Semidefinite Characterization of Invariant Measures for Polynomial Systems

Collaboration with: Marcelo Forets (CNRS-VERIMAG, Univ. Grenoble Alpes) and Didier Henrion (CNRS-LAAS, Univ. Toulouse)

Victor Magron CNRS-VERIMAG

PGMO Days 2017
November 13-14

EDF Lab, Paris Saclay

Invariant Measures

Problem statement

- Polynomial transition map

$$
\mathrm{x} \mapsto f(\mathrm{x}):=\left(f^{1}(\mathrm{x}), \ldots, f^{n}(\mathrm{x})\right) \in \mathbb{R}^{n}[\mathrm{x}]
$$

- Semialgebraic state constraints

$$
\mathbf{X}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{1}(\mathbf{x}) \geq 0, \ldots, g_{l}(\mathbf{x}) \geq 0\right\}
$$

- Discrete-time systems:

$$
\mathbf{x}_{t+1}=f\left(\mathbf{x}_{t}\right), \quad \mathbf{x}_{t} \in \mathbf{X}, \quad t \in \mathbb{N}
$$

or Continuous-time systems:

$$
\dot{\mathbf{x}}=f(\mathbf{x}), \quad \mathbf{x} \in \mathbf{X}, \quad t \in[0, \infty)
$$

Problem statement

- Borel σ-algebra $\mathcal{B}(\mathbf{X})$ (generated by the open sets of \mathbf{X})
- $\mu \in \mathcal{M}_{+}(\mathbf{X})$: set of Borel measures supported on \mathbf{X} :

1. Non-negative 2. Countably additive

Problem statement

- Borel σ-algebra $\mathcal{B}(\mathbf{X})$ (generated by the open sets of \mathbf{X})
- $\mu \in \mathcal{M}_{+}(\mathbf{X})$: set of Borel measures supported on \mathbf{X} :

1. Non-negative 2. Countably additive

- Moments of the Lebesgue measure on $\mathbf{A} \subseteq \mathbf{X}$

$$
z_{\beta}^{\mathbf{A}}:=\int \mathbf{x}^{\beta} \lambda_{\mathbf{A}}(d \mathbf{x}) \in \mathbb{R}, \quad \beta \in \mathbb{N}^{n}
$$

Problem statement

- Borel σ-algebra $\mathcal{B}(\mathbf{X})$ (generated by the open sets of \mathbf{X})
- $\mu \in \mathcal{M}_{+}(\mathbf{X})$: set of Borel measures supported on \mathbf{X} :

1. Non-negative 2. Countably additive

- Moments of the Lebesgue measure on $\mathbf{A} \subseteq \mathbf{X}$

$$
z_{\beta}^{\mathbf{A}}:=\int \mathbf{x}^{\beta} \lambda_{\mathbf{A}}(d \mathbf{x}) \in \mathbb{R}, \quad \beta \in \mathbb{N}^{n}
$$

- Invariant set: $f(\mathbf{I})=\mathbf{I}$
- Invariant measure: $\mu(\mathbf{B})=\mu\left(f^{-1}(\mathbf{B})\right) \forall \mathbf{B} \in \mathcal{B}(\mathbf{X}) \quad \mu=f_{\#} \mu$

Problem statement

- Borel σ-algebra $\mathcal{B}(\mathbf{X})$ (generated by the open sets of \mathbf{X})
- $\mu \in \mathcal{M}_{+}(\mathbf{X})$: set of Borel measures supported on \mathbf{X} :

1. Non-negative 2. Countably additive

- Moments of the Lebesgue measure on $\mathbf{A} \subseteq \mathbf{X}$

$$
z_{\beta}^{\mathbf{A}}:=\int \mathbf{x}^{\beta} \lambda_{\mathbf{A}}(d \mathbf{x}) \in \mathbb{R}, \quad \beta \in \mathbb{N}^{n}
$$

- Invariant set: $f(\mathbf{I})=\mathbf{I}$
- Invariant measure: $\mu(\mathbf{B})=\mu\left(f^{-1}(\mathbf{B})\right) \forall \mathbf{B} \in \mathcal{B}(\mathbf{X}) \quad \mu=f_{\# \mu}$

Squeeze mapping: $(x, y) \mapsto f(x, y):=(a x, y / a)$
$\mathbf{X}:=[0,1]^{2}$
$\lambda_{\mathbf{x}}=f_{\#} \lambda_{\mathbf{x}}$

The Problem

Related work: approximating invariant sets and measures

- Determine long term dynamical behaviors.
- Numerical integration under some initial conditions \longrightarrow Resulting trajectory could exhibit chaotic behaviors!
- Alternative: approximate the densities directly.
- Subdivision techniques [Dellnitz et al 1997, Aston-Junge 2014]
- Markov chain based approximation of dynamical behavior. GAIO [Dellnitz-Froyland-Junge 2001]
- Multilevel subdivision scheme for uncertain ODEs
[Dellnitz-Hohmann-Ziessler 2017]

