Formal Proofs, Program Analysis and Moment-SOS Relaxations

Victor Magron, Postdoc LAAS-CNRS

15 July 2014

Imperial College Department of Electrical and Electronic Eng.

Formal Proofs, Program Analysis and Moment-SOS Relaxations

- Mathematicians want to eliminate all the uncertainties on their results. Why?
 - M. Lecat, Erreurs des Mathématiciens des origines à nos jours, 1935.
 - 130 pages of errors! (Euler, Fermat, Sylvester, ...)

 Possible workaround: proof assistants COQ (Coquand, Huet 1984)
 HOL-LIGHT (Harrison, Gordon 1980)
 Built in top of OCAML ¹/₁₀

Computer Science and Mathematics

- PhD on Formal Proofs for Global Optimization: Templates and Sums of Squares
- Collaboration with:

- Benjamin Werner (LIX Polytechnique)
- Stéphane Gaubert (Maxplus Team CMAP/INRIA Polytechnique)

[•] Xavier Allamigeon (Maxplus Team)

Complex Proofs

- Complex mathematical proofs / mandatory computation
- K. Appel and W. Haken , Every Planar Map is Four-Colorable, 1989.

T. Hales, A Proof of the Kepler Conjecture, 1994.

Kepler Conjecture (1611):

The maximal density of sphere packings in 3D-space is $\frac{\pi}{\sqrt{18}}$

Face-centered cubic Packing

Hexagonal Compact Packing

...to Flyspeck Nonlinear Inequalities

- The proof of T. Hales (1998) contains mathematical and computational parts
- Computation: check thousands of nonlinear inequalities
- Robert MacPherson, editor of The Annals of Mathematics:
 "[...] the mathematical community will have to get used to this state of affairs."
- Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture

Multivariate Polynomials:

$$\Delta \mathbf{x} := x_1 x_4 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) + x_2 x_5 (x_1 - x_2 + x_3 + x_4 - x_5 + x_6) + x_3 x_6 (x_1 + x_2 - x_3 + x_4 + x_5 - x_6) - x_2 (x_3 x_4 + x_1 x_6) - x_5 (x_1 x_3 + x_4 x_6)$$

■ Semialgebraic functions: composition of polynomials with | · |, √, +, -, ×, /, sup, inf, ...

$$p(\mathbf{x}) := \partial_4 \Delta \mathbf{x} \qquad q(\mathbf{x}) := 4x_1 \Delta \mathbf{x}$$
$$r(\mathbf{x}) := p(\mathbf{x}) / \sqrt{q(\mathbf{x})}$$

$$l(\mathbf{x}) := -\frac{\pi}{2} + 1.6294 - 0.2213 \left(\sqrt{x_2} + \sqrt{x_3} + \sqrt{x_5} + \sqrt{x_6} - 8.0\right) + 0.913 \left(\sqrt{x_4} - 2.52\right) + 0.728 \left(\sqrt{x_1} - 2.0\right)$$

V. Magron

■ Transcendental functions *T*: composition of semialgebraic functions with arctan, exp, sin, +, -, ×,...

■ Feasible set **K** := [4, 6.3504]³ × [6.3504, 8] × [4, 6.3504]²

Lemma₉₉₂₂₆₉₉₀₂₈ from Flyspeck:

$$\forall \mathbf{x} \in \mathbf{K}, \arctan\left(\frac{p(\mathbf{x})}{\sqrt{q(\mathbf{x})}}\right) + l(\mathbf{x}) \ge 0$$

New Framework (in my PhD thesis)

- Certificates for lower bounds of Global Optimization Problems using SOS and new ingredients in Global Optimization:
 - Maxplus approximation (Optimal Control)
 - Nonlinear templates (Static Analysis)
- Verification of these certificates inside CoQ
- Implementation: NLCertify http://nl-certify.forge.ocamlcore.org/

Introduction

Moment-SOS relaxations and Maxplus approximation

Formal Nonlinear Optimization

Pareto Curves and Images of Semialgebraic Sets

Program Analysis with Polynomial Templates

Conclusion

- Semialgebraic set $\mathbf{K} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0\}$
- $p^* := \min_{\mathbf{x} \in \mathbf{K}} p(\mathbf{x})$: NP hard
- Sums of squares Σ[x]

•
$$\mathcal{Q}(\mathbf{K}) := \left\{ \sigma_0(\mathbf{x}) + \sum_{j=1}^m \sigma_j(\mathbf{x}) g_j(\mathbf{x}), \text{ with } \sigma_j \in \Sigma[\mathbf{x}] \right\}$$

