Two-player games between polynomial optimizers and semidefinite solvers

Victor Magron, CNRS-LAAS

Joint work with

Jean-Bernard Lasserre (CNRS–LAAS) Mohab Safey El Din (Sorbonne Université)

ICCOPT, Berlin, 07 August 2019

SDP for Polynomial Optimization

SDP for Polynomial Optimization

NP-hard NON CONVEX Problem $f^* = \inf f(\mathbf{x})$

Practice

LASSERRE'S HIERARCHY of **CONVEX PROBLEMS** $f_d^* \uparrow f^*$ [Lasserre/Parrilo 01]

degree d n vars **Numeric**

Solvers

 $\implies \binom{n+d}{n}$ **SDP** VARIABLES

 \Rightarrow **Approx** Certificate

Victor Magron

Success Stories: Lasserre's Hierarchy

MODELING POWER: Cast as ∞-dimensional LP over measures

VSTATIC Polynomial Optimization Optimal Powerflow $n \simeq 10^3$ [Josz et al 16]

Roundoff Error $n \simeq 10^2$ [Magron et al 17]

POYNAMICAL Polynomial Optimization Regions of attraction [Henrion et al 14]

Reachable sets [Magron et al 19]

APPROXIMATE OPTIMIZATION BOUNDS!

MOTZKIN POLYNOMIAL

sums of squares $= \Sigma$

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \ge 0 \text{ but } f \notin \Sigma$$

MOTZKIN POLYNOMIAL

sums of squares $= \Sigma$

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \ge 0 \text{ but } f \notin \Sigma$$

$$f^{\star} = \min_{(x,y) \in \mathbb{R}^2} f(x,y) = 0$$
 for $|x^{\star}| = |y^{\star}| = \frac{\sqrt{3}}{3}$

Lasserre's hierarchy:

• order 3 $\rightsquigarrow f_3^{\star} = -\infty$ unbounded SDP $\implies f \notin \Sigma$

Victor Magron

MOTZKIN POLYNOMIAL

sums of squares $= \Sigma$

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \ge 0 \text{ but } f \notin \Sigma$$

$$f^{\star} = \min_{(x,y) \in \mathbb{R}^2} f(x,y) = 0$$
 for $|x^{\star}| = |y^{\star}| = \frac{\sqrt{3}}{3}$

Lasserre's hierarchy:

• order 3
$$\rightsquigarrow f_3^* = -\infty$$
 unbounded SDP $\implies f \notin \Sigma$
• order 4 $\rightsquigarrow f_4^* = -\infty$

Victor Magron

MOTZKIN POLYNOMIAL

sums of squares $= \Sigma$

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \ge 0 \text{ but } f \notin \Sigma$$

$$f^{\star} = \min_{(x,y) \in \mathbb{R}^2} f(x,y) = 0$$
 for $|x^{\star}| = |y^{\star}| = \frac{\sqrt{3}}{3}$

Lasserre's hierarchy:

• order 3 $\rightsquigarrow f_3^{\star} = -\infty$ unbounded SDP $\implies f \notin \Sigma$

• order 4
$$\rightsquigarrow f_4^{\star} = -\infty$$

• order 5 $\rightsquigarrow f_5^\star \simeq -0.4$

MOTZKIN POLYNOMIAL

sums of squares $= \Sigma$

$$f = \frac{1}{27} + x^2 y^4 + x^4 y^2 - x^2 y^2$$
$$f \ge 0 \text{ but } f \notin \Sigma$$

$$f^{\star} = \min_{(x,y) \in \mathbb{R}^2} f(x,y) = 0$$
 for $|x^{\star}| = |y^{\star}| = \frac{\sqrt{3}}{3}$

Lasserre's hierarchy:

• order 3 $\rightsquigarrow f_3^{\star} = -\infty$ unbounded SDP $\implies f \notin \Sigma$

• order 4
$$\rightsquigarrow f_4^\star = -\infty$$

• order 5
$$\rightsquigarrow f_5^{\star} \simeq -0.4$$

• order 8 $\rightsquigarrow f_8^{\star} \simeq -10^{-8} \oplus$ extraction of x^{\star}, y^{\star} **Paradox** ?!