Related work: Lasserre hierarchy

棠Cast a polynomial optimization problem as an infinite-dimensional LP over measures [Lasserre 2001]

$$
f^{\star}:=\inf _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})=\inf _{\mu \in \mathcal{M}_{+}(\mathbf{x})} \int_{\mathbf{X}} f(\mathbf{x}) d \mu
$$

Related work: Lasserre hierarchy

Cast a polynomial optimization problem as an infinite-dimensional LP over measures [Lasserre 2001]

$$
f^{\star}:=\inf _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})=\inf _{\mu \in \mathcal{M}_{+}(\mathbf{X})} \int_{\mathbf{X}} f(\mathbf{x}) d \mu
$$

\rightsquigarrow Regions of attraction [Henrion-Korda 14]
\rightsquigarrow Maximum invariants [Korda et al 13]
\rightsquigarrow Reachable sets [Magron et al 17]

\rightsquigarrow Invariant 1D densities [Henrion 2012]

Contribution

- Extension of Lasserre's hierarchy of semidefinite relaxations \rightsquigarrow no time/space discretization required.
- Approximate as close as desired:
- Invariant densities.
- Support of singular invariant measures.
- Relies on a hierarchy of finite-dimensional SDPs.

Overview

SDP for Polynomial Optimization (Reminder)

Invariant Densities

Singular Invariant Measures

SDP for Polynomial Optimization (Reminder)

What is Semidefinite Programming?

- Linear Programming (LP):

$$
\begin{array}{ll}
\min _{z} & \mathbf{c}^{\top} \mathbf{z} \\
\text { s.t. } & \mathbf{A z} \geq \mathbf{d} .
\end{array}
$$

- Linear cost \mathbf{c}
- Linear inequalities " $\sum_{i} A_{i j} z_{j} \geq d_{i}$ "

Polyhedron

What is Semidefinite Programming?

- Semidefinite Programming (SDP):

$$
\begin{array}{ll}
\min _{\mathbf{z}} & \mathbf{c}^{\top} \mathbf{z} \\
\text { s.t. } & \sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} .
\end{array}
$$

- Linear cost \mathbf{C}
- Symmetric matrices $\mathbf{F}_{0}, \mathbf{F}_{i}$
- Linear matrix inequalities " $\mathbf{F} \succeq 0$ "

(\mathbf{F} has nonnegative eigenvalues)

What is Semidefinite Programming?

- Semidefinite Programming (SDP):

$$
\begin{array}{ll}
\min _{\mathbf{z}} & \mathbf{c}^{\top} \mathbf{z} \\
\text { s.t. } & \sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0}, \quad \mathbf{A} \mathbf{z}=\mathbf{d} .
\end{array}
$$

- Linear cost \mathbf{c}
- Symmetric matrices $\mathbf{F}_{0}, \mathbf{F}_{i}$
- Linear matrix inequalities " $\mathbf{F} \succeq 0$ "

(F has nonnegative eigenvalues)

SDP for Polynomial Optimization

- Prove polynomial inequalities with SDP:

$$
f(a, b):=a^{2}-2 a b+b^{2} \geq 0
$$

- Find z s.t. $f(a, b)=\left(\begin{array}{ll}a & b\end{array}\right) \underbrace{\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{2} & z_{3}\end{array}\right)}_{\succeq 0}\binom{a}{b}$.
- Find z s.t. $a^{2}-2 a b+b^{2}=z_{1} a^{2}+2 z_{2} a b+z_{3} b^{2} \quad(\mathbf{A} z=\mathbf{d})$
- $\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{2} & z_{3}\end{array}\right)=\underbrace{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)}_{\mathbf{F}_{1}} z_{1}+\underbrace{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)}_{\mathbf{F}_{2}} z_{2}+\underbrace{\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)}_{\mathbf{F}_{3}} z_{3} \succeq \underbrace{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)}_{\mathbf{F}_{\mathbf{o}}}$

SDP for Polynomial Optimization

- Choose a cost \mathbf{c} e.g. ($1,0,1$) and solve:

$$
\begin{array}{ll}
\min _{\mathbf{z}} & \mathbf{c}^{\top} \mathbf{z} \\
\text { s.t. } & \sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0}, \quad \mathbf{A} \mathbf{z}=\mathbf{d} .
\end{array}
$$

- Solution $\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{2} & z_{3}\end{array}\right)=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right) \succeq 0 \quad$ (eigenvalues 0 and 2)
- $a^{2}-2 a b+b^{2}=\left(\begin{array}{ll}a & b\end{array}\right) \underbrace{\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)}_{\succeq 0}\binom{a}{b}=(a-b)^{2}$.
- Solving SDP \Longrightarrow Finding Sums of Squares certificates