V. Magron

• $\mathcal{M}_+(\mathbf{K})$: space of probability measures supported on \mathbf{K}

• Truncated quadratic module $Q_k(\mathbf{K}) := Q(\mathbf{K}) \cap \mathbb{R}_{2k}[\mathbf{x}]$

- Hierarchy of SOS relaxations: $\lambda_k := \sup_{\lambda} \{\lambda : p - \lambda \in Q_k(\mathbf{K})\}$
- Convergence guarantees $\lambda_k \uparrow p^*$ [Lasserre 01]
- Can be computed with SOS solvers (CSDP, SDPA)
- Extension to semialgebraic functions $r(\mathbf{x}) = p(\mathbf{x}) / \sqrt{q(\mathbf{x})}$ [Lasserre-Putinar 10]

V. Magron

- Given **K** a compact set and *f* a transcendental function, bound $f^* = \inf_{\mathbf{x} \in \mathbf{K}} f(\mathbf{x})$ and prove $f^* \ge 0$
 - f is underestimated by a semialgebraic function f_{sa}
 - Reduce the problem *f*^{*}_{sa} := inf_{x∈K}*f*_{sa}(**x**) to a polynomial optimization problem (POP)

- Initially introduced to solve Optimal Control Problems [Fleming-McEneaney 00]
- Curse of dimensionality reduction [McEaneney Kluberg, Gaubert-McEneaney-Qu 11, Qu 13].
 Allowed to solve instances of dim up to 15 (inaccessible by grid methods)
- In our context: approximate transcendental functions

Maxplus Approximation

Definition

Let $\gamma \ge 0$. A function $\phi : \mathbb{R}^n \to \mathbb{R}$ is said to be γ -semiconvex if the function $\mathbf{x} \mapsto \phi(\mathbf{x}) + \frac{\gamma}{2} \|\mathbf{x}\|_2^2$ is convex.

Nonlinear Function Representation

Nonlinear Function Representation

Abstract syntax tree representations of multivariate transcendental functions:

- leaves are semialgebraic functions of \mathcal{A}
- nodes are univariate functions of *D* or binary operations

Nonlinear Function Representation

• For the "Simple" Example from Flyspeck:

Maxplus Optimization Algorithm

1 1 control point $\{a_1\}$ SOS Computation: $m_1 = -0.746$

V. Magron

Maxplus Optimization Algorithm

2 2 control points $\{a_1, a_2\}$: $m_2 = -0.112$

V. Magron

Maxplus Optimization Algorithm

3 3 control points $\{a_1, a_2, a_3\}$: $m_3 = -0.04$

V. Magron

Contributions

For more details:

- X. Allamigeon, S. Gaubert, V. Magron, and B. Werner. Certification of inequalities involving transcendental functions: combining sdp and max-plus approximation. In *Proceedings of the European Control Conference (ECC) Zurich*, pages 2244-2250, 2013.
- X. Allamigeon, S. Gaubert, V. Magron, and B. Werner. Certification of bounds of non-linear functions: the templates method. In *Proceedings of Conferences on Intelligent Computer Mathematics, CICM Calculemus, Bath,* pages 51-65. LNAI 7961 Springer, 2013.

In revision:

X. Allamigeon, S. Gaubert, V. Magron, and B. Werner. Certification of Real Inequalities – Templates and Sums of Squares. Submitted for publication. arxiv:1403.5899, March 2014

Introduction

Moment-SOS relaxations and Maxplus approximation

Formal Nonlinear Optimization

Pareto Curves and Images of Semialgebraic Sets

Program Analysis with Polynomial Templates

Conclusion

The General "Formal Framework"

We check the correctness of SOS certificates for POP

We build certificates to prove interval bounds for semialgebraic functions

• We bound formally transcendental functions with semialgebraic approximations

Formal SOS bounds

When $q \in Q(\mathbf{K})$, σ_0 , ..., σ_m is a positivity certificate for qCheck **symbolic polynomial equalities** q = q' in COQ

Existing tactic ring [Grégoire-Mahboubi 05]

Polynomials coefficients: arbitrary-size rationals bigQ [Grégoire-Théry 06]

Much simpler to verify certificates using *sceptical approach*

Extends also to semialgebraic functions

Benchmarks for Flyspeck Inequalities

т 1%	<i>u</i> 1	1	2
Inequality	#boxes	Time	Time
9922699028	39	190 <i>s</i>	2218 <i>s</i>
3318775219	338	1560 <i>s</i>	19136 <i>s</i>

