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Errors and Proofs

Mathematicians want to eliminate all the uncertainties on
their results. Why?

M. Lecat, Erreurs des Mathématiciens des origines à
nos jours, 1935.

130 pages of errors! (Euler, Fermat, Sylvester, . . . )
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Errors and Proofs

Possible workaround: proof assistants

COQ (Coquand, Huet 1984)

HOL-LIGHT (Harrison, Gordon 1980)

Built in top of OCAML
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Computer Science and Mathematics

PhD on Formal Proofs for Global Optimization: Templates
and Sums of Squares

Collaboration with:

Benjamin Werner (LIX Polytechnique)

Stéphane Gaubert (Maxplus Team CMAP/INRIA
Polytechnique)

Xavier Allamigeon (Maxplus Team)
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Complex Proofs

Complex mathematical proofs / mandatory computation

K. Appel and W. Haken , Every Planar Map is
Four-Colorable, 1989.

T. Hales, A Proof of the Kepler Conjecture, 1994.
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From Oranges Stack...

Kepler Conjecture (1611):

The maximal density of sphere packings in 3D-space is π√
18

Face-centered cubic Packing Hexagonal Compact Packing
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...to Flyspeck Nonlinear Inequalities

The proof of T. Hales (1998) contains mathematical and
computational parts

Computation: check thousands of nonlinear inequalities

Robert MacPherson, editor of The Annals of Mathematics:
“[...] the mathematical community will have to get used to
this state of affairs.”

Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture
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A “Simple” Example

In the computational part:

Multivariate Polynomials:
∆x := x1x4(−x1 + x2 + x3 − x4 + x5 + x6) + x2x5(x1 − x2 + x3 +

x4 − x5 + x6) + x3x6(x1 + x2 − x3 + x4 + x5 − x6)− x2(x3x4 +

x1x6)− x5(x1x3 + x4x6)
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A “Simple” Example

In the computational part:

Semialgebraic functions: composition of polynomials with
| · |,√,+,−,×, /, sup, inf, . . .

p(x) := ∂4∆x q(x) := 4x1∆x
r(x) := p(x)/

√
q(x)

l(x) := −π

2
+ 1.6294− 0.2213 (

√
x2 +

√
x3 +

√
x5 +

√
x6 − 8.0) +

0.913 (
√

x4 − 2.52) + 0.728 (
√

x1 − 2.0)
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A “Simple” Example

In the computational part:

Transcendental functions T : composition of semialgebraic
functions with arctan, exp, sin, +,−,×, . . .
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A “Simple” Example

In the computational part:

Feasible set K := [4, 6.3504]3 × [6.3504, 8]× [4, 6.3504]2

Lemma9922699028 from Flyspeck:

∀x ∈ K, arctan
( p(x)√

q(x)

)
+ l(x) > 0
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New Framework (in my PhD thesis)

Certificates for lower bounds of Global Optimization
Problems using SOS and new ingredients in Global
Optimization:

Maxplus approximation (Optimal Control)

Nonlinear templates (Static Analysis)

Verification of these certificates inside COQ

Implementation: NLCertify
http://nl-certify.forge.ocamlcore.org/
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Moment-SOS relaxations

Semialgebraic set K := {x ∈ Rn : g1(x) > 0, . . . , gm(x) > 0}

p∗ := min
x∈K

p(x): NP hard

Sums of squares Σ[x]

Q(K) :=
{

σ0(x) + ∑m
j=1 σj(x)gj(x), with σj ∈ Σ[x]

}
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Moment-SOS relaxations

M+(K): space of probability measures supported on K

Polynomial Optimization Problems (POP)

(Primal) (Dual)

inf
∫

K
p dµ = sup λ

s.t. µ ∈ M+(K) s.t. λ ∈ R ,

p− λ ∈ Q(K)
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Moment-SOS relaxations

Truncated quadratic module Qk(K) := Q(K) ∩R2k[x]

Polynomial Optimization Problems (POP)

(Moment) (SOS)

inf
∫

K
p dµ > sup λ

s.t. µ ∈ M+(K) s.t. λ ∈ R ,

p− λ ∈ Qk(K)
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Practical Computation

Hierarchy of SOS relaxations:

λk := sup
λ

{
λ : p− λ ∈ Qk(K)

}
Convergence guarantees λk ↑ p∗ [Lasserre 01]

Can be computed with SOS solvers (CSDP, SDPA)

Extension to semialgebraic functions r(x) = p(x)/
√

q(x)
[Lasserre-Putinar 10]
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The General “Informal Framework”

Given K a compact set and f a transcendental function, bound
f ∗ = inf

x∈K
f (x) and prove f ∗ > 0

f is underestimated by a semialgebraic function fsa

Reduce the problem f ∗sa := infx∈K fsa(x) to a polynomial
optimization problem (POP)
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Maxplus Approximation