SDP for Polynomial Optimization

NP hard General Problem: $f^{*}:=\min _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

- Semialgebraic set $\mathbf{X}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{1}(\mathbf{x}) \geq 0, \ldots, g_{l}(\mathbf{x}) \geq 0\right\}$

SDP for Polynomial Optimization

NP hard General Problem: $f^{*}:=\min _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

- Semialgebraic set $\mathbf{X}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{1}(\mathbf{x}) \geq 0, \ldots, g_{l}(\mathbf{x}) \geq 0\right\}$
$\square:=[0,1]^{2}=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}\left(1-x_{1}\right) \geq 0, \quad x_{2}\left(1-x_{2}\right) \geq 0\right\}$

SDP for Polynomial Optimization

NP hard General Problem: $f^{*}:=\min _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

- Semialgebraic set $\mathbf{X}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{1}(\mathbf{x}) \geq 0, \ldots, g_{l}(\mathbf{x}) \geq 0\right\}$
$\square:=[0,1]^{2}=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}\left(1-x_{1}\right) \geq 0, \quad x_{2}\left(1-x_{2}\right) \geq 0\right\}$

$$
\overbrace{x_{1} x_{2}}^{f}+\frac{1}{8}=\overbrace{\frac{1}{2}\left(x_{1}+x_{2}-\frac{1}{2}\right)^{2}}^{\sigma_{0}}+\overbrace{\frac{1}{2}}^{\sigma_{1}} \overbrace{x_{1}\left(1-x_{1}\right)}^{g_{1}}+\overbrace{\frac{1}{2}}^{\sigma_{2}} \overbrace{x_{2}\left(1-x_{2}\right)}^{g_{2}}
$$

SDP for Polynomial Optimization

NP hard General Problem: $f^{*}:=\min _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

- Semialgebraic set $\mathbf{X}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{1}(\mathbf{x}) \geq 0, \ldots, g_{l}(\mathbf{x}) \geq 0\right\}$
$\square:=[0,1]^{2}=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}\left(1-x_{1}\right) \geq 0, \quad x_{2}\left(1-x_{2}\right) \geq 0\right\}$

- Sums of squares (SOS) σ_{i}

SDP for Polynomial Optimization

NP hard General Problem: $f^{*}:=\min _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

- Semialgebraic set $\mathbf{X}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{1}(\mathbf{x}) \geq 0, \ldots, g_{l}(\mathbf{x}) \geq 0\right\}$
$\square:=[0,1]^{2}=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}\left(1-x_{1}\right) \geq 0, \quad x_{2}\left(1-x_{2}\right) \geq 0\right\}$

- Sums of squares (SOS) σ_{i}
- Bounded degree:

$$
\mathcal{Q}_{r}(\mathbf{X}):=\left\{\sigma_{0}+\sum_{j=1}^{l} \sigma_{j} g_{j}, \text { with } \operatorname{deg} \sigma_{j} g_{j} \leq 2 r\right\}
$$

SDP for Polynomial Optimization

- Hierarchy of SDP relaxations:

$$
m_{r}:=\sup _{m}\left\{m: f-m \in \mathcal{Q}_{r}(\mathbf{X})\right\}
$$

- Convergence guarantees $m_{r} \uparrow f^{*}$ [Lasserre 01]
- Can be computed with SDP solvers (csdp, sdpa)
- "No Free Lunch" Rule: $\binom{n+2 r}{n}$ SDP variables
- Extension to semialgebraic functions
$\rightsquigarrow r(\mathbf{x})=p(\mathbf{x}) / \sqrt{q(\mathbf{x})}$ [Lasserre-Putinar 10]

Primal-dual Moment-SOS [Lasserre 01]

$$
f^{*}=\inf _{\mathrm{x} \in \mathrm{X}} f(\mathrm{x})=\inf _{\mu \in \mathcal{M}+\mathbf{X})} \int_{\mathrm{X}} f d \mu
$$

Primal-dual Moment-SOS [Lasserre 01]

- Let $\left(\mathbf{x}^{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$ be the monomial basis

Definition

A sequence z has a representing measure on \mathbf{X} if there exists a finite measure μ supported on \mathbf{X} such that

$$
\mathbf{z}_{\alpha}=\int_{\mathbf{X}} \mathbf{x}^{\alpha} \mu(d \mathbf{x}), \quad \forall \alpha \in \mathbb{N}^{n}
$$

Primal-dual Moment-SOS [Lasserre 01]

- $\mathcal{M}_{+}(\mathbf{X})$: space of probability measures supported on \mathbf{X}
- $\mathcal{Q}(\mathbf{X})$: quadratic module

Polynomial Optimization Problems (POP)

\[

\]

