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Invariant Measures



Problem statement

� Polynomial transition map

x 7→ f (x) := (f 1(x), . . . , f n(x)) ∈ Rn[x]

� Semialgebraic state constraints

X := {x ∈ Rn : g1(x) ≥ 0, . . . , gl(x) ≥ 0} �
� Discrete-time systems:

xt+1 = f (xt) , xt ∈ X , t ∈ N

or Continuous-time systems:

ẋ = f (x) , x ∈ X , t ∈ [0,∞)
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Problem statement

� Borel σ-algebra B(X) (generated by the open sets of X)

� µ ∈M+(X): set of Borel measures supported on X:

1. Non-negative 2. Countably additive

� Moments of the Lebesgue measure on A ⊆ X

zAβ :=

∫
xβλA(dx) ∈ R , β ∈ Nn

� Invariant set: f (I) = I

� Invariant measure: µ(B) = µ(f −1(B)) ∀B ∈ B(X) µ = f #µ

Squeeze mapping: (x , y) 7→ f (x , y) := (ax , y/a)

X := [0, 1]2

λX = f #λX

The Problem

How to characterize the invariant measures?
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Related work: approximating invariant sets and measures

� Determine long term dynamical behaviors.

� Numerical integration under some initial conditions

−→ Resulting trajectory could exhibit chaotic behaviors!

� Alternative: approximate the densities directly.

� Subdivision techniques [Dellnitz et al 1997, Aston-Junge

2014]

� Markov chain based approximation of dynamical behavior.

GAIO [Dellnitz-Froyland-Junge 2001]

� Multilevel subdivision scheme for uncertain ODEs

[Dellnitz-Hohmann-Ziessler 2017]
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Related work: Lasserre hierarchy

Cast a polynomial optimization problem as an

in�nite-dimensional LP over measures [Lasserre 2001]

f ? := inf
x∈X

f (x) = inf
µ∈M+(X)

∫
X

f (x)dµ

 Regions of attraction [Henrion-Korda 14]

 Maximum invariants [Korda et al 13]

 Reachable sets [Magron et al 17]

 Invariant 1D densities [Henrion 2012]
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Contribution

� Extension of Lasserre's hierarchy of semide�nite relaxations

 no time/space discretization required.

� Approximate as close as desired:

� Invariant densities.

� Support of singular invariant measures.

� Relies on a hierarchy of �nite-dimensional SDPs.
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Overview

SDP for Polynomial Optimization (Reminder)

Invariant Densities

Singular Invariant Measures
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SDP for Polynomial Optimization

(Reminder)



What is Semide�nite Programming?

� Linear Programming (LP):

min
z

c
>
z

s.t. Az ≥ d .

� Linear cost c

� Linear inequalities �
∑

i Aij zj ≥ di � Polyhedron
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What is Semide�nite Programming?

� Semide�nite Programming (SDP):

min
z

c
>
z

s.t.
∑
i

Fi zi � F0 .

� Linear cost c

� Symmetric matrices F0,Fi

� Linear matrix inequalities �F � 0�

(F has nonnegative eigenvalues)

Spectrahedron

7



What is Semide�nite Programming?

� Semide�nite Programming (SDP):

min
z

c
>
z

s.t.
∑
i

Fi zi � F0 , Az = d .

� Linear cost c

� Symmetric matrices F0,Fi

� Linear matrix inequalities �F � 0�

(F has nonnegative eigenvalues)

Spectrahedron

8



SDP for Polynomial Optimization

� Prove polynomial inequalities with SDP:

f (a, b) := a2 − 2ab + b2 ≥ 0 .

� Find z s.t. f (a, b) =
(
a b

)(z1 z2

z2 z3

)
︸ ︷︷ ︸

�0

(
a

b

)
.

� Find z s.t. a2 − 2ab+ b2 = z1a
2 + 2z2ab+ z3b

2 (Az = d)

�

(
z1 z2
z2 z3

)
=

(
1 0

0 0

)
︸ ︷︷ ︸

F1

z1 +

(
0 1

1 0

)
︸ ︷︷ ︸

F2

z2 +

(
0 0

0 1

)
︸ ︷︷ ︸

F3

z3 �

(
0 0

0 0

)
︸ ︷︷ ︸

F0
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SDP for Polynomial Optimization

� Choose a cost c e.g. (1, 0, 1) and solve:

min
z

c
>
z

s.t.
∑
i

Fi zi � F0 , Az = d .

