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Invariant Measures



Problem statement

e Polynomial transition map
x = f(x) = (F}(x),...,f"(x)) € R"[x]

e Semialgebraic state constraints
X:={xeR":g(x)>0,...,8(x) >0} | o

e Discrete-time systems:
Xt+1:f(xt), XtEX, teN
or Continuous-time systems:

x=f(x), xeX, tel0,00)
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Problem statement

e Borel o-algebra B(X) (generated by the open sets of X)
e 1€ M (X): set of Borel measures supported on X:

1. Non-negative 2. Countably additive
e Moments of the Lebesgue measure on A C X

28 = /xﬁ/\A(dx) eR, BeN"

e Invariant set: f(I) =1
e Invariant measure: u(B) = u(f~1(B)) VB € B(X) pu=fuu

Squeeze mapping: (x,y) — f(x,y) := (ax,y/a)

X = [0,1]?
Ax = fuAx
The Problem

How to characterize the invariant measures? 2



Related work: approximating invariant sets and measures

Determine long term dynamical behaviors.

e Numerical integration under some initial conditions
— Resulting trajectory could exhibit chaotic behaviors!
e Alternative: approximate the densities directly.

Subdivision techniques [Dellnitz et al 1997, Aston-Junge
2014]

Markov chain based approximation of dynamical behavior.
GAIO [Dellnitz-Froyland-Junge 2001]

Multilevel subdivision scheme for uncertain ODEs
[Dellnitz-Hohmann-Ziessler 2017]



Related work: Lasserre hierarchy

'¥"Cast a polynomial optimization problem as an
infinite-dimensional LP over measures [Lasserre 2001]

xeX HEM(X)

f*:=inf f(x)= inf /Xf(x)du



Related work: Lasserre hierarchy

'¥"Cast a polynomial optimization problem as an
infinite-dimensional LP over measures [Lasserre 2001]

o= inf Fx) = inf [ F(x)d
ngX (X) /I,E./I\Q+(X)/X (X) K

~» Maximum invariants [Korda et al 13]

«'gfo
~ Regions of attraction [Henrion-Korda 14] / §

~~ Reachable sets [Magron et al 17]

~+ Invariant 1D densities [Henrion 2012]



Contribution

e Extension of Lasserre’s hierarchy of semidefinite relaxations

~~ no time/space discretization required.
e Approximate as close as desired:

e Invariant densities.
e Support of singular invariant measures.

e Relies on a hierarchy of finite-dimensional SDPs.
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What is Semidefinite Programming?

e Linear Programming (LP):

. T
min C ZzZ
z

st. Az>d .

e Linear cost ¢

e Linear inequalities “)". Aj z; > d;” Polyhedron
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SDP for Polynomial Optimization

Prove polynomial inequalities with SDP:

f(a,b):=a®> —2ab+b>>0 .

Find z s.t. f(a,b) = (a b) (j f) (Z) .
2 3

=0
Find z s.t. a2 —2ab+ b? = z13° + 2zab + z3b? (Az=d)

a »\_(1 0y (o1) foo) (o0
z z) \o o/ "\ 1 0/ o 1)2=1o o
——— N N N —

Fa Fa Fs Fo



SDP for Polynomial Optimization

Choose a cost c e.g. (1,0,1) and solve:

. T
min C ZzZ
z

s.t. ZF,’Z,’EFO , Az=d.

1

e Solution (Zl z2> = ( ! 1) =0 (eigenvalues 0 and 2)

Zy Z3 -1 1
1 -1
oa2—2ab+b2:<a b)( : 1)(2)—(3—@2.
—_———
>0

Solving SDP — Finding Sums of Squares certificates

10



SDP for Polynomial Optimization

NP hard General Problem: f* := min f(x)

xeX

e Semialgebraic set X := {x € R": g1(x) > 0,...,g/(x) > 0}
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SDP for Polynomial Optimization

