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Multiobjective Polynomial Optimization

Optimization Problems with several criteria in engineering,
economics, applied mathematics.
Design of a beam of length l, heigth x1 and width x2:

1 light construction: minimize the volume lx1x2
2 cheap construction: minimize the sectional area π/4(x2

1 + x2
2)

3 under stress and nonnegativity constraints

x1

x2
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Multiobjective Polynomial Optimization

Let f1, f2 ∈ Rd[x] two conflicting criteria

Let S := {x ∈ Rn : g1(x) > 0, . . . , gm(x) > 0} a semialgebraic set

(P)
{

min
x∈S

(f1(x) f2(x))>
}

Assumption

The image space R2 is partially ordered in a natural way (R2
+ is the

ordering cone).
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Multiobjective Polynomial Optimization

Definition
Let the previous assumption be satisfied.

A point x ∈ S is called an Edgeworth-Pareto (EP) optimal point of
Problem P, when there is no x ∈ S such that fj(x) 6 fj(x), j = 1, 2
and f (x) 6= f (x).

A point x ∈ S is called a weakly (EP) optimal point of Problem P,
when there is no x ∈ S such that fj(x) < fj(x), j = 1, 2.

f1(x) := x1 ,

f2(x) := x2 ,

S := {x ∈ R2 : 0 6 x1 6 1, 0 6 x2 6 1} . y1

y2

10

f (S)
1
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Pareto Curve

Definition
The image set of weakly Edgeworth-Pareto optimal points is called the
Pareto curve.
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Some Examples: f (S) + R2
+ is convex

g1 := −x2
1 + x2 ,

g2 := −x1 − 2x2 + 3 ,

S := {x ∈ R2 : g1 > 0, g2 > 0} .

f1 := −x1 ,

f2 := x1 + x2
2 .
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Some Examples: f (S) + R2
+ is not convex

g1 := −(x1 − 2)3/2− x2 + 2.5 ,

g2 := −x1 − x2 + 8(−x1 + x2 + 0.65)2 + 3.85 ,

S := {x ∈ R2 : g1 > 0, g2 > 0} .

f1 := (x1 + x2 − 7.5)2/4 + (−x1 + x2 + 3)2 ,

f2 := (x1 − 1)2/4 + (x2 − 4)2/4 .
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Scalarization Techniques

Common workaround by reducing P to a scalar POP :

(Pp
λ)

{
min
x∈S

f p(λ, x) := ((λ|f1(x)− µ1|)p + ((1− λ)|f2(x)− µ2|)p)
1
p

}
,

with the weight λ ∈ [0, 1] and the goals µ1, µ2 ∈ R.

Possible choice: µj < min
x∈S

fj(x), j = 1, 2.
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Weighted convex sum approximation: method (a)

(P1
λ) : f 1(λ) := min

x∈S
f 1(λ, x)

f 1(λ, x) := λf1(x) + (1− λ)f2(x)

Theorem ([Borwein 77], [Arrow-Barankin-Blackwell 53])

Assume that f (S) + R2
+ is convex. A point x ∈ S is an EP optimal

point of Problem P⇐⇒ ∃λ such that x is an image unique solution of
Problem P1

λ.
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Weighted convex sum approximation: method (a)

(P1
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Weigthed Chebyshev approximation: method (b)

(P∞
λ ) : f ∞(λ) := min

x∈S
f ∞(λ, x)

f ∞(λ, x) := max{λ(f1(x)− µ1), (1− λ)(f2(x)− µ2)}
Theorem ([Jahn 10, Corollary 11.21 (a)], [Bowman 76], [Steuer-Choo 83])

Suppose that ∀x ∈ S, µj < fj(x), j = 1, 2. A point x ∈ S is an EP
optimal point of Problem P ⇐⇒ ∃λ ∈ (0, 1) such that x is an image
unique solution of Problem P∞

λ .
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Parametric sublevel set approximation: method (c)

Inspired by previous research on multiobjective linear optimization [1]

For each λ ∈ [a1, b1], consider the following parametric POP

(Pu
λ) : f u(λ) := min

x∈S
{ f2(x) : f1(x) 6 λ } ,

with a1 := min
x∈S

f1(x), b1 := f1(x) and x a solution of min
x∈S

f2(x).