APPROXIMATE SOLUTIONS

$$a^{2} - 2ab + b^{2} \simeq (1.00001a - 0.99998b)^{2}$$

$$a^{2} - 2ab + b^{2} \neq 1.0000200001a^{2} - 1.9999799996ab + 0.9999600004b^{2}$$

$$\simeq \rightarrow = ?$$

SDP for Polynomial Optimization

Optimization Game

Certification Game

$$f^{\star} = \inf \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}$$

Moment matrix $\mathbf{M}_{d}(\mathbf{y})_{\alpha,\beta} = y_{\alpha+\beta}$

Accurate SDP Relaxations

(Primal Relaxation)

$$\inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha} \qquad \sup \lambda$$
s.t. $\mathbf{M}_{d}(\mathbf{y}) \succeq 0 \qquad f - \lambda = \sigma$

$$y_{0} = 1 \qquad \sigma \in \Sigma_{d}$$

(Dual Strengthening)

$$f^{*} = \inf \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}$$
Moment matrix $\mathbf{M}_{d}(\mathbf{y})_{\alpha,\beta} = y_{\alpha+\beta}$
 $\mathbf{M}_{d}(\mathbf{y}) = \sum_{\alpha} \mathbf{B}_{\alpha} y_{\alpha}$
Accurate SDP Relaxations

(Primal Relaxation)(Dual Strengthening) $\inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha}$ $\sup \lambda$ s.t. $\mathbf{M}_d(\mathbf{y}) \succeq 0$ $f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} = \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle$ $y_0 = 1$ $\mathbf{Q} \succeq 0$

$$f^{\star} = \inf \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}$$

Moment matrix $\mathbf{M}_{d}(\mathbf{y})_{\alpha,\beta} = y_{\alpha+\beta}$
 $\mathbf{M}_{d}(\mathbf{y}) = \sum \mathbf{B}_{\alpha} y_{\alpha}$

α

Inaccurate SDP Relaxations

(Primal Relaxation) (Dual Strengthening) $\sup \lambda$ $\mid f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle \mid \leq \varepsilon$ $\mathbf{Q} \succcurlyeq -\eta \mathbf{I}$

$$f^{\star} = \inf \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}$$

Moment matrix $\mathbf{M}_{d}(\mathbf{y})_{\alpha,\beta} = y_{\alpha+\beta}$

$$\mathbf{M}_d(\mathbf{y}) = \sum_{\alpha} \, \mathbf{B}_{\alpha} \, y_{\alpha}$$

Inaccurate SDP Relaxations

$$\begin{array}{ll} (\text{Primal Relaxation}) & (\text{Dual Strengthening}) \\ \inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} \, y_{\alpha} + \eta \langle \mathbf{M}_{d}(\mathbf{y}), \mathbf{I} \rangle + \varepsilon \| \mathbf{y} \|_{1} & \sup \lambda \\ \text{s.t. } \mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0 & | f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle \mid \leqslant \varepsilon \\ y_{0} = 1 & \mathbf{Q} \succcurlyeq -\eta \mathbf{I} \end{array}$$

$$ilde{f} = f + \eta \sum_{eta} \mathbf{x}^{2eta}$$

Inaccurate SDP Relaxations

 $\begin{array}{ll} (\text{Primal Relaxation}) & (\text{Dual Strengthening}) \\ \inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} \, y_{\alpha} + \eta \langle \mathbf{M}_{d}(\mathbf{y}), \mathbf{I} \rangle & \sup \lambda \\ \text{s.t. } \mathbf{M}_{d}(\mathbf{y}) \succcurlyeq 0 & f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle = 0 \\ y_{0} = 1 & \mathbf{Q} \succcurlyeq -\eta \mathbf{I} \end{array}$