NP hard General Problem: f* := min f(x)

xeX
e Semialgebraic set X := {x € R": g1(x) > 0,...,g/(x) > 0}
B —01P={xcR:x(1-x)>0, x(l-x)>0}

o0

f > A~ & &
X1X0 +— = = X1+X2*§ + 5 X1(1fX1)qL 5 X2(1fX2)

e Sums of squares (SOS) o;

e Bounded degree:
Qr(X) := {(70 + Zjl-:l o0&, with deg(fjgj < Qr}



SDP for Polynomial Optimization

e Hierarchy of SDP relaxations:
my 1= sup{m f—me Q,(X)}
. Converg:nce guarantees m, 1 f* [Lasserre 01]
e Can be computed with SDP solvers (csdp, sdpa)
e “No Free Lunch” Rule: ("t?) SDP variables

e Extension to semialgebraic functions

~ r(x) = p(x)/+/q(x) [Lasserre-Putinar 10]

12



Primal-dual Moment-SOS [Lasserre 01]

f*=inf f(x) = inf /fdu
X

xeX peMy (X)

13



Primal-dual Moment-SOS [Lasserre 01]

o Let (x¥)nenn be the monomial basis

Definition

A sequence z has a representing measure on X if there exists a finite
measure [ supported on X such that

z, = / x*u(dx), VaeN".
X

13



Primal-dual Moment-SOS [Lasserre 01]

e M_(X): space of probability measures supported on X

e Q(X): quadratic module

Polynomial Optimization Problems (POP)

(Primal)

inf fdu

(Dual)
sup m
st. meR |

f—me 9Q(X)




Primal-dual Moment-SOS [Lasserre 01]

e Finite moment sequences z of measures in M (X)

e Truncated quadratic module Q,(X)

Polynomial Optimization Problems (POP)

(Moment) (SOS)
inf Z fo Zo, = sup m
s.t. M,_,j(gjz)ko, 0<j<, st. meR ,
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Invariant Densities in Lebesgue Spaces

Discrete systems: fup —pu =20

Continuous systems: >_7 ; 8(521) =0

~> (1 is invariant when L¢(p) =0
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Invariant Densities in Lebesgue Spaces

Discrete systems: fup —pu =20

Continuous systems: >_7 ; 8(3'31) =0

~> (1 is invariant when L¢(p) =0
Lebesgue decomposition: p = v + 1) with

e Absolute continuity v < A\: A(A) =0 = v(A)=0
e Singular ¢ L A: A(A) = v(B) = 0 for disjoint A, B

Focus on the case when vy =0 and p=v
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Invariant Densities in Lebesgue Spaces

Discrete systems: fup —pu =20

Continuous systems: >_7 ; 8(521) =0

~> (1 is invariant when L¢(p) =0
Lebesgue decomposition: p = v + 1) with

e Absolute continuity v < A\: A(A) =0 = v(A)=0
e Singular ¢ L A: A(A) = v(B) = 0 for disjoint A, B

Focus on the case when vy =0 and p=v
<€ A = I measurable h with du = hd
Notation abuse [|11/|, = [|hll, = (fx |h(X)|Pdx)'/P, for p > 1

Compute or approximate h € L,(X) ?

14



Invariant Densities in Lebesgue Spaces

p and g conjugate: 1/p+1/g=1,for p>1

Reminder: 4y(g) =D, Ya8a for g € R[x]
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Invariant Densities in Lebesgue Spaces

p and g conjugate: 1/p+1/g=1,for p>1

Reminder: 4y(g) =D, Ya8a for g € R[x]

Theorem ([Yosida]+ [Riesz-Haviland ])
Lety = (yo) TFAE:

(i) y is represented by 1 € Ly(X) with |||, < < oo for some v > 0.
(i) 3y >0 s.t. Vg € R[x]:

lty(g)] < 7La(1g])* 4

and ly(g) > 0 for all g € R[x] nonnegative on X.

15



Invariant Densities in L;(X)

When p = g = 2, we rewrite |€y(g)| < 'VEZ(‘g‘q)l/q:

V'SDP!
Entry (o, 8) of M,(2) = £(x**P) = 2,1 5

16



Invariant Densities in L, (X)

When p = o0 and q = 1, we rewrite |ty (g)| < 7£x(|g])"/*

C%

(y) :=7M.(z) —M,(y) =0 VreN.

