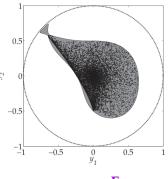


$$f(\mathbf{x}) := (x_1 + x_1 x_2, x_2 - x_1^3)/2$$

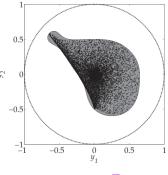


 \mathbf{F}_2

$$f(\mathbf{x}) := (x_1 + x_1 x_2, x_2 - x_1^3)/2$$



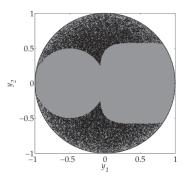
$$f(\mathbf{x}) := (x_1 + x_1 x_2, x_2 - x_1^3)/2$$



Semialgebraic Set Projections

 $f(\mathbf{x}) = (x_1, x_2)$: projection on \mathbb{R}^2 of the semialgebraic set

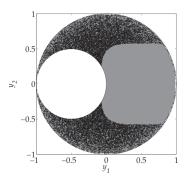
S:= {
$$\mathbf{x} \in \mathbb{R}^3 : ||\mathbf{x}||_2^2 \le 1, 1/4 - (x_1 + 1/2)^2 - x_2^2 \ge 0, 1/9 - (x_1 - 1/2)^4 - x_2^4 \ge 0$$
}



Semialgebraic Set Projections

 $f(\mathbf{x}) = (x_1, x_2)$: projection on \mathbb{R}^2 of the semialgebraic set

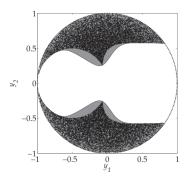
$$\mathbf{S} := \{ \mathbf{x} \in \mathbb{R}^3 : ||\mathbf{x}||_2^2 \leqslant 1, 1/4 - (x_1 + 1/2)^2 - x_2^2 \geqslant 0, \\ 1/9 - (x_1 - 1/2)^4 - x_2^4 \geqslant 0 \}$$



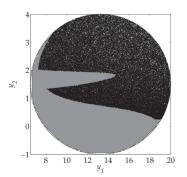
Semialgebraic Set Projections

 $f(\mathbf{x}) = (x_1, x_2)$: projection on \mathbb{R}^2 of the semialgebraic set

S:= {
$$\mathbf{x} \in \mathbb{R}^3 : ||\mathbf{x}||_2^2 \le 1, 1/4 - (x_1 + 1/2)^2 - x_2^2 \ge 0, 1/9 - (x_1 - 1/2)^4 - x_2^4 \ge 0$$
}

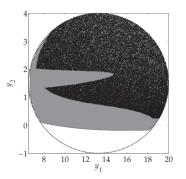


Back on our previous nonconvex example:



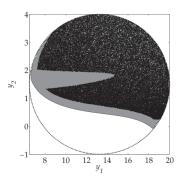
 \mathbf{F}_1

Back on our previous nonconvex example:



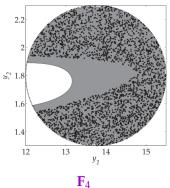
 \mathbf{F}_2

Back on our previous nonconvex example:

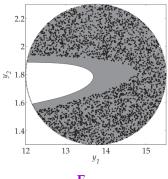


 \mathbf{F}_3

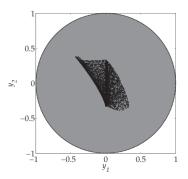
"Zoom" on the region which is hard to approximate:



"Zoom" on the region which is hard to approximate:

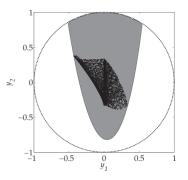


$$f(\mathbf{x}) := (\min(x_1 + x_1x_2, x_1^2), x_2 - x_1^3)/3$$



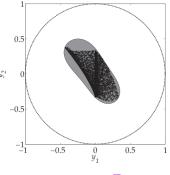
 \mathbf{F}_1

$$f(\mathbf{x}) := (\min(x_1 + x_1x_2, x_1^2), x_2 - x_1^3)/3$$

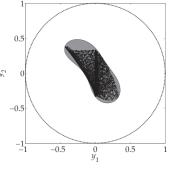


 \mathbf{F}_2

$$f(\mathbf{x}) := (\min(x_1 + x_1x_2, x_1^2), x_2 - x_1^3)/3$$



$$f(\mathbf{x}) := (\min(x_1 + x_1x_2, x_1^2), x_2 - x_1^3)/3$$



Contributions

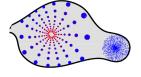
M., Henrion, Lasserre. Semidefinite approximations of projections and polynomial images of semialgebraic sets. *SIAM Opt.*, 2015.