Lemma
Suppose that x ∈ S is an optimal solution of Problem Pu

λ, with λ ∈
[a1, b1]. Then x belongs to the set of weakly EP points of Problem P.

1B. Gorissen, D. den Hertog. Approximating the pareto set of multiobjective
linear programs via robust optimization. (2012)
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Questions

Is it mandatory to use discretization schemes?

Can we approximate the Pareto curve in a relatively strong sense?
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Contributions

Yes!
We provide two approaches together with numerical schemes that
avoid computing finitely many points.

1 Parametric POP: for methods (a) and (b) (resp. method (c)), we
approximate the Pareto curve with polynomials so that
convergence in L2-norm (resp. L1-norm) holds

2 Hierarchy of outer approximation: we provide certified
underestimators of the Pareto curve with strong convergence to
f (S) in L1-norm
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Outline

1 Parametric POP

2 Outer Approximations of f (S)

3 Perspectives
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Preliminaries: method (a)

Parametric POP (P1
λ) : f ∗(λ) := f 1(λ) = min

x∈S
f (λ, x)

Assumption

For almost all λ ∈ [0, 1], the solution x∗(λ) of the scalarized problem
(P1

λ) is unique.

Non-uniqueness may be tolerated on a Borel set B ⊂ [0, 1], in which
case one assumes image uniqueness of the solution.
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Preliminaries: method (a)

Parametric POP (P1
λ) : f ∗(λ) := f 1(λ) = min

x∈S
f (λ, x)

Let K := [0, 1]× S

LetM(K) the set of probability measures supported on K

(P)


ρ := min

µ∈M(K)

∫
K

f (λ, x)dµ(λ, x)

s.t.
∫

K
λkdµ(λ, x) = 1/(1 + k), k ∈N .
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Preliminaries: method (a)

Lemma (Corollary of [2, Theorem 2.2])

Problem (P) has an optimal solution µ∗ ∈ M(K). Then,

ρ =
∫

K
f (λ, x)dµ∗ =

∫ 1

0
f ∗(λ)dλ .

Moreover, suppose that (P) has a unique (or image unique) global min-
imizer x∗(λ) ∈ S and let f ∗j (λ) := fj(x∗(λ)), j = 1, 2. Then,

ρ =
∫ 1

0
[λf ∗1 (λ) + (1− λ)f ∗2 (λ)]dλ .

2J.B. Lasserre. A “joint + marginal” approach to parametric polynomial
optimization (2010)
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A hierarchy of semidefinite relaxations

Let g ∈ R[λ, x] with g(λ, x) := ∑
k,α

gkαλkxα.

Consider the real sequence z = (zkα), (k, α) ∈Nn+1
d

Consider the linear functional Lz(g) := ∑
k,α

gkαzkα

Victor MAGRON (GTPM) Approximating Pareto Curves using SDP 18 / 43



Pareto Curves Parametric POP Outer Approximations of f (S) Perspectives

A hierarchy of semidefinite relaxations

Let g0 := 1.

Let d0 := max{deg f1, deg f2, deg g1, . . . , deg gm}.
Consider the semidefinite relaxations of (P) for d > d0:

(Pd)


min

z
Lz(f )

s.t. Md−vl(gl z) < 0, l = 0, . . . , m ,
Lz(λ

k) = 1/(1 + k), k = 0, . . . , 2d .

Md(z) is the moment matrix associated with z

Md−vl(gl z) is the localizing matrix associated with z and gl

Victor MAGRON (GTPM) Approximating Pareto Curves using SDP 19 / 43



Pareto Curves Parametric POP Outer Approximations of f (S) Perspectives

Polynomial underestimators of f ∗(λ)

The dual SDP of (Pd) reads:

(Dd)



max
q,(σl)

2d

∑
k=0

qk/(1 + k)

s.t. f (λ, x)− q(λ) =
m

∑
l=0

σl(λ, x)gl(x)

q ∈ R2d[λ], σl ∈ Σ[λ, x], l = 0, . . . , m ,
deg(σlgl) 6 2d, l = 0, . . . , m .