Victor Magron

$$\tilde{f} = f + \eta \sum_{\beta} \mathbf{x}^{2\beta}$$

Inaccurate SDP Relaxations

(Primal **Relaxation**) (Dual **Strengthening**) $\inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha} + \eta \langle \mathbf{M}_{d}(\mathbf{y}), \mathbf{I} \rangle \qquad \sup \lambda$ s.t. $\mathbf{M}_{d}(\mathbf{y}) \geq 0$ $f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} - \eta \mathbf{I} \rangle = 0$ $y_{0} = 1$ $\mathbf{Q} \geq 0$

$$ilde{f} = f + \eta \sum_{eta} \mathbf{x}^{2eta}$$

Inaccurate SDP Relaxations

s.t.

(Primal **Relaxation**) $\inf_{y} \sum_{\alpha} \tilde{f}_{\alpha} y_{\alpha}$ (Dual Strengthening)

sup λ

$$\mathbf{M}_{d}(\mathbf{y}) \succeq 0 \qquad \qquad \tilde{f} - \lambda = \sigma$$
$$y_{0} = 1 \qquad \qquad \sigma \in \mathbf{\Sigma}_{d}$$

$$\mathbf{B}_{\infty}(f,\eta):=\{f+ heta\sum\limits_{eta}\mathbf{x}^{2eta}:\mid heta\mid\leqslant\eta\}$$

Victor Magron

$$\mathbf{B}_{\infty}(f,\eta):=\{f+ heta\sum\limits_{eta}\mathbf{x}^{2eta}:\mid heta\mid\leqslant\eta\}$$

Theorem [Lasserre-Magron 19]

Inaccurate SDP relaxations of the robust problem

$$\max_{\tilde{f}\in \mathbf{B}_{\infty}(f,\eta)}\min_{\mathbf{x}} \tilde{f}(\mathbf{x})$$

Victor Magron

Theorem [Lasserre 06]

For fixed *n*, any $f \ge 0$ can be approximated arbitrarily closely by SOS polynomials.

Theorem [Lasserre 06]

For fixed *n*, any $f \ge 0$ can be approximated arbitrarily closely by SOS polynomials.

Theorem [Lasserre 06]

For fixed *n*, any $f \ge 0$ can be approximated arbitrarily closely by SOS polynomials.

Priority to SDP Inequalities: $\eta = 0$

Inaccurate SDP Relaxations

(Primal Relaxation)(Dual Strengthening) $\inf_{\mathbf{y}} \sum_{\alpha} f_{\alpha} y_{\alpha} + \varepsilon ||\mathbf{y}||_1$ $\sup \lambda$ $\operatorname{s.t.} \mathbf{M}_d(\mathbf{y}) \succeq 0$ $| f_{\alpha} - \lambda \mathbf{1}_{\alpha=0} - \langle \mathbf{B}_{\alpha}, \mathbf{Q} \rangle | \leqslant \varepsilon$ $y_0 = 1$ $\mathbf{Q} \succeq 0$

Priority to SDP Inequalities: $\eta = 0$

$$\mathbf{B}_{\infty}(f,\varepsilon) := \{\tilde{f} : \|\tilde{f} - f\|_{\infty} \leqslant \varepsilon\}$$

Priority to SDP Inequalities: $\eta = 0$

Theorem (Lasserre-Magron)

Inaccurate SDP relaxations of the **robust** problem

 $\max_{\tilde{f}\in\mathbf{B}_{\infty}(f,\varepsilon)}\min_{\mathbf{x}} \tilde{f}(\mathbf{x})$

A Two-player Game Interpretation

max – min ROBUST OPTIMIZATION

Player 1 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow \mathbf{SDP}$ leads

Player 2 (optimizer) picks an SOS ~-> User follows

A Two-player Game Interpretation

max – min ROBUST OPTIMIZATION Player 1 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow \mathbf{SDP}$ leads Player 2 (optimizer) picks an SOS \rightsquigarrow User follows

Convex SDP relaxations $\implies max - min = min - max$

Victor Magron

A Two-player Game Interpretation

max – min ROBUST OPTIMIZATION Player 1 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow$ **SDP leads** Player 2 (optimizer) picks an SOS \rightsquigarrow **User follows**

Convex SDP relaxations $\implies max - min = min - max$

min – max ROBUST OPTIMIZATION Player 1 (robust optimizer) picks an SOS \rightsquigarrow User leads Player 2 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow$ SDP follows

Victor Magron

SDP for Polynomial Optimization

Optimization Game

Certification Game

From Approximate to Exact Solutions

Win TWO-PLAYER GAME

sum of squares of f?