Reachable Sets of Polynomial Systems

Iterations
$$\mathbf{x}_{t+1} = f(\mathbf{x}_t)$$

Uncertain $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u})$

- **Converging** SDP hierarchies
- ¥Image measure
- ¥ Liouville equation (conservation)



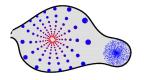
$$\mu_t + \mu = f_\# \mu + \mu_0$$

Reachable Sets of Polynomial Systems

Iterations
$$\mathbf{x}_{t+1} = f(\mathbf{x}_t)$$

Uncertain $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u})$

- **Converging** SDP hierarchies
- ¥Image measure
- ¥ Liouville equation (conservation)



$$\mu_t + \mu = f_{\#} \mu + \mu_0$$

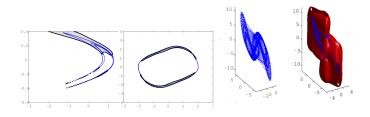
M., Garoche, Henrion, Thirioux. Semidefinite Approximations of Reachable Sets for Discrete-time Polynomial Systems, 2017.

Invariant Measures of Polynomial Systems

Discrete
$$\mathbf{x}_{t+1} = f(\mathbf{x}_t) \implies f_{\#} \mu - \mu = 0$$

Continuous $\dot{\mathbf{x}} = f(\mathbf{x}) \implies \operatorname{div} f \mu = 0$

- **Converging** SDP hierarchies
- \forall measures with density in L_p
- \bigvee singular measures \Longrightarrow chaotic attractors

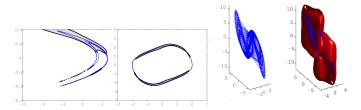


Invariant Measures of Polynomial Systems

Discrete
$$\mathbf{x}_{t+1} = f(\mathbf{x}_t) \implies f_{\#} \mu - \mu = 0$$

Continuous $\dot{\mathbf{x}} = f(\mathbf{x}) \implies \operatorname{div} f \mu = 0$

- **Converging** SDP hierarchies
- \forall measures with density in L_p
- \forall singular measures \implies chaotic attractors



M., Forets, Henrion. Semidefinite Characterization of Invariant Measures for Polynomial Systems. *In Progress*, 2018.

SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets

Exact Polynomial Optimization

Conclusion

Exact Polynomial Optimization

V [Lasserre/Parrilo 01] **Numerical** solvers compute σ_i Semidefinite programming (SDP) → **approximate** certificates

$$f = 4X_1^4 + 4X_1^3X_2 - 7X_1^2X_2^2 - 2X_1X_2^3 + 10X_2^4$$
$$f \simeq \sigma = (2X_1^2 + X_1X_2 - \frac{8}{3}X_2^2)^2 + (\frac{4}{3}X_1X_2 + \frac{3}{2}X_2^2)^2 + (\frac{2}{7}X_2^2)^2$$

Exact Polynomial Optimization

 \widetilde{V} [Lasserre/Parrilo 01] **Numerical** solvers compute σ_i Semidefinite programming (SDP) \leadsto **approximate** certificates

$$f = 4X_1^4 + 4X_1^3X_2 - 7X_1^2X_2^2 - 2X_1X_2^3 + 10X_2^4$$

$$f \simeq \sigma = (2X_1^2 + X_1X_2 - \frac{8}{3}X_2^2)^2 + (\frac{4}{3}X_1X_2 + \frac{3}{2}X_2^2)^2 + (\frac{2}{7}X_2^2)^2$$

$$f = \sigma + \frac{8}{9}X_1^2X_2^2 - \frac{2}{3}X_1X_2^3 + \frac{983}{1764}X_2^4$$

Exact Polynomial Optimization

 \widetilde{V} [Lasserre/Parrilo 01] **Numerical** solvers compute σ_i Semidefinite programming (SDP) \leadsto **approximate** certificates

$$f = 4X_1^4 + 4X_1^3X_2 - 7X_1^2X_2^2 - 2X_1X_2^3 + 10X_2^4$$

$$f \simeq \sigma = (2X_1^2 + X_1X_2 - \frac{8}{3}X_2^2)^2 + (\frac{4}{3}X_1X_2 + \frac{3}{2}X_2^2)^2 + (\frac{2}{7}X_2^2)^2$$

$$f = \sigma + \frac{8}{9}X_1^2X_2^2 - \frac{2}{3}X_1X_2^3 + \frac{983}{1764}X_2^4$$

$$\simeq$$
 \rightarrow =

The Question of Exact Certification

How to go from **approximate** to **exact** certification?