The hierarchy (Dd) provides a sequence (qd) of polynomial
underestimators of f ∗(λ).

lim
d→∞

∫ 1

0
(f ∗(λ)− qd(λ))dλ = 0
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Polynomial underestimators of f ∗(λ)

On the convex example:

Degree 4 underestimator
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Polynomial underestimators of f ∗(λ)

On the convex example:

Degree 6 underestimator
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An inverse problem from generalized moments

Lemma (Corollary of [2, Theorem 3.3])

Assume that for a.a. λ ∈ [0, 1], Problem (P) has a unique global opti-
mizer x∗(λ) and let zd = (zd

kα) be an optimal solution of (Pd). Then,

lim
d→∞

zd
kα =

∫ 1

0
λk(x∗(λ))αdλ, k ∈N .

In particular, for s ∈N,

mk
j := lim

d→∞
∑
α

fjαzd
kα =

∫ 1

0
λkf ∗j (λ)dλ, j = 1, 2, k = 0, . . . , s .

2J.B. Lasserre. A “joint + marginal” approach to parametric polynomial
optimization (2010)
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An inverse problem from generalized moments

For a fixed s ∈N, one can compute:

Approximation msd
j of the vector ms

j := (mk
j )

Approximations of f ∗j (λ), j = 1, 2, by solving:

min
h∈Rs[λ]

{∫ 1

0
(f ∗j (λ)− h(λ))2dλ

}
, j = 1, 2 .
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An inverse problem from generalized moments

Theorem

The Problem min
h∈Rs[λ]

{∫ 1

0
(f ∗j (λ)− h(λ))2dλ

}
has an optimal solution

hsj ∈ Rs[λ], whose vector of coefficients is hsj = H−1
s mj, j = 1, 2, where

Hs ∈ S2s+1 is the Hankel matrix, whose entries are defined by:

Hs(a, b) := 1/(1 + a + b), a, b = 0, . . . , 2s .
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An inverse problem from generalized moments

Proof.

∫ 1

0
(f ∗j (λ)− h(λ))2dλ =

∫ 1

0
f ∗j (λ)

2dλ︸ ︷︷ ︸
A

−2
∫ 1

0
f ∗j (λ)h(λ)dλ︸ ︷︷ ︸

B

+
∫ 1

0
h(λ)2dλ︸ ︷︷ ︸

C

,

B = h′mj, C = h′Hsh ,

thus the problem can be reformulated as:

min
h
{h′Hsh− 2h′mj}, j = 1, 2 .
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Weighted convex sum approximation: method (a)

On the convex example:

Degree 4
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Weighted convex sum approximation: method (a)

On the convex example:

Degree 6
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Weighted convex sum approximation: method (a)

On the convex example:

Degree 8
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Weighted Chebyshev approximation: method (b)

On the non-convex example:

Degree 4
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Weighted Chebyshev approximation: method (b)

On the non-convex example:
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Weighted Chebyshev approximation: method (b)

On the non-convex example:

Degree 8
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Parametric sublevel set approximation: method (c)

Scaling the problem:

Ku := {(λ, x) ∈ [0, 1]× S : (f1(x)− a1)/(b1 − a1) 6 λ},

Parametric POP:

(Pu
λ) : f u(λ) = min

x∈S
{f2(x) : (λ, x) ∈ Ku}

Solving the dual SDP Dd yields underestimators for λ 7→ f u(λ) over
[a1, b1]. One can directly approximate the Pareto curve from below!
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Parametric sublevel set approximation: method (c)

On the non-convex example:

Degree 4
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Parametric sublevel set approximation: method (c)

On the non-convex example:

Degree 6
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Parametric sublevel set approximation: method (c)

On the non-convex example:

Degree 8
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Parametric sublevel set approximation: method (c)

Medium size random bicriteria problem:

Q1, Q2 ∈ R15×15, q1, q2 ∈ R15

min
x∈[−1,1]15

{f1(x), f2(x)}

fj(x) := x>Qjx/n2 − q>j x/n

Degree 2
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Outline

1 Parametric POP

2 Outer Approximations of f (S)

3 Perspectives
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Approximation of sets defined with “∃”

Let B ⊂ R2 be the unit ball and assume that f (S) ⊂ B.