Initially introduced to solve Optimal Control Problems
[Fleming-McEneaney 00]

Curse of dimensionality reduction [McEaneney Kluberg,
Gaubert-McEneaney-Qu 11, Qu 13].
Allowed to solve instances of dim up to 15 (inaccessible by
grid methods)

In our context: approximate transcendental functions
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Maxplus Approximation

Definition
Let γ > 0. A function φ : Rn → R is said to be γ-semiconvex if
the function x 7→ φ(x) + γ

2 ‖x‖2
2 is convex.

a

y
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Nonlinear Function Representation

Exact parsimonious maxplus representations

a

y
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Nonlinear Function Representation

Exact parsimonious maxplus representations

a

y
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Nonlinear Function Representation

Abstract syntax tree representations of multivariate
transcendental functions:

leaves are semialgebraic functions of A

nodes are univariate functions of D or binary operations
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Nonlinear Function Representation

For the “Simple” Example from Flyspeck:

+

l(x) arctan

r(x)
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Maxplus Optimization Algorithm

First iteration:

+

l(x) arctan

r(x)

a

y

par−a1

arctan

m Ma1

1 1 control point {a1} SOS Computation: m1 = −0.746
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Maxplus Optimization Algorithm

Second iteration:

+

l(x) arctan

r(x)

a

y

par−a1

par−a2

arctan

m Ma1a2

2 2 control points {a1, a2}: m2 = −0.112
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Maxplus Optimization Algorithm

Third iteration:

+

l(x) arctan

r(x)

a

y

par−a1

par−a2

par−a3

arctan

m Ma1a2 a3

3 3 control points {a1, a2, a3}: m3 = −0.04
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Contributions

For more details:
X. Allamigeon, S. Gaubert, V. Magron, and B. Werner.
Certification of inequalities involving transcendental functions:
combining sdp and max-plus approximation. In Proceedings of the
European Control Conference (ECC) Zurich, pages 2244-2250, 2013.

X. Allamigeon, S. Gaubert, V. Magron, and B. Werner.
Certification of bounds of non-linear functions: the templates
method. In Proceedings of Conferences on Intelligent Computer
Mathematics, CICM Calculemus, Bath, pages 51-65. LNAI 7961
Springer, 2013.

In revision:
X. Allamigeon, S. Gaubert, V. Magron, and B. Werner.
Certification of Real Inequalities – Templates and Sums of
Squares. Submitted for publication. arxiv:1403.5899, March 2014
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The General “Formal Framework”

We check the correctness of SOS certificates for POP

We build certificates to prove interval bounds for
semialgebraic functions

We bound formally transcendental functions with
semialgebraic approximations
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Formal SOS bounds

When q ∈ Q(K), σ0, . . . , σm is a positivity certificate for q
Check symbolic polynomial equalities q = q′ in COQ

Existing tactic ring [Grégoire-Mahboubi 05]

Polynomials coefficients: arbitrary-size rationals bigQ
[Grégoire-Théry 06]

Much simpler to verify certificates using sceptical approach

Extends also to semialgebraic functions
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Benchmarks for Flyspeck Inequalities

Inequality #boxes
Time Time

9922699028 39 190 s 2218 s
3318775219 338 1560 s 19136 s

Comparable with Taylor interval methods in HOL-LIGHT

[Hales-Solovyev 13]

Bottleneck of informal optimizer is SOS solver

22 times slower! =⇒ Current bottleneck is to check
polynomial equalities
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Contribution: Publications and Software

For more details:
X. Allamigeon, S. Gaubert, V. Magron and B. Werner. Formal
Proofs for Nonlinear Optimization. Submitted for publication,
arxiv:1404.7282

X. Allamigeon, S. Gaubert, V. Magron, and B. Werner.
Certification of bounds of non-linear functions: the templates
method. In Proceedings of Conferences on Intelligent Computer
Mathematics, CICM Calculemus, Bath, pages 51-65. LNAI 7961
Springer, 2013.

V. Magron Formal Proofs, Program Analysis and Moment-SOS Relaxations 19 / 31

http://arxiv.org/abs/1404.7282


Contribution: Publications and Software

Software Implementation NLCertify:

https://forge.ocamlcore.org/projects/nl-certify/

15 000 lines of OCAML code

4000 lines of COQ code

V. Magron NLCertify: A Tool for Formal Nonlinear
Optimization. To appear in the Proceedings of the 4th
International Congress on Mathematical Software, ICMS 2014,
Séoul, arxiv:1405.5668
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Postdoc Research

1 Approximating Pareto curves, image of semialgebraic sets.
With people from LAAS-CNRS:

Didier Henrion

Jean-Bernard Lasserre

2 Static analysis. With people from Onera:

Assalé Adjé

Pierre-Loic Garoche
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Bicriteria Optimization Problems