� Solution

(
z1 z2
z2 z3

)
=

(
1 −1
−1 1

)
� 0 (eigenvalues 0 and 2)

� a2 − 2ab + b2 =
(
a b

)( 1 −1
−1 1

)
︸ ︷︷ ︸

�0

(
a

b

)
= (a− b)2 .

� Solving SDP =⇒ Finding Sums of Squares certi�cates
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SDP for Polynomial Optimization

NP hard General Problem: f ∗ := min
x∈X

f (x)

� Semialgebraic set X := {x ∈ Rn : g1(x) ≥ 0, . . . , gl(x) ≥ 0}

� := [0, 1]2 = {x ∈ R2 : x1(1− x1) ≥ 0, x2(1− x2) ≥ 0}

f︷︸︸︷
x1x2 +

1

8
=

σ0︷ ︸︸ ︷
1

2

(
x1 + x2 −

1

2

)2

+

σ1︷︸︸︷
1

2

g1︷ ︸︸ ︷
x1(1− x1)+

σ2︷︸︸︷
1

2

g2︷ ︸︸ ︷
x2(1− x2)

� Sums of squares (SOS) σi

� Bounded degree:

Qr (X) :=
{
σ0 +

∑l
j=1 σjgj , with deg σj gj ≤ 2r

}
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SDP for Polynomial Optimization

� Hierarchy of SDP relaxations:

mr := sup
m

{
m : f −m ∈ Qr (X)

}
� Convergence guarantees mr ↑ f ∗ [Lasserre 01]

� Can be computed with SDP solvers (csdp, sdpa)

� �No Free Lunch� Rule:
(n+2r

n

)
SDP variables

� Extension to semialgebraic functions

 r(x) = p(x)/
√
q(x) [Lasserre-Putinar 10]
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Primal-dual Moment-SOS [Lasserre 01]

f ∗ = inf
x∈X

f (x) = inf
µ∈M+(X)

∫
X

f dµ

13



Primal-dual Moment-SOS [Lasserre 01]

� Let (xα)α∈Nn be the monomial basis

De�nition

A sequence z has a representing measure on X if there exists a �nite

measure µ supported on X such that

zα =

∫
X

xαµ(dx) , ∀α ∈ Nn .
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Primal-dual Moment-SOS [Lasserre 01]

� M+(X): space of probability measures supported on X

� Q(X): quadratic module

Polynomial Optimization Problems (POP)

(Primal) (Dual)

inf

∫
X

f dµ = sup m

s.t. µ ∈M+(X) s.t. m ∈ R ,

f −m ∈ Q(X)
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Primal-dual Moment-SOS [Lasserre 01]

� Finite moment sequences z of measures inM+(X)

� Truncated quadratic module Qr (X)

Polynomial Optimization Problems (POP)

(Moment) (SOS)

inf
∑
α

fα zα = sup m

s.t. Mr−rj (gj z) < 0 , 0 ≤ j ≤ l , s.t. m ∈ R ,

z0 = 1 f −m ∈ Qr (X)

13



Invariant Densities



Invariant Densities in Lebesgue Spaces

Discrete systems: f #µ− µ = 0

Continuous systems:
∑n

i=1
∂(f iµ)
∂xi

= 0

 µ is invariant when Lf (µ) = 0

Lebesgue decomposition: µ = ν + ψ with

� Absolute continuity ν � λ: λ(A) = 0 =⇒ ν(A) = 0

� Singular ψ ⊥ λ: λ(A) = ν(B) = 0 for disjoint A, B

Focus on the case when ψ = 0 and µ = ν

µ� λ =⇒ ∃ measurable h with dµ = hdλ

Notation abuse ‖µ‖p = ‖h‖p = (
∫
X
|h(x)|pdx)1/p, for p ≥ 1

Compute or approximate h ∈ Lp(X) ?