One Answer when $\mathbf{K} = \mathbb{R}^n$

∀Hybrid **SYMBOLIC/NUMERIC** methods

[Peyrl-Parrilo 08] [Kaltofen et. al 08]

$$f(X) \simeq \mathbf{v}_D^T(X) \, \tilde{\mathbf{Q}} \, \mathbf{v}_D(X)$$

$$0 \preccurlyeq \tilde{\mathbf{Q}} \in \mathbb{R}^{D \times D}$$

$$\mathbf{v}_D(X) = (1, X_1, \dots, X_n, X_1^2, \dots, X_n^D)$$

One Answer when $\mathbf{K} = \mathbb{R}^n$

∀Hybrid **SYMBOLIC/NUMERIC** methods

$$f(X) \simeq \mathbf{v}_D^T(X) \, \tilde{\mathbf{Q}} \, \mathbf{v}_D(X)$$

$$0 \preceq \tilde{\mathbf{Q}} \in \mathbb{R}^{D \times D}$$

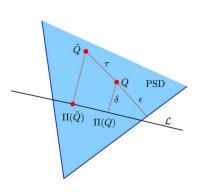
$$\mathbf{v}_D(X) = (1, X_1, \dots, X_n, X_1^2, \dots, X_n^D)$$

$$\simeq$$
 \rightarrow =

 \tilde{V} \tilde{Q} Rounding Q Projection $\Pi(Q)$

$$f(X) = \mathbf{v}_D^T(X) \prod(\mathbf{Q}) \mathbf{v}_D(X)$$

$$\Pi(\mathbf{Q}) \succcurlyeq 0 \text{ when } \boldsymbol{\varepsilon} \rightarrow 0$$



One Answer when $\mathbf{K} = \mathbb{R}^n$

V Hybrid **SYMBOLIC/NUMERIC** methods

[Peyrl-Parrilo 08] [Kaltofen et. al 08]

$$f(X) \simeq \mathbf{v}_D^T(X) \, \tilde{\mathbf{Q}} \, \mathbf{v}_D(X)$$

$$0 \preccurlyeq \tilde{\mathbf{Q}} \in \mathbb{R}^{D \times D}$$

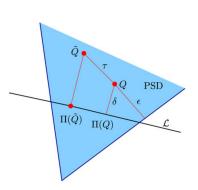
$$\mathbf{v}_D(X) = (1, X_1, \dots, X_n, X_1^2, \dots, X_n^D)$$

$$\simeq$$
 \rightarrow =

 $\tilde{\mathbf{V}}$ $\tilde{\mathbf{Q}}$ Rounding \mathbf{Q} Projection $\Pi(\mathbf{Q})$

$$f(X) = \mathbf{v}_D^T(X) \prod(\mathbf{Q}) \mathbf{v}_D(X)$$

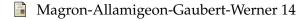
$$\Pi(\mathbf{O}) \geq 0$$
 when $\varepsilon \rightarrow 0$



COMPLEXITY?

One Answer when $\mathbf{K} = \{ \mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \geqslant 0 \}$

₩ Hybrid SYMBOLIC/NUMERIC methods



$$f \simeq \tilde{\sigma}_0 + \tilde{\sigma}_1 g_1 + \dots + \tilde{\sigma}_m g_m$$

$$u = f - \tilde{\sigma}_0 + \tilde{\sigma}_1 g_1 + \dots + \tilde{\sigma}_m g_m$$

One Answer when $\mathbf{K} = \{ \mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \geqslant 0 \}$

∀Hybrid **SYMBOLIC/NUMERIC** methods

Magron-Allamigeon-Gaubert-Werner 14

$$f \simeq \tilde{\sigma}_0 + \tilde{\sigma}_1 g_1 + \dots + \tilde{\sigma}_m g_m$$