Primal-dual Moment-SOS [Lasserre 01]

- Finite moment sequences z of measures in $\mathcal{M}_{+}(\mathbf{X})$
- Truncated quadratic module $\mathcal{Q}_{r}(\mathbf{X})$

Polynomial Optimization Problems (POP)

\[

\]

Invariant Densities

Invariant Densities in Lebesgue Spaces

Discrete systems: $f_{\#} \mu-\mu=0$
Continuous systems: $\sum_{i=1}^{n} \frac{\partial\left(f^{i} \mu\right)}{\partial x_{i}}=0$
$\rightsquigarrow \mu$ is invariant when $\mathcal{L}_{f}(\mu)=0$

Invariant Densities in Lebesgue Spaces

Discrete systems: $f_{\# \mu}-\mu=0$
Continuous systems: $\sum_{i=1}^{n} \frac{\partial\left(f^{i} \mu\right)}{\partial x_{i}}=0$
$\rightsquigarrow \mu$ is invariant when $\mathcal{L}_{f}(\mu)=0$
Lebesgue decomposition: $\mu=\nu+\psi$ with

- Absolute continuity $\nu \ll \lambda: \lambda(\mathbf{A})=0 \Longrightarrow \nu(\mathbf{A})=0$
- Singular $\psi \perp \lambda: \lambda(\mathbf{A})=\nu(\mathbf{B})=0$ for disjoint \mathbf{A}, \mathbf{B}

Focus on the case when $\psi=0$ and $\mu=\nu$

Invariant Densities in Lebesgue Spaces

Discrete systems: $f_{\# \mu}-\mu=0$
Continuous systems: $\sum_{i=1}^{n} \frac{\partial\left(f^{i} \mu\right)}{\partial x_{i}}=0$
$\rightsquigarrow \mu$ is invariant when $\mathcal{L}_{f}(\mu)=0$
Lebesgue decomposition: $\mu=\nu+\psi$ with

- Absolute continuity $\nu \ll \lambda: \lambda(\mathbf{A})=0 \Longrightarrow \nu(\mathbf{A})=0$
- Singular $\psi \perp \lambda: \lambda(\mathbf{A})=\nu(\mathbf{B})=0$ for disjoint \mathbf{A}, \mathbf{B}

Focus on the case when $\psi=0$ and $\mu=\nu$
$\mu \ll \lambda \Longrightarrow \exists$ measurable h with $d \mu=h d \lambda$
Notation abuse $\|\mu\|_{p}=\|h\|_{p}=\left(\int_{\mathbf{X}}|h(\mathbf{x})|^{p} d \mathbf{x}\right)^{1 / p}$, for $p \geq 1$
Compute or approximate $h \in L_{p}(\mathbf{X})$?

Invariant Densities in Lebesgue Spaces

p and q conjugate: $1 / p+1 / q=1$, for $p \geq 1$
Reminder: $\ell_{\mathbf{y}}(g)=\sum_{\alpha} y_{\alpha} g_{\alpha}$ for $g \in \mathbb{R}[\mathbf{x}]$

Invariant Densities in Lebesgue Spaces

p and q conjugate: $1 / p+1 / q=1$, for $p \geq 1$
Reminder: $\ell_{\mathbf{y}}(g)=\sum_{\alpha} y_{\alpha} g_{\alpha}$ for $g \in \mathbb{R}[\mathbf{x}]$
Theorem ([Yosida]+ [Riesz-Haviland])
Let $\mathbf{y}=\left(y_{\alpha}\right)$ TFAE:
(i) y is represented by $\mu \in L_{p}(\mathbf{X})$ with $\|\mu\|_{p} \leq \gamma<\infty$ for some $\gamma \geq 0$.
(ii) $\exists \gamma \geq 0$ s.t. $\forall g \in \mathbb{R}[\mathbf{x}]$:

$$
\left|\ell_{\mathbf{y}}(g)\right| \leq \gamma \ell_{\mathbf{z}}\left(|g|^{q}\right)^{1 / q}
$$

and $\ell_{\mathrm{y}}(\mathrm{g}) \geq 0$ for all $\mathrm{g} \in \mathbb{R}[\mathbf{x}]$ nonnegative on \mathbf{X}.

Invariant Densities in $L_{2}(X)$

When $p=q=2$, we rewrite $\left|\ell_{\mathbf{y}}(g)\right| \leq \gamma \ell_{\mathbf{z}}\left(|g|^{q}\right)^{1 / q}$:

$$
\mathbf{C}_{2}^{r}(\mathbf{y}):=\left(\begin{array}{cc}
\mathbf{M}_{r}(\mathbf{z}) & \mathbf{y} \\
\mathbf{y}^{T} & \gamma^{2}
\end{array}\right) \succeq 0, \quad \forall r \in \mathbb{N} .
$$

- SDP!