 Comparable with Taylor interval methods in HOL-LIGHT [Hales-Solovyev 13]

Bottleneck of informal optimizer is SOS solver

22 times slower! \implies Current bottleneck is to check polynomial equalities

Contribution: Publications and Software

For more details:

- X. Allamigeon, S. Gaubert, V. Magron and B. Werner. Formal Proofs for Nonlinear Optimization. Submitted for publication, arxiv:1404.7282
- X. Allamigeon, S. Gaubert, V. Magron, and B. Werner. Certification of bounds of non-linear functions: the templates method. In *Proceedings of Conferences on Intelligent Computer Mathematics, CICM Calculemus, Bath,* pages 51-65. LNAI 7961 Springer, 2013.

Contribution: Publications and Software

Software Implementation NLCertify:

- https://forge.ocamlcore.org/projects/nl-certify/
- 🕅 15 000 lines of OCAML code
 - P
- 4000 lines of COQ code
- V. Magron NLCertify: A Tool for Formal Nonlinear Optimization. To appear in the *Proceedings of the 4th International Congress on Mathematical Software*, ICMS 2014, Séoul, arxiv:1405.5668

- 1 Approximating Pareto curves, image of semialgebraic sets. With people from LAAS-CNRS:
 - Didier Henrion
 - Jean-Bernard Lasserre
- 2 Static analysis. With people from Onera:
 - Assalé Adjé
 - Pierre-Loic Garoche

Introduction

Moment-SOS relaxations and Maxplus approximation

Formal Nonlinear Optimization

Pareto Curves and Images of Semialgebraic Sets

Program Analysis with Polynomial Templates

Conclusion

Bicriteria Optimization Problems

• Let $f_1, f_2 \in \mathbb{R}_d[\mathbf{x}]$ two conflicting criteria

• Let $\mathbf{S} := {\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_m(\mathbf{x}) \ge 0}$ a semialgebraic set

$$(\mathbf{P})\left\{\min_{\mathbf{x}\in\mathbf{S}}(f_1(\mathbf{x})f_2(\mathbf{x}))^{\top}\right\}$$

Assumption

The image space \mathbb{R}^2 is partially ordered in a natural way (\mathbb{R}^2_+ is the ordering cone).

Bicriteria Optimization Problems

$$\begin{split} g_1 &:= -(x_1-2)^3/2 - x_2 + 2.5 \ , \\ g_2 &:= -x_1 - x_2 + 8(-x_1 + x_2 + 0.65)^2 + 3.85 \ , \\ \mathbf{S} &:= \{\mathbf{x} \in \mathbb{R}^2 : g_1(\mathbf{x}) \ge 0, \, g_2(\mathbf{x}) \ge 0\} \ . \end{split}$$

$$\begin{split} f_1 &:= (x_1+x_2-7.5)^2/4 + (-x_1+x_2+3)^2 \ , \\ f_2 &:= (x_1-1)^2/4 + (x_2-4)^2/4 \ . \end{split}$$

Parametric sublevel set approximation

- Inspired by previous research on multiobjective linear optimization [Gorissen-den Hertog 12]
- Workaround: reduce **P** to a **parametric POP**

$$(\mathbf{P}_{\lambda}): \quad f^*(\lambda) := \min_{\mathbf{x} \in \mathbf{S}} \left\{ f_2(\mathbf{x}) : f_1(\mathbf{x}) \leqslant \lambda \right\} ,$$

Moment-SOS approach [Lasserre 10]:

$$(D_d) \begin{cases} \max_{q \in \mathbb{R}_{2d}[\lambda]} & \sum_{k=0}^{2d} q_k / (1+k) \\ \text{s.t.} & f_2(\mathbf{x}) - q(\lambda) \in \mathcal{Q}_{2d}(\mathbf{K}) \end{cases}$$

 The hierarchy (D_d) provides a sequence (q_d) of polynomial underestimators of f^{*}(λ).

$$\lim_{d\to\infty}\int_0^1 (f^*(\lambda) - q_d(\lambda))d\lambda = 0$$

V. Magron

- Numerical schemes that avoid computing finitely many points.
- Pareto curve approximation with polynomials, convergence guarantees in L₁-norm
- V. Magron, D. Henrion, J.B. Lasserre. Approximating Pareto Curves using Semidefinite Relaxations. Accepted pending minor revisions in *Operations Research Letters*. arxiv:1404.4772, April 2014.