Compact
$$\mathbf{K} \subseteq [0,1]^n$$

$$u = f - \tilde{\sigma}_0 + \tilde{\sigma}_1 g_1 + \dots + \tilde{\sigma}_m g_m$$

$$\simeq$$
 \rightarrow =

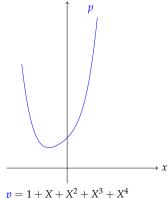
$$\forall \mathbf{x} \in [0,1]^n, \mathbf{u}(\mathbf{x}) \leqslant -\varepsilon$$

 $\min_{\mathbf{K}} f \geqslant \mathbf{\epsilon} \text{ when } \mathbf{\epsilon} \to 0$

COMPLEXITY?

Algorithm from [Chevillard et. al 11]

$$p \in \mathbb{Z}[X]$$
, deg $p = d = 2k$, $p > 0$

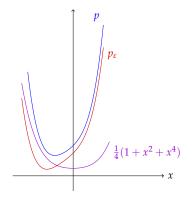


Algorithm from [Chevillard et. al 11]

$$p \in \mathbb{Z}[X]$$
, deg $p = d = 2k$, $p > 0$

 \bigvee Perturb: find $\varepsilon \in \mathbb{Q}$ s.t.

$$p_{\varepsilon} := p - \varepsilon \sum_{i=0}^{k} X^{2i} > 0$$



$$p = 1 + X + X^2 + X^3 + X^4$$

$$\varepsilon = \frac{1}{2}$$

$$p > \frac{1}{4}(1 + X^2 + X^4)$$

Algorithm from [Chevillard et. al 11]

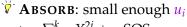
$$p \in \mathbb{Z}[X]$$
, deg $p = d = 2k$, $p > 0$

PERTURB: find $\varepsilon \in \mathbb{Q}$ s.t.

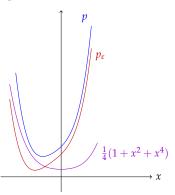
$$p_{\varepsilon} := p - \varepsilon \sum_{i=0}^{k} X^{2i} > 0$$

♥ SDP Approximation:

$$p - \varepsilon \sum_{i=0}^{k} X^{2i} = \sigma + u$$



 $\implies \varepsilon \sum_{i=0}^k X^{2i} + u \operatorname{SOS}$

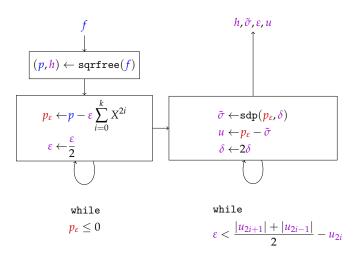


$$p = 1 + X + X^2 + X^3 + X^4$$

$$\varepsilon=rac{1}{4}$$

$$p > \frac{1}{4}(1 + X^2 + X^4)$$

- **Input**: $f \ge 0 \in \mathbb{Q}[X]$ of degree $d \ge 2$, $\varepsilon \in \mathbb{Q}^{>0}$, $\delta \in \mathbb{N}^{>0}$
- Output: SOS decomposition with coefficients in Q



intsos with n = 1: Absorbtion

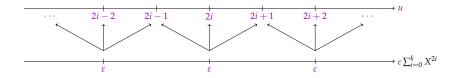
$$X = \frac{1}{2} [(X+1)^2 - 1 - X^2]$$

$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[(X^{i+1} + \operatorname{sgn}(u_{2i+1})X^{i})^{2} - X^{2i} - X^{2i+2} \right]$$

$$X = \frac{1}{2} [(X+1)^2 - 1 - X^2]$$

$$X = \frac{1}{2} [(X+1)^2 - 1 - X^2]$$

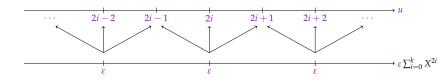
$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[(X^{i+1} + \operatorname{sgn}(u_{2i+1})X^{i})^{2} - X^{2i} - X^{2i+2} \right]$$



$$X = \frac{1}{2} [(X+1)^2 - 1 - X^2]$$

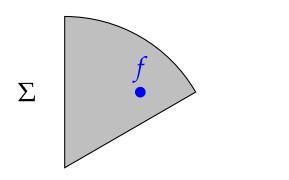
$$X = \frac{1}{2} [(X+1)^2 - 1 - X^2]$$

$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[(X^{i+1} + \operatorname{sgn}(u_{2i+1})X^{i})^{2} - X^{2i} - X^{2i+2} \right]$$