14
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Invariant Densities in Lebesgue Spaces

p and q conjugate: 1/p + 1/q = 1, for p ≥ 1

Reminder: `y(g) =
∑

α yαgα for g ∈ R[x]

Theorem ([Yosida]+ [Riesz-Haviland ])

Let y = (yα)TFAE:

(i) y is represented by µ ∈ Lp(X) with ‖µ‖p ≤ γ <∞ for some γ ≥ 0.

(ii) ∃γ ≥ 0 s.t. ∀g ∈ R[x]:

|`y(g)| ≤ γ`z(|g |q)1/q

and `y(g) ≥ 0 for all g ∈ R[x] nonnegative on X.

15
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Invariant Densities in L2(X)

When p = q = 2, we rewrite |`y(g)| ≤ γ`z(|g |q)1/q:

Cr
2(y) :=

(
Mr (z) y

yT γ2

)
� 0 , ∀r ∈ N .

SDP!

Entry (α, β) of Mr (z) = `z(x
α+β) = zα+β
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Invariant Densities in L∞(X)

When p =∞ and q = 1, we rewrite |`y(g)| ≤ γ`z(|g |q)1/q:

Cr
∞(y) := γMr (z)−Mr (y) � 0 ∀r ∈ N .

SDP!

Entry (α, β) of Mr (y) = `y(x
α+β) = yα+β

16



In�nite-dimensional Conic Formulation

ρ?ac := sup
µ

∫
X

µ

s.t. Lf (µ) = 0 ,

‖µ‖p ≤ 1 ,

µ ∈ Lp(X)+ .

(1)

Theorem

∃! invariant prob. meas. µac ∈ Lp(X) =⇒ CONIC (1) has the unique

optimal solution µ?ac := ρ?ac µac.

Invariant density µ =⇒ γ = 1 ok!
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A Hierarchy of SDP Relaxations

ρrac := sup
y

y0

s.t. Iy(x
α) = 0 , ∀α ∈ Nn

2r ,

Cr
p(y) � 0 ,

Mr−rj (gj y) � 0, j = 0, . . . , l .

Theorem

� Existence of an optimal solution yr .

� Convergence:

lim
r→+∞

y r
α = y?α, lim

r→+∞
ρrac = ρ?ac,

and y? is the moment sequence of the invariant measure µac.

18
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Approximations of Invariant Densities in L2(X)

De�ne hr ∈ R2r [x] with coe�cient vector

hr := Mr (z)
−1yr .

Theorem ([Henrion et. al ])

Strong convergence w.r.t. the L2-norm:

lim
r→∞

‖hr − h?‖2 = 0 .

Proof.

X compact =⇒ R[x] dense in L2(X)

=⇒ ∃(ur ) ⊂ R[x] with ‖ur − h?‖2 → 0

hr optimal solution for minu ‖u − h?‖2
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Numerical Experiments I



Extension to Piecewise Polynomial Systems

xt+1 = fi (xt) for x ∈ Xi , i ∈ I , t ∈ N ,

ẋ = fi (x) for x ∈ Xi , i ∈ I , t ∈ [0,∞) .

� Use the piecewise structure of the dynamics fi .

� Decompose the global invariant µ =
∑

i∈I µi with local

µi ∈M+(Xi ) invariant w.r.t. fi

sup
µi

∑
i∈I

∫
Xi

µi

s.t. Lfi (µi ) = 0 , i ∈ I ,∑
i∈I
‖µi‖p ≤ 1 ,

µi ∈ Lp(Xi+) , i ∈ I .
20



Square Integrable Invariant Density

t+ = T (t) := t + w mod 1

on T := [0, 1], w ∈ R\Q =⇒ λT is invariant

h?(t) := 3
4
t−1/4 ∈ L2(X) and F (t) :=

∫ t
0
h?(s)ds = t3/4

x+ = F−1 ◦ T ◦ F (x)
on X := [0, 1] =⇒ h? is invariant

r = 4 r = 6 r = 8

Approximation hr2 (solid) of exact density h? (dashed)
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Rotational Flow Map

ẋ1 = x2

ẋ2 = −x1
(x1, x2) ∈ X := {x ∈ R2 : ‖x‖2 ≤ 1}.

� λX is invariant.