Another point of view:

f (S) = {y ∈ B : ∃x ∈ S s.t. h(x, y) 6 0} ,

with
h(x, y) := (y1 − f1(x))2 + (y2 − f2(x))2 .

Approximate f (S) as closely as desired by a sequence of sets of
the form :

Θd := {y ∈ B : Jd(y) 6 0} ,

for some polynomials Jd ∈ R2d[y].
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Approximation of sets defined with “∃”

Let g0 := 1 and Qd(S) be the d-truncated quadratic module
generated by g0, . . . , gm:

Qd(S) =
{ m

∑
l=0

σl(x, y)gl(x), with σl ∈ Σd−vl [x, y]
}

Define H(y) := min
x∈S

h(x, y)

Hierarchy of Semidefinite programs:

ρd := min
J∈R2d[y],σl

{∫
B
(H− J)dy : h− J ∈ Qd(S)

}
.

Yet another SOS program with an optimal solution Jd ∈ R2d[y]!
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A hierarchy of outer approximations of f (S)

From the definition of Jd, the sublevel sets

Θd := {y ∈ B : Jd(y) 6 0} ⊃ f (S), d > d0 ,

provide a sequence of certified outer approximations of f (S).

It comes from the following:

∀(x, y) ∈ S× B, J(y) 6 h(x, y)⇐⇒ ∀y, J(y) 6 H(y) .
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Strong convergence property

Theorem
1 The sequence of underestimators (Jd)d>d0 converges to H w.r.t the

L1(B)-norm:

lim
d→∞

∫
B
|H− Jd|dy = 0 .

2

lim
d→∞

V(Θd\f (S)) = 0 .
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Back to the non-convex example
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Back to the non-convex example

f (S)

y
1

y
2

8 10 12 14 16 18 20
−1

0

1

2

3

4

Θ4

Victor MAGRON (GTPM) Approximating Pareto Curves using SDP 36 / 43



Pareto Curves Parametric POP Outer Approximations of f (S) Perspectives

Back to the non-convex example
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Branch and Bound: Zoom on the left
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Branch and Bound: Zoom on the left
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Branch and Bound: Zoom on the left
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Branch and Bound: Zoom on the left
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Branch and Bound: Zoom on the left
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Transcendental conflicting criteria

Now, consider the following Problem:

(P)
{

min
x∈S

(f1(x) f2(x))> .
}

with transcendental criteria f1, f2.

Generalization of the single criterion problem min
x∈S

f (x)

Hard to combine SOS hierarchies with Taylor/Chebyshev
approximations [2]

2X. Allamigeon, S. Gaubert, V. Magron and B. Werner. Certification of
inequalities involving transcendental functions: combining SDP and max-plus
approximation (2013)
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Transcendental conflicting criteria

Definition: Semiconvex function
Let γ > 0. A function φ : Rn → R is said to be γ-semiconvex if the
function x 7→ φ(x) +

γ

2
‖x‖2

2 is convex.

Proposition (by Legendre-Fenchel duality)

The set of functions f : Rn → R which can be written as the max-
plus linear combination f = sup

w∈B
(a(w) + w) for some function a : B →

R ∪ {−∞} is precisely the set of lower semicontinuous γ-semiconvex
functions.
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Transcendental conflicting criteria

a

y

par−a1

arctan

m Ma1

Victor MAGRON (GTPM) Approximating Pareto Curves using SDP 41 / 43



Pareto Curves Parametric POP Outer Approximations of f (S) Perspectives

Transcendental conflicting criteria
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Transcendental conflicting criteria
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Sublevel sets of semialgebraic underestimators

The sublevel sets

Θd := {y ∈ B : Jd(y) 6 0} ⊃ f (S), d > d0 ,

provide a sequence of certified outer approximations of f (S).

To avoid Branch and bound iterations (“Zooms”), one could
underestimate H with a rational function

J := F/(1 + σ) ,

with F ∈ R2d[y], σ ∈ Σd0 [y].
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Thank you for your attention!

Victor Magron, Didier Henrion, Jean-Bernard Lasserre. Approximating
Pareto Curves using Semidefinite Relaxations. arxiv:1404.4772, 2014.

http://homepages.laas.fr/vmagron/
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