Entry (α, β) of $\mathbf{M}_{r}(\mathbf{z})=\ell_{\mathbf{z}}\left(\mathbf{x}^{\alpha+\beta}\right)=z_{\alpha+\beta}$

Invariant Densities in $L_{\infty}(X)$

When $p=\infty$ and $q=1$, we rewrite $\left|\ell_{\mathbf{y}}(g)\right| \leq \gamma \ell_{\mathbf{z}}\left(|g|^{q}\right)^{1 / q}$:

$$
\mathbf{C}_{\infty}^{r}(\mathbf{y}):=\gamma \mathbf{M}_{r}(\mathbf{z})-\mathbf{M}_{r}(\mathbf{y}) \succeq 0 \quad \forall r \in \mathbb{N} .
$$

- SDP!

Entry (α, β) of $\mathbf{M}_{r}(\mathbf{y})=\ell_{\mathbf{y}}\left(\mathbf{x}^{\alpha+\beta}\right)=y_{\alpha+\beta}$

$$
\begin{align*}
\rho_{\mathrm{ac}}^{\star}:=\sup _{\mu} & \int_{\mathbf{x}} \mu \\
\text { s.t. } & \mathcal{L}_{f}(\mu)=0 \tag{1}\\
& \|\mu\|_{p} \leq 1 \\
& \mu \in L_{p}(\mathbf{X})_{+}
\end{align*}
$$

Infinite-dimensional Conic Formulation

$$
\begin{align*}
\rho_{\mathrm{ac}}^{\star}:=\sup _{\mu} & \int_{\mathbf{X}} \mu \\
\text { s.t. } & \mathcal{L}_{f}(\mu)=0 \tag{1}\\
& \|\mu\|_{p} \leq 1 \\
& \mu \in L_{p}(\mathbf{X})_{+}
\end{align*}
$$

Theorem
\exists ! invariant prob. meas. $\mu_{\mathrm{ac}} \in L_{p}(\mathbf{X}) \Longrightarrow$ CONIC (1) has the unique optimal solution $\mu_{\mathrm{ac}}^{\star}:=\rho_{\mathrm{ac}}^{\star} \mu_{\mathrm{ac}}$.

Ø̈ Invariant density $\mu \Longrightarrow \gamma=1$ ok!

A Hierarchy of SDP Relaxations

$$
\begin{aligned}
\rho_{\mathrm{ac}}^{r}:=\sup _{\mathbf{y}} & y_{0} \\
\text { s.t. } & \mathscr{I}_{\mathbf{y}}\left(\mathbf{x}^{\alpha}\right)=0, \quad \forall \alpha \in \mathbb{N}_{2 r}^{n} \\
& \mathbf{C}_{p}^{r}(\mathbf{y}) \succeq 0 \\
& \mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}\right) \succeq 0, \quad j=0, \ldots, l .
\end{aligned}
$$

A Hierarchy of SDP Relaxations

$$
\begin{aligned}
\rho_{\mathrm{ac}}^{r}:=\sup _{\mathbf{y}} & y_{0} \\
\text { s.t. } & \mathscr{I}_{\mathbf{y}}\left(\mathbf{x}^{\alpha}\right)=0, \quad \forall \alpha \in \mathbb{N}_{2 r}^{n} \\
& \mathbf{C}_{p}^{r}(\mathbf{y}) \succeq 0 \\
& \mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}\right) \succeq 0, \quad j=0, \ldots, l .
\end{aligned}
$$

Theorem

- Existence of an optimal solution \mathbf{y}^{r}.
- Convergence:

$$
\lim _{r \rightarrow+\infty} y_{\alpha}^{r}=y_{\alpha}^{\star}, \quad \lim _{r \rightarrow+\infty} \rho_{a c}^{r}=\rho_{a c}^{\star},
$$

and \mathbf{y}^{\star} is the moment sequence of the invariant measure μ_{ac}.

Approximations of Invariant Densities in $L_{2}(\mathbf{X})$

Define $h^{r} \in \mathbb{R}_{2 r}[\mathrm{x}]$ with coefficient vector

$$
\mathrm{h}^{r}:=\mathrm{M}_{r}(\mathrm{z})^{-1} \mathbf{y}^{r} .
$$

Theorem ([Henrion et. al])
Strong convergence w.r.t. the L_{2}-norm:

$$
\lim _{r \rightarrow \infty}\left\|h^{r}-h^{\star}\right\|_{2}=0
$$

Approximations of Invariant Densities in $L_{2}(\mathbf{X})$

Define $h^{r} \in \mathbb{R}_{2 r}[\mathrm{x}]$ with coefficient vector

$$
\mathbf{h}^{r}:=\mathrm{M}_{r}(\mathrm{z})^{-1} \mathbf{y}^{r} .
$$

Theorem ([Henrion et. al])
Strong convergence w.r.t. the L_{2}-norm:

$$
\lim _{r \rightarrow \infty}\left\|h^{r}-h^{\star}\right\|_{2}=0
$$

Proof.