V'SDP!

Entry (avﬁ) O'F Mr()’) = Ey(XOH_ﬁ) = ythﬂ

16



Infinite-dimensional Conic Formulation
Pac = sup / I
1 X

sit. Le(p) =0, (1)
lullp <1,

€ Lo(X)+ .

17



Infinite-dimensional Conic Formulation
Pac i= sup / I
1 X

sit. Le(p) =0, (1)
il <1,

€ Lo(X)+ .

Theorem

3l invariant prob. meas. p,c € Lp(X) = CONIC (1) has the unique
optimal solution (i}, := pie flac-

‘Vlnvariant density y = ~ =1 ok!

17



A Hierarchy of SDP Relaxations

Pac *=SUp Yo
y

s.t. A (xY)

18



A Hierarchy of SDP Relaxations

Pac = SUp Yo
y

s.t. A (xY)

Theorem

e Existence of an optimal solution y".

e Convergence:

lim y. =y* lim pl. = pr.,
UL Ya=Ya> el Pac = Pacs

and y* is the moment sequence of the invariant measure i c.

18



Approximations of Invariant Densities in L(X)

Define h" € Ry, [x] with coefficient vector
h" =M, (z)"ly".

Theorem ([Henrion et. al ])

Strong convergence w.r.t. the Ly-norm:

lim A" — K*|]2 = 0.
r—o00

19



Approximations of Invariant Densities in L(X)

Define h" € Ry, [x] with coefficient vector
h" =M, (z)"ly".

Theorem ([Henrion et. al ])

Strong convergence w.r.t. the Ly-norm:

lim A" — K*|]2 = 0.
r—o00

Proof.

V" X compact = R[x] dense in L(X)
= 3J(u") C R[x] with ||u" — h*|]2 = 0

V" h" optimal solution for min,, ||u — h*||2

19



Numerical Experiments |




Extension to Piecewise Polynomial Systems

xey1 = fi(x¢) forxeX;, iel, teN,

x=fi(x) forxeX;, iel, te]0,00).

e Use the piecewise structure of the dynamics f;.

e Decompose the global invariant 11 = )., p; with local
wi € M4 (X;) invariant w.r.t. f;

st. Le(pi)=0, iel,

S luillp <1,

icl
pi € Lp(Xiy), i€l.
20



Square Integrable Invariant Density

tt=T(t):=t+w mod 1
on T:=[0,1], w € R\Q = At is invariant
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Square Integrable Invariant Density

tt=T(t):=t+w mod 1
on T:=[0,1], w € R\Q = At is invariant

R*(t) := 3t71/% ¢ [,(X) and F(t) := [ h*(s)ds = t3/4
4 0
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Square Integrable Invariant Density

tt=T(t):=t+w mod 1
on T:=[0,1], w € R\Q = At is invariant

h(t) := 2t71/% € L5(X) and F(t) := [, h*(s)ds = t3/4

xT =F1oToF(x)
on X :=[0,1] = h* is invariant

r=4 r==6 r=2=8
Approximation h5 (solid) of exact density h* (dashed) ”n



Rotational Flow Map

)(.]_ = X2 5
. (x1,%) € X :={x € R? : ||x]> < 1}.
X2 = —X1
e \x is invariant.

Proof. Use Green-Ostrogradski's formula.

e Result: for r =2, p = oo, we obtain h(x) =1 = h*(x).

22



Piecewise Affine Map

: — 1 1
o 2x if x € Xy :=[0, 5]
1+3(5 —x) ifxeXo:=[31]

23



Piecewise Affine Map

2x if x € X1 := [0, 3]
1+3(5 —x) ifxeXo:=[31]

xt =

AN N~ |
r=4,p=2 r=6,p=2 r=8,p=2

r=4,p=o00 r=6,p=o00 r=8p=

o0
. . . _ 3
Approximation hj, of exact density h* = 1[%7%] + 51[%71] ’



Singular Invariant Measures




Infinite-Dimensional LP Formulation

V" We know the moments of Ax, unknown 1 is invariant proba.