Approximation of sets defined with " \exists "

Let $\mathbf{B} \subset \mathbb{R}^2$ be the unit ball and assume that $f(\mathbf{S}) \subset \mathbf{B}$.

Another point of view:

$$f(\mathbf{S}) = \{\mathbf{y} \in \mathbf{B} : \exists \mathbf{x} \in \mathbf{S} \text{ s.t. } h(\mathbf{x}, \mathbf{y}) \leqslant 0\}$$
 ,

with

$$h(\mathbf{x}, \mathbf{y}) := \|\mathbf{y} - f(\mathbf{x})\|_2^2 = (y_1 - f_1(\mathbf{x}))^2 + (y_2 - f_2(\mathbf{x}))^2$$
.

Approximate *f*(**S**) as closely as desired by a sequence of sets of the form :

$$\Theta_d := \{\mathbf{y} \in \mathbf{B} : q_d(\mathbf{y}) \leqslant 0\}$$
 ,

for some polynomials $q_d \in \mathbb{R}_{2d}[\mathbf{y}]$.

V. Magron

Introduction

Moment-SOS relaxations and Maxplus approximation

Formal Nonlinear Optimization

Pareto Curves and Images of Semialgebraic Sets

Program Analysis with Polynomial Templates

Conclusion

One-loop with Conditional Branching

 \bullet $r, s, T^i, T^e \in \mathbb{R}[\mathbf{x}]$

• $\mathbf{x}_0 \in \mathbf{X}_0$, with \mathbf{X}_0 semialgebraic set

 $\begin{array}{l} \mathbf{x} = \mathbf{x}_0 \, ; \\ \text{while } (r(\mathbf{x}) \leqslant 0) \, \{ \\ \quad \text{if } (s(\mathbf{x}) \leqslant 0) \, \{ \\ \quad \mathbf{x} = T^i(\mathbf{x}) \, ; \\ \quad \} \\ \quad \text{else} \, \{ \\ \quad \mathbf{x} = T^e(\mathbf{x}) \, ; \\ \quad \} \\ \} \end{array}$

V. Magron

Bounding Template using SOS

Sufficient condition to get bounding inductive invariant:

$$\begin{split} \alpha &:= \min_{q \in \mathbb{R}[\mathbf{x}]} \quad \sup_{\mathbf{x} \in \mathbf{X}_0} q(\mathbf{x}) \\ \text{s.t.} \quad q - q \circ T^i \ge 0 \ , \\ q - q \circ T^e \ge 0 \ , \\ q - \| \cdot \|_2^2 \ge 0 \ . \end{split}$$

Nontrivial correlations via polynomial templates q(x)

•
$$\{\mathbf{x}: q(\mathbf{x}) \leq \alpha\} \supset \bigcup_{k \in \mathbb{N}} \mathbf{X}_k$$

Bounds for $\bigcup_{k \in \mathbb{N}} \mathbf{X}_k$

$$\begin{aligned} \mathbf{X}_0 &:= [0.9, 1.1] \times [0, 0.2] \quad \mathbf{r}(\mathbf{x}) := 1 \quad \mathbf{s}(\mathbf{x}) := 1 - x_1^2 - x_2^2 \\ T^i(\mathbf{x}) &:= (x_1^2 + x_2^3, x_1^3 + x_2^2) \quad T^e(\mathbf{x}) := (\frac{1}{2}x_1^2 + \frac{2}{5}x_2^3, -\frac{3}{5}x_1^3 + \frac{3}{10}x_2^2) \end{aligned}$$

Formal Proofs, Program Analysis and Moment-SOS Relaxations

Bounds for $\bigcup_{k \in \mathbb{N}} \mathbf{X}_k$

Formal Proofs, Program Analysis and Moment-SOS Relaxations

Bounds for $\bigcup_{k \in \mathbb{N}} \mathbf{X}_k$

Formal Proofs, Program Analysis and Moment-SOS Relaxations

Introduction

Moment-SOS relaxations and Maxplus approximation

Formal Nonlinear Optimization

Pareto Curves and Images of Semialgebraic Sets

Program Analysis with Polynomial Templates

Conclusion

- New framework for nonlinear optimization
- Formal nonlinear optimization: NLCertify 1000
- Approximation of Pareto Curves, images and projections of semialgebraic sets
- Program Analysis with polynomial templates

Further research:

- Improve formal polynomial checker
- Alternative Polynomials bounds using geometric programming (T. de Wolff, S. Iliman)
- Programs analysis with transcendental assignments/conditions

Thank you for your attention!

http://homepages.laas.fr/vmagron/