Proof. Use Green-Ostrogradski's formula.

� Result: for r = 2, p =∞, we obtain hrp(x) = 1 = h?(x).

22



Piecewise A�ne Map

x+ :=

2x if x ∈ X1 := [0, 1
2
]

1+ 3
2
(1
2
− x) if x ∈ X2 := [1

2
, 1]

r = 4, p = 2 r = 6, p = 2 r = 8, p = 2

r = 4, p = ∞ r = 6, p = ∞ r = 8, p = ∞

Approximation hrp of exact density h? = 1[ 1
4
, 1
2
] +

3
2
1[ 1

2
,1]
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Singular Invariant Measures



In�nite-Dimensional LP Formulation

We know the moments of λX, unknown µ is invariant proba.

ρ?sing = sup
µ,ν,ν̂,ψ

∫
X

ν

s.t.

∫
X

µ = 1 , Lf (µ) = 0 ,

ν + ψ = µ , ν + ν̂ = λX ,

µ, ν, ν̂, ψ ∈M+(X) .

(2)

Theorem

∃! invariant prob. meas. µ?sing =⇒ LP (2) has the unique optimal

solution (µ?sing, 0, λX, µ
?
sing) and ρ

?
sing = 0.
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A Hierarchy of SDPs

ρrsing := sup
u,v,v̂,y

v0

s.t. u0 = 1 , Iu(x
α) = 0 , ∀α ∈ Nn

2r ,

vα + yα = uα , vα + v̂α = zα, ∀α ∈ Nn
2r ,

Mr−rj (gj u) ,Mr−rj (gj v) � 0 , j = 0, . . . , l ,

Mr−rj (gj v̂) ,Mr−rj (gj y) � 0 , j = 0, . . . , l .

Theorem

� Existence of an optimal solution ur .

� Convergence:

lim
r→+∞

urα = u?α, lim
r→+∞

ρrsing = ρ?sing,

and u? is the moment sequence of the invariant measure µ?sing.
25



Approximation of Supports

How to approximate the support S of µ?sing with the SDP

solution ur?

Christo�el polynomial κr (x) := mr (x)
TMr (u)

−1mr (x)

with mr (x) = (1, x1, . . . , xn, x
2
1 , . . . , x

r
n)

Sr :=
{
x ∈ X :

(
dr + n

n

)
≥ Crκr (x)

}
.

Theorem

sup dist convergence: limr→∞ supSr dist(x,S) = 0
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Numerical experiments II



Hénon Map

x+1 = 1− ax21 + x2

x+2 = bx1
(x1, x2) ∈ X := [−3, 1.5]× [−0.6, 0.4].

r = 4 r = 6 r = 8

Hénon attractor (blue) and support approximations Sr (light gray)

for a = 1.4 and b = 0.3.
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Van der Pol Oscillator

ẋ1 = x2

ẋ2 = a(1− x21 )x2 − x1
X := [−3, 3]× [−4, 4].

r = 4 r = 6 r = 8

Van der Pol attractor and support approximations Sr for a = 0.5.
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Van der Pol Oscillator

ẋ1 = x2

ẋ2 = a(1− x21 )x2 − x1
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Arneodo-Coullet System
ẋ1 = x2

ẋ2 = x3

ẋ3 = −ax1 − bx2 − x3 + cx3
1

X := [−4, 4]× [−8, 8]× [−12, 12].

Attractor r = 4

Arneodo-Coullet attractor and support approximations (red) for

a = −5.5, b = 3.5 and c = −1.
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Conclusion and Perspectives



Conclusion

� 2 methods to characterize invariant measures:

1. Approximate invariant densities in L2 and L∞
=⇒ strong convergence: ‖h? − hr‖2 → 0

2. Approximate support S of singular measures with Christo�el

=⇒ sup dist convergence: supSr dist(x,S)→ 0

�  Extension to piecewise polynomial systems.
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Perspectives

� Exploit sparsity or symmetry for large size systems.

� Improve accuracy of results:

� Alternative bases: Chebyshev or rational functions

� Ill-conditioning nature of the moment matrix

� Open Question: Extension of Hausdor� convergence of

Christo�el [Lasserre-Pauwels 2017] to singular measures?
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