From Approximate to Exact Solutions

Win Two-PLAYER GAME Σ V Hybrid Symbolic/Numeric Algorithms sum of squares of $f - \varepsilon$? \simeq Output! **Error Compensation** =

Rational SOS Decompositions

• $f \in \mathbb{Q}[X] \cap \mathring{\Sigma}[X]$ (interior of the SOS cone)

Existence Question

Does there exist $f_i \in \mathbb{Q}[X]$, $c_i \in \mathbb{Q}^{>0}$ s.t. $f = \sum_i c_i f_i^2$?

Rational SOS Decompositions

• $f \in \mathbb{Q}[X] \cap \mathring{\Sigma}[X]$ (interior of the SOS cone)

Existence Question

Does there exist $f_i \in \mathbb{Q}[X]$, $c_i \in \mathbb{Q}^{>0}$ s.t. $f = \sum_i c_i f_i^2$?

Examples

$$1 + X + X^{2} = \left(X + \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2} = 1\left(X + \frac{1}{2}\right)^{2} + \frac{3}{4}(1)^{2}$$
$$1 + X + X^{2} + X^{3} + X^{4} = \left(X^{2} + \frac{1}{2}X + \frac{1 + \sqrt{5}}{4}\right)^{2} + \left(\frac{\sqrt{10 + 2\sqrt{5}} + \sqrt{10 - 2\sqrt{5}}}{4}X + \frac{\sqrt{10 - 2\sqrt{5}}}{4}\right)^{2} = ???$$

$$f \in \overset{\circ}{\Sigma}[X]$$
 with deg $f = 2D$

Find $\tilde{\mathbf{Q}}$ with SDP at tolerance $\tilde{\delta}$ satisfying $f(X) \simeq \mathbf{v}_D^T(X) \tilde{\mathbf{Q}} \mathbf{v}_D(X) \quad \tilde{\mathbf{Q}} \succ 0$ $\mathbf{v}_D(X)$: vector of monomials of deg $\leq D$

Find $\tilde{\mathbf{Q}}$ with SDP at tolerance $\tilde{\delta}$ satisfying $f(X) \simeq \mathbf{v}_D^T(X) \tilde{\mathbf{Q}} \mathbf{v}_D(X) \quad \tilde{\mathbf{Q}} \succ 0$ $\mathbf{v}_D(X)$: vector of monomials of deg $\leq D$

$$\forall \mathsf{Exact} \ \mathbf{Q} \implies f_{\alpha+\beta} = \sum_{\alpha'+\beta'=\alpha+\beta} Q_{\alpha',\beta'}$$

Victor Magron

Find $\tilde{\mathbf{Q}}$ with SDP at tolerance $\tilde{\delta}$ satisfying $f(X) \simeq \mathbf{v}_D^T(X) \tilde{\mathbf{Q}} \mathbf{v}_D(X) \quad \tilde{\mathbf{Q}} \succ 0$ $\mathbf{v}_D(X)$: vector of monomials of deg $\leq D$

Victor Magron

Find $\tilde{\mathbf{Q}}$ with SDP at tolerance $\tilde{\delta}$ satisfying $f(X) \simeq \mathbf{v}_D^T(X) \tilde{\mathbf{Q}} \mathbf{v}_D(X) \quad \tilde{\mathbf{Q}} \succ 0$ $\mathbf{v}_D(X)$: vector of monomials of deg $\leq D$

$$\forall \text{Exact } Q \implies f_{\alpha+\beta} = \sum_{\alpha'+\beta'=\alpha+\beta} Q_{\alpha',\beta'}$$