$\ddot{\nabla} \mathbf{X}$ compact $\Longrightarrow \mathbb{R}[\mathbf{x}]$ dense in $L_{2}(\mathbf{X})$
$\Longrightarrow \exists\left(u^{r}\right) \subset \mathbb{R}[\mathrm{x}]$ with $\left\|u^{r}-h^{\star}\right\|_{2} \rightarrow 0$
$\ddot{\theta}-h^{r}$ optimal solution for $\min _{u}\left\|u-h^{\star}\right\|_{2}$

Numerical Experiments I

Extension to Piecewise Polynomial Systems

$$
\begin{aligned}
\mathrm{x}_{t+1} & =f_{i}\left(\mathrm{x}_{t}\right) \quad \text { for } \mathrm{x} \in \mathbf{X}_{i}, \quad i \in I, \quad t \in \mathbb{N}, \\
\dot{\mathrm{x}} & =f_{i}(\mathrm{x}) \quad \text { for } \mathrm{x} \in \mathbf{X}_{i},
\end{aligned} \quad i \in I, \quad t \in[0, \infty) .
$$

- Use the piecewise structure of the dynamics f_{i}.
- Decompose the global invariant $\mu=\sum_{i \in I} \mu_{i}$ with local $\mu_{i} \in \mathcal{M}_{+}\left(\mathbf{X}_{i}\right)$ invariant w.r.t. f_{i}

$$
\begin{array}{ll}
\sup _{\mu_{i}} & \sum_{i \in I} \int_{\mathbf{X}_{i}} \mu_{i} \\
\text { s.t. } & \mathcal{L}_{f_{i}}\left(\mu_{i}\right)=0, \quad i \in I, \\
& \sum_{i \in I}\left\|\mu_{i}\right\|_{p} \leq 1, \\
& \mu_{i} \in L_{p}\left(\mathbf{X}_{i+}\right), \quad i \in I .
\end{array}
$$

Square Integrable Invariant Density

$$
\begin{aligned}
& t^{+}=T(t):=t+w \bmod 1 \\
& \text { on } \mathbf{T}:=[0,1], w \in \mathbb{R} \backslash \mathbb{Q} \Longrightarrow \lambda_{\mathbf{T}} \text { is invariant }
\end{aligned}
$$

Square Integrable Invariant Density

$$
\begin{aligned}
& t^{+}=T(t):=t+w \bmod 1 \\
& \text { on } \mathbf{T}:=[0,1], w \in \mathbb{R} \backslash \mathbb{Q} \Longrightarrow \lambda_{\mathbf{T}} \text { is invariant } \\
& h^{\star}(t):=\frac{3}{4} t^{-1 / 4} \in L_{2}(\mathbf{X}) \text { and } F(t):=\int_{0}^{t} h^{\star}(s) d s=t^{3 / 4}
\end{aligned}
$$

Square Integrable Invariant Density

$$
\begin{aligned}
& t^{+}=T(t):=t+w \bmod 1 \\
& \text { on } \mathbf{T}:=[0,1], w \in \mathbb{R} \backslash \mathbb{Q} \Longrightarrow \lambda_{\mathbf{T}} \text { is invariant } \\
& h^{\star}(t):=\frac{3}{4} t^{-1 / 4} \in L_{2}(\mathbf{X}) \text { and } F(t):=\int_{0}^{t} h^{\star}(s) d s=t^{3 / 4} \\
& x^{+}=F^{-1} \circ T \circ F(x) \\
& \text { on } \mathbf{X}:=[0,1] \Longrightarrow h^{\star} \text { is invariant }
\end{aligned}
$$

$$
r=4
$$

$$
r=6
$$

$$
r=8
$$

Approximation h_{2}^{r} (solid) of exact density h^{\star} (dashed)

Rotational Flow Map

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x_{2}}=-x_{1}
\end{array} \quad\left(x_{1}, x_{2}\right) \in \mathbf{X}:=\left\{\mathbf{x} \in \mathbb{R}^{2}:\|\mathbf{x}\|_{2} \leq 1\right\} .\right.
$$

- $\lambda_{\mathbf{x}}$ is invariant.

Proof. Use Green-Ostrogradski's formula.

- Result: for $r=2, p=\infty$, we obtain $h_{p}^{r}(\mathbf{x})=1=h^{\star}(\mathbf{x})$.

