Formal Proofs of Inequalities and Semi-Definite Programming

Supervisor: Benjamin Werner (TypiCal)
Co-Supervisor: Stéphane Gaubert (Maxplus)

$2^{\text {nd }}$ year PhD Victor MAGRON
LIX, École Polytechnique

Friday November $27^{\text {th }} 2011$

$$
E D^{x} \text { Inria }
$$

Contents

- Background
- Difficulties
- Sums of Squares (SOS) and Semi-Definite Programming (SDP) Relaxations
- Formal Proofs of Non-linear Inequalities
(1) Certificates and Oracles
(2) Flyspeck
(3) Bernstein
(4) SOS and Transcendental Functions
(5) Possible Framework

Background

- Computational Proofs: Primality, Four colors theorem
- Autarcic approach: a program prime : nat \rightarrow bool computes prime numbers with an algorithm proved sound and correct in Coq, no need of certificates to check the primality
- Sceptic approach: a program prime : nat $*$ cert \rightarrow bool in Coq checks primality, helped with the certificate imported from an external tool
- Hales proof of the Kepler conjecture generated hundred of non-linear inequalities: need automatic proofs

Difficulties

- Multiple interests:
- A part of the mathematics is related to these technics
- The interface between the deductive «conventional » part and the computational part is particularly favorable to errors
- Opening new fields to proof systems while allowing some results automatization
- Improve the tools developed by Roland Zumkeller by using SDP tools (strong interest for the related applied mathematics)
- Limit the size of the certificate while using hybrid format for numbers, mixing classical numerical and symbolic representation

SOS and SDP Relaxations

- Polynomial Optimization Problem (POP):

$$
\text { Let } f_{k} \in \mathbb{R}[\mathbf{x}](k=0,1, \ldots, m):
$$

$$
\text { minimize } f_{0}(\mathbf{x}) \text { subject to } f_{k}(\mathbf{x}) \geqslant 0(k=1,2 \ldots, m)
$$

- Generalized Lagrangian dual:

$$
\begin{aligned}
& L(\mathbf{x}, \boldsymbol{\varphi})=f_{0}(\mathbf{x})-\sum_{k=1}^{m} \varphi_{k}(\mathbf{x}) f_{k}(\mathbf{x})\left(\forall \mathbf{x} \in \mathbb{R}^{n} \text { and } \forall \boldsymbol{\varphi} \in \Phi\right), \\
& \Phi=\left\{\boldsymbol{\varphi}=\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right): \forall k \in\{1,2 \ldots, m\}, \varphi_{k} \operatorname{SOS}\right\}
\end{aligned}
$$

- Lagrangian relaxation problem:

$$
\left.\begin{array}{l}
L^{*}(\boldsymbol{\varphi})=\inf \left\{L(\mathbf{x}, \varphi): \mathbf{x} \in \mathbb{R}^{n}\right\} \\
\zeta^{*}=\inf \left\{f_{0}(\mathbf{x}): f_{k}(\mathbf{x}) \geqslant 0(k=1,2 \ldots, m)\right.
\end{array}\right\} L^{*}(\boldsymbol{\varphi}) \leqslant \zeta^{*}
$$

SOS and SDP Relaxations

- Constrained optimization problems with semi-definite positive matrices:

Find $X \in \mathbb{S}^{n}$, solution of the primal problem:
(P) $\left\{\begin{array}{l}\inf \langle C, X\rangle \\ A(X)=b \\ X \succeq 0 .\end{array}\right.$

- Such formulations can be derived from the previous problem as primal SDP relaxations.

Formal Proofs of Non-linear Inequalities - Certificates and Oracles

- Proof systems like Coq have several ways to solve such problems:
(1) Without certificates, with pure functional computations (OCaml fragment) : autarcic approach (Bernstein, TM)
(2) Coq checks certificates imported from external solvers (e.g. Gloptipoly, SparsePOP, RAGlib, CSDP,...): sceptical approach with formal computations
- Micromega: psatz tactic in Coq, developed by F. Besson, uses sceptical approach by verification of certificates imported from CSDP computations
- Such tactics can be developed with several computational tools: Bernstein, SOS, rational functions minimization, transcendental approximations,...