- **1** Rounding step $\hat{Q} \leftarrow \text{round}(\tilde{Q}, \hat{\delta})$
- **2** Projection step $Q_{\alpha,\beta} \leftarrow \hat{Q}_{\alpha,\beta} - \frac{1}{\eta(\alpha+\beta)} (\sum_{\alpha'+\beta'=\alpha+\beta} \hat{Q}_{\alpha',\beta'} - f_{\alpha+\beta})$

Find $\tilde{\mathbf{Q}}$ with SDP at tolerance $\tilde{\delta}$ satisfying $f(X) \simeq \mathbf{v}_D^T(X) \tilde{\mathbf{Q}} \mathbf{v}_D(X) \quad \tilde{\mathbf{Q}} \succ 0$ $\mathbf{v}_D(X)$: vector of monomials of deg $\leq D$

$$\forall$$
 Exact $Q \implies f_{\alpha+\beta} = \sum_{\alpha'+\beta'=\alpha+\beta} Q_{\alpha',\beta'}$

1 Rounding step $\hat{Q} \leftarrow \texttt{round}(\tilde{Q}, \hat{\delta})$

2 Projection step $Q_{\alpha,\beta} \leftarrow \hat{Q}_{\alpha,\beta} - \frac{1}{\eta(\alpha+\beta)} (\sum_{\alpha'+\beta'=\alpha+\beta} \hat{Q}_{\alpha',\beta'} - f_{\alpha+\beta})$ $\tilde{\forall}$ Small enough $\tilde{\delta}, \hat{\delta} \implies f(X) = \mathbf{v}_D^T(X) \mathbf{Q} \mathbf{v}_D(X)$ and $\mathbf{Q} \succeq 0$

Victor Magron

Our Alternative Approach

PERTURBATION idea

V Approximate SOS Decomposition

$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Σ

RealCertify with n = 1 [Chevillard et. al 11]

↑

$$f \in \mathbb{Q}[X], \deg f = d = 2k, f > 0$$

$$f = 1 + X + X^2 + X^3 + X^4$$

Victor Magron

RealCertify with n = 1 [Chevillard et. al 11]

Victor Magron

RealCertify with n = 1 [Chevillard et. al 11]

$$f \in \mathbb{Q}[X]$$
, deg $f = d = 2k$, $f > 0$
 \tilde{V} **PERTURB**: find $\varepsilon \in \mathbb{Q}$ s.t.
 $f_{\varepsilon} := f - \varepsilon \sum_{i=0}^{k} X^{2i} > 0$
 \tilde{V} SDP Approximation:
 $f - \varepsilon \sum_{i=0}^{k} X^{2i} = \tilde{\sigma} + u$

 $\stackrel{\overleftarrow{\mathbf{v}}}{\Longrightarrow} \mathbf{ABSORB}: \text{ small enough } u_i$ $\implies \varepsilon \sum_{i=0}^k X^{2i} + u \text{ SOS}$

RealCertify with n = 1: SDP Approximation

$$\begin{array}{l} \overleftarrow{v} & X = \frac{1}{2} \big[(X+1)^2 - 1 - X^2 \big] \\ \overleftarrow{v} & -X = \frac{1}{2} \big[(X-1)^2 - 1 - X^2 \big] \end{array}$$

$$\begin{array}{l} \overleftarrow{v} & X = \frac{1}{2} \left[(X+1)^2 - 1 - X^2 \right] \\ \overleftarrow{v} & -X = \frac{1}{2} \left[(X-1)^2 - 1 - X^2 \right] \end{array}$$

$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[(X^{i+1} + \operatorname{sgn}(u_{2i+1})X^i)^2 - X^{2i} - X^{2i+2} \right]$$

Victor Magron

$$\begin{array}{l} \overleftarrow{v} & X = \frac{1}{2} \left[(X+1)^2 - 1 - X^2 \right] \\ \overleftarrow{v} & -X = \frac{1}{2} \left[(X-1)^2 - 1 - X^2 \right] \end{array}$$