Piecewise Affine Map

$$
x^{+}:= \begin{cases}2 x & \text { if } x \in \mathbf{X}_{1}:=\left[0, \frac{1}{2}\right] \\ 1+\frac{3}{2}\left(\frac{1}{2}-x\right) & \text { if } x \in \mathbf{X}_{2}:=\left[\frac{1}{2}, 1\right]\end{cases}
$$

Piecewise Affine Map

$$
x^{+}:= \begin{cases}2 x & \text { if } x \in \mathbf{X}_{1}:=\left[0, \frac{1}{2}\right] \\ 1+\frac{3}{2}\left(\frac{1}{2}-x\right) & \text { if } x \in \mathbf{X}_{2}:=\left[\frac{1}{2}, 1\right]\end{cases}
$$

$$
r=4, p=2
$$

$$
r=6, p=2
$$

$$
r=8, p=2
$$

$$
r=4, p=\infty
$$

$$
r=6, p=\infty
$$

$$
r=8, p=\infty
$$

Approximation h_{p}^{r} of exact density $h^{\star}=\mathbf{1}_{\left[\frac{1}{4}, \frac{1}{2}\right]}+{ }^{\frac{3}{2}} \mathbf{1}_{\left[\frac{1}{2}, 1\right]}$

Singular Invariant Measures

Infinite-Dimensional LP Formulation

We know the moments of $\lambda_{\mathbf{x}}$, unknown μ is invariant proba.

$$
\begin{align*}
\rho_{\text {sing }}^{\star}=\sup _{\mu, \nu, \hat{\nu}, \psi} & \int_{\mathbf{X}} \nu \\
\text { s.t. } & \int_{\mathbf{X}} \mu=1, \quad \mathcal{L}_{f}(\mu)=0 \tag{2}\\
& \nu+\psi=\mu, \quad \nu+\hat{\nu}=\lambda \mathbf{X} \\
& \mu, \nu, \hat{\nu}, \psi \in \mathcal{M}_{+}(\mathbf{X})
\end{align*}
$$

Theorem

]! invariant prob. meas. $\mu_{\text {sing }}^{\star} \Longrightarrow L P(2)$ has the unique optimal solution ($\mu_{\text {sing }}^{\star}, 0, \lambda_{\mathbf{x}}, \mu_{\text {sing }}^{\star}$) and $\rho_{\text {sing }}^{\star}=0$.

A Hierarchy of SDPs

$$
\begin{aligned}
\rho_{\text {sing }}^{r}:=\underset{\mathbf{u}, \mathbf{v}, \hat{\mathbf{v}}, \mathbf{y}}{ } & v_{0} \\
\text { s.t. } \quad & u_{0}=1, \quad \mathscr{I}_{\mathbf{u}}\left(\mathbf{x}^{\alpha}\right)=0, \quad \forall \alpha \in \mathbb{N}_{2 r}^{n} \\
& v_{\alpha}+y_{\alpha}=u_{\alpha}, \quad v_{\alpha}+\hat{v}_{\alpha}=z_{\alpha}, \quad \forall \alpha \in \mathbb{N}_{2 r}^{n} \\
& \mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{u}\right), \mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{v}\right) \succeq 0, \quad j=0, \ldots, l \\
& \mathbf{M}_{r-r_{j}}\left(g_{j} \hat{\mathbf{v}}\right), \mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}\right) \succeq 0, \quad j=0, \ldots, l
\end{aligned}
$$

Theorem

- Existence of an optimal solution \mathbf{u}^{r}.
- Convergence:

$$
\lim _{r \rightarrow+\infty} u_{\alpha}^{r}=u_{\alpha}^{\star}, \quad \lim _{r \rightarrow+\infty} \rho_{\text {sing }}^{r}=\rho_{\text {sing }}^{\star},
$$

and \mathbf{u}^{\star} is the moment sequence of the invariant measure $\mu_{\text {sing }}^{\star}$.

Approximation of Supports

How to approximate the support S of $\mu_{\text {sing }}^{\star}$ with the SDP solution \mathbf{u}^{r} ?

Approximation of Supports

How to approximate the support S of $\mu_{\text {sing }}^{\star}$ with the SDP solution \mathbf{u}^{r} ?

Christoffel polynomial $\kappa_{r}(\mathbf{x}):=\mathbf{m}_{r}(\mathbf{x})^{T} \mathbf{M}_{r}(\mathbf{u})^{-1} \mathbf{m}_{r}(\mathbf{x})$ with $\mathbf{m}_{r}(\mathbf{x})=\left(1, x_{1}, \ldots, x_{n}, x_{1}^{2}, \ldots, x_{n}^{r}\right)$

Approximation of Supports

How to approximate the support S of $\mu_{\text {sing }}^{\star}$ with the SDP solution \mathbf{u}^{r} ?