Formal Proofs of Non-linear Inequalities - Flyspeck

- Two types of inequalities issued from Flyspeck non-linear part:
(1) Pure polynomials
(2) Transcendentals
- Example: $\operatorname{dih} x=\frac{\pi}{2}+\arctan \frac{-\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}$
$K=\left([4 ; 6.3504]^{3},[6.3504 ; 6.3504],[4 ; 6.3504]^{2}\right)$
$\Delta x=\frac{1}{2}\left|\begin{array}{lllll}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & x_{3} & x_{2} & x_{1} \\ 1 & x_{3} & 0 & x_{4} & x_{5} \\ 1 & x_{2} & x_{4} & 0 & x_{6} \\ 1 & x_{1} & x_{5} & x_{6} & 0\end{array}\right|=\begin{aligned} & x_{1} x_{4}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right) \\ & +x_{2} x_{5}\left(x_{1}-x_{2}+x_{3}+x_{4}-x_{5}+x_{6}\right) \\ & +x_{3} x_{6}\left(x_{1}+x_{2}-x_{3}+x_{4}+x_{5}-x_{6}\right) \\ & -x_{2} x_{3} x_{4}-x_{1} x_{3} x_{5}-x_{1} x_{2} x_{6}-x_{4} x_{5} x_{6}\end{aligned}$
Lemma $_{2570626711}: \forall x \in K, \operatorname{dih} x \geqslant 1.15$.

Formal Proofs of Non-linear Inequalities - Bernstein

- PhD thesis of Roland Zumkeller about Bernstein polynomials and Taylor models (TM): Global Optimization in Type Theory
- Software: sergei written in Haskell can provide bounds for multivariate polynomials
- Sufficent for the former example:
$\forall x \in\left([4 ; 6.3504]^{3},[6.3504 ; 6.3504],[4 ; 6.3504]^{2}\right)$,
$\max \left(\left(\partial_{4} \Delta x\right)^{2}-0.2\left(4 x_{1} \Delta x\right)\right)<0$ and $\operatorname{dih} x=\arctan (-\sqrt{0.2})+\frac{\pi}{2}>1.1502>1.15$
- Work in progress: a formal study of Bernstein coefficients and polynomials by Bertot, Guilhot and Mahboubi

Formal Proofs of Non-linear Inequalities - SOS and Transcendental Functions

- Need to deal with rational functions minimization or constrained POP: Taylor Models in Coq, Gloptipoly, SparsePOP, RAGlib
- Gloptipoly or RAGlib can solve the former example
- Not sufficent to solve many inequalities, e.g. with sums or multiplications of transcendental functions

Formal Proofs of Non-linear Inequalities - Possible Framework

- Build abstract syntax tree from an inequality, where leaves are polynomials and nodes are transcendental functions (arctan, $\sqrt{ }, \ldots$) or basic operations $(+, *,-, /)$, e.g. :

- Use basic convexity properties and monotonicity of elementary functions to find lower and upper piecewise polynomial bounds for each node, e.g.:

Formal Proofs of Non-linear Inequalities - Possible Framework

- Recursive algorithm solving successive constrained POP at unary or binary nodes i, e.g.:

- $\bigvee_{i, k} \tan _{k}\left(P_{i-1}^{-}(x)\right)=P_{i}^{-}$
- $\wedge_{i} \operatorname{chord}\left(P_{i-1}^{+}(x)\right)=P_{i}^{+}$

$$
\left\{\begin{array} { l }
{ \operatorname { m i n } z = m _ { i } } \\
{ z \geqslant P _ { i } ^ { - } (x) } \\
{ x \in K }
\end{array} \left\{\begin{array}{l}
\max z=M_{i} \\
z \leqslant P_{i}^{+}(x) \\
x \in K
\end{array}\right.\right.
$$

- Works out sometimes with a single tangent at each node and sergei but fails with several tangents and SOS solvers

Formal Proofs of Non-linear Inequalities - Possible Framework

- For the binary node of addition:

$$
\left\{\begin{array} { l }
{ \operatorname { m i n } z } \\
{ z \geqslant z _ { 1 } + z _ { 2 } } \\
{ z _ { 1 } \geqslant \bigvee _ { k } P _ { k } ^ { - } } \\
{ z _ { 2 } \geqslant \bigvee _ { l } P _ { l } ^ { - } }
\end{array} \left\{\begin{array}{l}
\max z \\
z \leqslant z_{1}+z_{2} \\
z_{1} \leqslant \bigwedge_{k} P_{k}^{+} \\
z_{2} \leqslant \bigwedge_{l} P_{l}^{+}
\end{array}\right.\right.
$$

Thank you for your attention!