$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[(X^{i+1} + \operatorname{sgn}(u_{2i+1})X^{i})^{2} - X^{2i} - X^{2i+2} \right]$$

$$\begin{array}{l} \overleftarrow{v} & X = \frac{1}{2} \left[(X+1)^2 - 1 - X^2 \right] \\ \overleftarrow{v} & -X = \frac{1}{2} \left[(X-1)^2 - 1 - X^2 \right] \end{array}$$

$$u_{2i+1}X^{2i+1} = \frac{|u_{2i+1}|}{2} \left[(X^{i+1} + \operatorname{sgn}(u_{2i+1})X^{i})^{2} - X^{2i} - X^{2i+2} \right]$$

Victor Magron

$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Choice of \mathcal{P} ?

Victor Magron

$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Choice of \mathcal{P} ?

Victor Magron

$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Choice of \mathcal{P} ?

Victor Magron

$$f(X) - \varepsilon \sum_{\alpha \in \mathcal{P}/2} X^{2\alpha} = \tilde{\sigma} + u$$

Choice of \mathcal{P} ?

$$f = 4x^4y^6 + x^2 - xy^2 + y^2$$

spt(f) = {(4,6), (2,0), (1,2), (0,2)}

Newton Polytope $\mathcal{P} = \operatorname{conv}(\operatorname{spt}(f))$

Victor Magron

RealCertify: Benchmarks

RAGLib (critical points) [Safey El Din]

SamplePoints (CAD) [Moreno Maza-Alvandi et al.]

ld	п	d	RealCertify		RoundProject		RAGLib	CAD
			$ au_1$ (bits)	t1 (s)	$ au_2$ (bits)	t ₂ (s)	t ₃ (s)	t ₄ (s)
f ₂₀	2	20	745 419	110.	78 949 497	141.	0.16	0.03
M	3	8	17 232	0.35	18 831	0.29	0.15	0.03
f_2	2	4	1 866	0.03	1 031	0.04	0.09	0.01
f_6	6	4	56 890	0.34	475 359	0.54	598.	—
f_1	10	4	344 347	2.45	8 374 082	4.59	—	—

OPTIMIZATION GAME

Solvers **OUTPUT** inaccurate certificates \Rightarrow extract solutions

OPTIMIZATION GAME

Solvers **OUTPUT** inaccurate certificates \Rightarrow extract solutions

CERTIFICATION GAME

Optimizers **INPUT** inaccurate $\tilde{f} = f - \eta \sum_{|\beta| \leq d} \mathbf{x}^{2\beta}$

 \implies exact certificates

OPTIMIZATION GAME

Solvers **OUTPUT** inaccurate certificates \Rightarrow extract solutions

CERTIFICATION GAME

Optimizers **INPUT** inaccurate $\tilde{f} = f - \eta \sum_{|\beta| \leq d} \mathbf{x}^{2\beta}$

 \implies exact certificates

V Better arbitrary-precision SDP solvers

V Extension to other relaxations, sums of hermitian squares

OPTIMIZATION GAME

Solvers **OUTPUT** inaccurate certificates \Rightarrow extract solutions

CERTIFICATION GAME

Optimizers **INPUT** inaccurate $\tilde{f} = f - \eta \sum_{|\beta| \leq d} \mathbf{x}^{2\beta}$

 \implies exact certificates

- V Better arbitrary-precision SDP solvers
- Y Extension to other relaxations, sums of hermitian squares

Crucial need for polynomial systems certification Available PhD/Postdoc Positions

Victor Magron

Thank you for your attention!

```
gricad-gitlab:RealCertify
https://homepages.laas.fr/vmagron
```


- Magron & Safey El Din. On Exact Polya and Putinar's Representations, *ISSAC'18*. arxiv:1802.10339
- Magron & Safey El Din. RealCertify: a Maple package for certifying non-negativity, *ISSAC'18*. arxiv:1805.02201