Christoffel polynomial $\kappa_{r}(\mathbf{x}):=\mathbf{m}_{r}(\mathbf{x})^{T} \mathbf{M}_{r}(\mathbf{u})^{-1} \mathbf{m}_{r}(\mathbf{x})$ with $\mathbf{m}_{r}(\mathbf{x})=\left(1, x_{1}, \ldots, x_{n}, x_{1}^{2}, \ldots, x_{n}^{r}\right)$

$$
\mathbf{S}^{r}:=\left\{\mathbf{x} \in \mathbf{X}:\binom{d_{r}+n}{n} \geq C_{r} \kappa_{r}(\mathbf{x})\right\} .
$$

Approximation of Supports

How to approximate the support S of $\mu_{\text {sing }}^{\star}$ with the SDP solution \mathbf{u}^{r} ?

Christoffel polynomial $\kappa_{r}(\mathbf{x}):=\mathbf{m}_{r}(\mathbf{x})^{T} \mathbf{M}_{r}(\mathbf{u})^{-1} \mathbf{m}_{r}(\mathbf{x})$ with $\mathbf{m}_{r}(\mathbf{x})=\left(1, x_{1}, \ldots, x_{n}, x_{1}^{2}, \ldots, x_{n}^{r}\right)$

$$
\mathbf{S}^{r}:=\left\{\mathbf{x} \in \mathbf{X}:\binom{d_{r}+n}{n} \geq C_{r} \kappa_{r}(\mathbf{x})\right\} .
$$

Theorem

sup dist convergence: $\lim _{r \rightarrow \infty} \sup _{\mathbf{S}^{r}} \operatorname{dist}(\mathrm{x}, \mathrm{S})=0$

Numerical experiments II

Hénon Map

$$
\begin{cases}x_{1}^{+} & =1-a x_{1}^{2}+x_{2} \\ x_{2}^{+} & =b x_{1}\end{cases}
$$

$$
\left(x_{1}, x_{2}\right) \in \mathbf{X}:=[-3,1.5] \times[-0.6,0.4] .
$$

Hénon Map

$$
\left\{\begin{array}{l}
x_{1}^{+}=1-a x_{1}^{2}+x_{2} \\
x_{2}^{+}=b x_{1}
\end{array}\right.
$$

$$
\left(x_{1}, x_{2}\right) \in \mathbf{X}:=[-3,1.5] \times[-0.6,0.4] .
$$

$$
r=4
$$

$r=6$

$r=8$

Hénon attractor (blue) and support approximations \mathbf{S}^{r} (light gray) for $a=1.4$ and $b=0.3$.

Van der Pol Oscillator

$$
\left\{\begin{array}{ll}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2} & =a\left(1-x_{2}^{2}\right) x_{2}-x_{1}
\end{array} \quad \mathbf{X}:=[-3,3] \times[-4,4] .\right.
$$

Van der Pol Oscillator

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=a\left(1-x_{1}^{2}\right) x_{2}-x_{1}
\end{array} \quad \mathbf{X}:=[-3,3] \times[-4,4] .\right.
$$

$$
r=4
$$

$r=6$

$r=8$

Van der Pol attractor and support approximations \mathbf{S}^{r} for $a=0.5$.

Arneodo-Coullet System

$$
\left\{\begin{array}{l}
\dot{x_{1}}=x_{2} \\
\dot{x_{2}}=x_{3} \\
\dot{x_{3}}=-a x_{1}-b x_{2}-x_{3}+c x_{1}^{3}
\end{array} \quad \mathbf{X}:=[-4,4] \times[-8,8] \times[-12,12]\right.
$$

Arneodo-Coullet System

$$
\left\{\begin{array}{l}
\dot{x_{1}}=x_{2} \\
\dot{x_{2}}=x_{3} \\
\dot{x_{3}}=-a x_{1}-b x_{2}-x_{3}+c x_{1}^{3}
\end{array} \quad \mathbf{X}:=[-4,4] \times[-8,8] \times[-12,12]\right.
$$

Attractor

Arneodo-Coullet attractor and support approximations (red) for

$$
a=-5.5, b=3.5 \text { and } c=-1
$$

Conclusion and Perspectives

Conclusion

- 2 methods to characterize invariant measures:

1. Approximate invariant densities in L_{2} and L_{∞}
\Longrightarrow strong convergence: $\left\|h^{\star}-h^{r}\right\|_{2} \rightarrow 0$
2. Approximate support \mathbf{S} of singular measures with Christoffel \Longrightarrow sup dist convergence: $\sup _{\mathbf{s}^{r}} \operatorname{dist}(\mathbf{x}, \mathbf{S}) \rightarrow 0$

- \rightsquigarrow Extension to piecewise polynomial systems.

Perspectives

- Exploit sparsity or symmetry for large size systems.
- Improve accuracy of results:
- Alternative bases: Chebyshev or rational functions
- Ill-conditioning nature of the moment matrix
- Open Question: Extension of Hausdorff convergence of Christoffel [Lasserre-Pauwels 2017] to singular measures?