$$\varepsilon \geqslant \frac{|u_{2i+1}| + |u_{2i-1}|}{2} - u_{2i} \implies \varepsilon \sum_{i=0}^{k} X^{2i} + u \quad SOS$$

intsos with $n \ge 1$: Perturbation



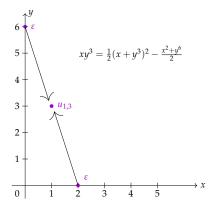
PERTURBATION idea

Approximate SOS Decomposition

$$f(X)$$
 - $\varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$

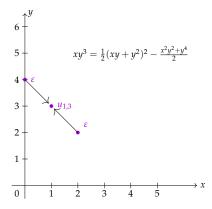
$$f(X)$$
 - $\varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$

Choice of \mathcal{P} ?



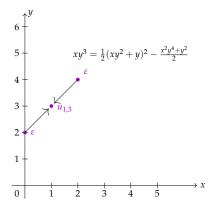
$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Choice of \mathcal{P} ?



$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Choice of \mathcal{P} ?



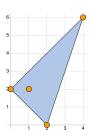
$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Choice of \mathcal{P} ?

$$f = 4x^4y^6 + x^2 - xy^2 + y^2$$

$$spt(f) = \{(4,6), (2,0), (1,2), (0,2)\}$$

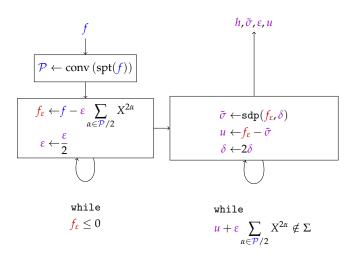
Newton Polytope $\mathcal{P} = \text{conv}\left(\text{spt}(f)\right)$



Squares in SOS decomposition $\subseteq \frac{p}{2} \cap \mathbb{N}^n$ [Reznick 78]

Algorithm intsos

- Input: $f \ge 0 \in \mathbb{Q}[X]$ of degree $d \ge 2$, $\varepsilon \in \mathbb{Q}^{>0}$, $\delta \in \mathbb{N}^{>0}$
- Output: SOS decomposition with coefficients in Q



Algorithm intsos

Theorem (Exact Certification Cost in $\mathring{\Sigma}$)

$$f \in \mathbb{Q}[X] \cap \mathring{\Sigma}[X]$$
 with $\deg f = d = 2k$ and bit size τ

 \implies intsos terminates with SOS output of bit size $| \tau d^{\mathcal{O}(n)} |$

Algorithm intsos

Theorem (Exact Certification Cost in $\check{\Sigma}$)

$$f \in \mathbb{Q}[X] \cap \mathring{\Sigma}[X]$$
 with $\deg f = d = 2k$ and bit size τ

 \implies intsos terminates with SOS output of bit size $|\tau d^{\mathcal{O}(n)}|$

Proof.

$$\widetilde{V} \left\{ \varepsilon \in \mathbb{R} : \forall \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} \mathbf{x}^{2\alpha} \geqslant 0 \right\} \neq \emptyset$$
Quantifier Elimination [Basu et. al 06] $\implies \tau(\varepsilon) = \tau d^{\mathcal{O}(n)}$

$$\forall$$
 # Coefficients in SOS output = size($\mathcal{P}/2$) = $\binom{n+k}{n} \leqslant d^n$

Filipsoid algorithm for SDP [Grötschel et. al 93]

SDP for Nonlinear Optimization

SDP for Characterizing Values/Curves/Sets

Exact Polynomial Optimization

Conclusion

Conclusion

SDP/SOS powerful to handle **NONLINEAR VERIFICATION**:

- Optimize values/curves/sets
- Formal nonlinear optimization: NLCertify

 Analysis of NONLINEAR SYSTEMS (Reachability, Invariants)

Conclusion

SDP/SOS powerful to handle **NONLINEAR VERIFICATION**:

- Optimize values/curves/sets
- Formal nonlinear optimization: NLCertify
- Analysis of NONLINEAR SYSTEMS (Reachability, Invariants)

FUTURE:

- PDEs
- Exact methods
- Non polynomial functions

End

Thank you for your attention!

http://www-verimag.imag.fr/~magron