Let f1, f2 ∈ Rd[x] two conflicting criteria

Let S := {x ∈ Rn : g1(x) > 0, . . . , gm(x) > 0} a
semialgebraic set

(P)
{

min
x∈S

(f1(x) f2(x))>
}

Assumption

The image space R2 is partially ordered in a natural way (R2
+ is

the ordering cone).
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Bicriteria Optimization Problems

g1 := −(x1 − 2)3/2− x2 + 2.5 ,

g2 := −x1 − x2 + 8(−x1 + x2 + 0.65)2 + 3.85 ,

S := {x ∈ R2 : g1(x) > 0, g2(x) > 0} .

f1 := (x1 + x2 − 7.5)2/4 + (−x1 + x2 + 3)2 ,

f2 := (x1 − 1)2/4 + (x2 − 4)2/4 .
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Parametric sublevel set approximation

Inspired by previous research on multiobjective linear
optimization [Gorissen-den Hertog 12]

Workaround: reduce P to a parametric POP

(Pλ) : f ∗(λ) := min
x∈S
{ f2(x) : f1(x) 6 λ } ,
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A Hierarchy of Polynomial underestimators

Moment-SOS approach [Lasserre 10]:

(Dd)

 max
q∈R2d[λ]

2d

∑
k=0

qk/(1 + k)

s.t. f2(x)− q(λ) ∈ Q2d(K) .

The hierarchy (Dd) provides a sequence (qd) of
polynomial underestimators of f ∗(λ).

limd→∞
∫ 1

0 (f
∗(λ)− qd(λ))dλ = 0
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A Hierarchy of Polynomial underestimators

Degree 4
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A Hierarchy of Polynomial underestimators

Degree 6
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A Hierarchy of Polynomial underestimators

Degree 8
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Contributions

Numerical schemes that avoid computing finitely many
points.

Pareto curve approximation with polynomials,
convergence guarantees in L1-norm

V. Magron, D. Henrion, J.B. Lasserre. Approximating Pareto
Curves using Semidefinite Relaxations. Accepted pending minor
revisions in Operations Research Letters. arxiv:1404.4772, April
2014.
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Approximation of sets defined with “∃”

Let B ⊂ R2 be the unit ball and assume that f (S) ⊂ B.

Another point of view:

f (S) = {y ∈ B : ∃x ∈ S s.t. h(x, y) 6 0} ,

with

h(x, y) := ‖y− f (x)‖2
2 = (y1 − f1(x))2 + (y2 − f2(x))2 .

Approximate f (S) as closely as desired by a sequence of
sets of the form :

Θd := {y ∈ B : qd(y) 6 0} ,

for some polynomials qd ∈ R2d[y].
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A Hierarchy of Outer approximations for f (S)

f (x) := (x1 + x1x2, x2 − x3
1)/2

Degree 4
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A Hierarchy of Outer approximations for f (S)

f (x) := (x1 + x1x2, x2 − x3
1)/2

Degree 6
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A Hierarchy of Outer approximations for f (S)

f (x) := (x1 + x1x2, x2 − x3
1)/2

Degree 8
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A Hierarchy of Outer approximations for f (S)

f (x) := (x1 + x1x2, x2 − x3
1)/2

Degree 10
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One-loop with Conditional Branching

r, s, Ti, Te ∈ R[x]

x0 ∈ X0, with X0 semialgebraic set

x = x0;
while (r(x) 6 0){

if (s(x) 6 0){
x = Ti(x);
}

else{
x = Te(x);
}

}
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Bounding Template using SOS

Sufficient condition to get bounding inductive invariant:

α := min
q∈R[x]

sup
x∈X0

q(x)

s.t. q− q ◦ Ti > 0 ,

q− q ◦ Te > 0 ,

q− ‖ · ‖2
2 > 0 .

Nontrivial correlations via polynomial templates q(x)

{x : q(x) 6 α} ⊃ ⋃
k∈N

Xk
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Bounds for
⋃

k∈N Xk

X0 := [0.9, 1.1]× [0, 0.2] r(x) := 1 s(x) := 1− x2
1 − x2

2

Ti(x) := (x2
1 + x3

2, x3
1 + x2

2) Te(x) := (
1
2

x2
1 +

2
5

x3
2,−3

5
x3

1 +
3
10

x2
2)

Degree 6
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Bounds for
⋃

k∈N Xk
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Conclusion

New framework for nonlinear optimization

Formal nonlinear optimization: NLCertify

Approximation of Pareto Curves, images and projections
of semialgebraic sets

Program Analysis with polynomial templates
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Conclusion

Further research:

Improve formal polynomial checker

Alternative Polynomials bounds using geometric
programming (T. de Wolff, S. Iliman)

Programs analysis with transcendental
assignments/conditions
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End

Thank you for your attention!

http://homepages.laas.fr/vmagron/

http://homepages.laas.fr/vmagron/
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