*
Psing = SUp /V
Wy, 0, X

s.t. /X,u =1, Lf(n)=0, (2)

vbY =g, v4P=)x,
l171/7 ﬁ7z/j EM+(X)'

Theorem
3! invariant prob. meas. iy, = LP (2) has the unique optimal
solution (115,45 0, Ax, Wging) @nd pg,, = 0.

24



A Hierarchy of SDPs

r —
Psing == SUp Vo
u,v, v,y

st. w=1, HAx*)=0, VaeN;,,
Va+Ya=Ua, Va+Ua=24 VaeN;,
M, . (giu),M, . (giv) =0, j=0,...,1,
M, (g V),M,—r(gy) =0, j=0,....1

Theorem

e Existence of an optimal solution u”.

e Convergence:

lim o’ =u* lim pl = p&
s a o} e psmg psmg7
. 25

and u* is the moment sequence of the invariant measure (1%, ..



Approximation of Supports

How to approximate the support S of u;ng with the SDP
solution u"?

26



Approximation of Supports

How to approximate the support S of u;ng with the SDP

solution u”?
Christoffel polynomial #,(x) := m,(x) "M, (u)"tm,(x)

with m,(x) = (1, x1,. .., Xn, X2, ..., X))
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Approximation of Supports

How to approximate the support S of u;ng with the SDP

solution u”?
Christoffel polynomial #,(x) := m,(x) "M, (u)"tm,(x)

with m,(x) = (1, x1,. .., Xn, X2, ..., X))

s = {xex: <d’ - ”) > Cor()}

n

26



Approximation of Supports

How to approximate the support S of u;ng with the SDP

solution u”?
Christoffel polynomial #,(x) := m,(x) "M, (u)"tm,(x)

with m,(x) = (1, x1,. .., Xn, X2, ..., X))

Theorem

sup dist convergence: lim,_, supg- dist(x,S) =0

26



Numerical experiments Il




xm =1—ax+x
! LT (%) € X :=[-3,1.5] x [~0.6,0.4].

X2+ = bxy

27



xm =1—ax+x
! LT (x,x) € X :=[-3,1.5] x [~0.6,0.4].
X2+ = bxq

r=24 r = 6 r = 8
Hénon attractor (blue) and support approximations S” (light gray)
fora=1.4and b=10.3.
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Van der Pol Oscillator

e X = [-3,3] x [-4,4].
Xz = a(l — X12)X2 — X1

28



Van der Pol Oscillator

X1 =X
X :=[-3,3] x [~4,4].
Xz = a(l — X12)X2 — X1
© O C

r=4 r==6 r=238
Van der Pol attractor and support approximations S” for a = 0.5.

28



Arneodo-Coullet System

Xi = X2
% = x X = [—4,4] x [~8,8] x [12,12].
X3 = —ax3 — bxo — x3 + CX%

29



Arneodo-Coullet System

X1 =X
% = x3 X = [4,4] x [8,8] x [-12,12].
X'3 = —axi — bX2 — X3 + CX%

Attractor r==4
Arneodo-Coullet attractor and support approximations (red) for
a=—-55 b=35and c = —1.

29



Conclusion and Perspectives




Conclusion

e 2 methods to characterize invariant measures:

1. Approximate invariant densities in L, and L
—> strong convergence: ||h* — h'||» — 0

2. Approximate support S of singular measures with Christoffel
— sup dist convergence: supg dist(x,S) — 0

e ~~ Extension to piecewise polynomial systems.

30



e Exploit sparsity or symmetry for large size systems.
e Improve accuracy of results:

e Alternative bases: Chebyshev or rational functions
e lll-conditioning nature of the moment matrix

e Open Question: Extension of Hausdorff convergence of
Christoffel [Lasserre-Pauwels 2017] to singular measures?

30
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