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What is Semidefinite Programming?

Linear Programming (LP):

min
z

c
>

z

s.t. A z > d .

Linear cost c

Linear inequalities “∑i Aij zj > di” Polyhedron
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What is Semidefinite Programming?

Semidefinite Programming (SDP):
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(F has nonnegative eigenvalues)

Spectrahedron

Victor Magron New Applications of Semidefinite Programming 2 / 22



What is Semidefinite Programming?

Semidefinite Programming (SDP):

min
z

c
>

z

s.t. ∑
i

Fi zi < F0 , A z = d .

Linear cost c

Symmetric matrices F0, Fi

Linear matrix inequalities “F < 0”
(F has nonnegative eigenvalues)

Spectrahedron

Victor Magron New Applications of Semidefinite Programming 2 / 22



Applications of SDP

Combinatorial optimization

Control theory

Matrix completion

Unique Games Conjecture (Khot ’02) :
“A single concrete algorithm provides optimal guarantees
among all efficient algorithms for a large class of
computational problems.”
(Barak and Steurer survey at ICM’14)

Solving polynomial optimization (Lasserre ’01)
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SDP for Polynomial Optimization

Prove polynomial inequalities with SDP:

p(a, b) := a2 − 2ab + b2 > 0 .

Find z s.t. p(a, b) =
(

a b
)(z1 z2

z2 z3

)
︸ ︷︷ ︸

<0

(
a
b

)
.

Find z s.t. a2 − 2ab + b2 = z1a2 + 2z2ab + z3b2 (A z = d)

(
z1 z2
z2 z3

)
=

(
1 0
0 0

)
︸ ︷︷ ︸

F1

z1 +

(
0 1
1 0

)
︸ ︷︷ ︸

F2

z2 +

(
0 0
0 1

)
︸ ︷︷ ︸

F3

z3 <
(

0 0
0 0

)
︸ ︷︷ ︸

F0
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SDP for Polynomial Optimization

Choose a cost c e.g. (1, 0, 1) and solve:

min
z

c
>

z

s.t. ∑
i

Fi zi < F0 , A z = d .

Solution
(

z1 z2
z2 z3

)
=

(
1 −1
−1 1

)
< 0 (eigenvalues 0 and 1)

a2 − 2ab + b2 =
(
a b

) ( 1 −1
−1 1

)
︸ ︷︷ ︸

<0

(
a
b

)
= (a− b)2 .

Solving SDP =⇒ Finding SUMS OF SQUARES certificates
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SDP for Polynomial Optimization

General case:

Semialgebraic set S := {x ∈ Rn : g1(x) > 0, . . . , gm(x) > 0}

p∗ := min
x∈S

p(x): NP hard

Sums of squares (SOS) Σ[x] (e.g. (x1 − x2)
2)

Q(S) :=
{

σ0(x) + ∑m
j=1 σj(x)gj(x), with σj ∈ Σ[x]

}
Fix the degree 2k of sums of squares
Qk(S) := Q(S) ∩R2k[x]
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SDP for Polynomial Optimization

Hierarchy of SDP relaxations:

λk := sup
λ

{
λ : p− λ ∈ Qk(S)

}
Convergence guarantees λk ↑ p∗ [Lasserre 01]

Can be computed with SDP solvers (CSDP, SDPA)

Extension to semialgebraic functions r(x) = p(x)/
√

q(x)
[Lasserre-Putinar 10]
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Introduction

SDP for Nonlinear (Formal) Optimization

SDP for Real Algebraic Geometry

SDP for Program Verification

Conclusion



From Oranges Stack...

Kepler Conjecture (1611):

The maximal density of sphere packings in 3D-space is π√
18

Face-centered cubic Packing Hexagonal Compact Packing

Victor Magron New Applications of Semidefinite Programming 5 / 22



...to Flyspeck Nonlinear Inequalities

The proof of T. Hales (1998) contains mathematical and
computational parts

Computation: check thousands of nonlinear inequalities

Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture

Project Completion on 10 August by the Flyspeck team!!
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A “Simple” Example

In the computational part:

Multivariate Polynomials:
∆x := x1x4(−x1 + x2 + x3 − x4 + x5 + x6) + x2x5(x1 − x2 + x3 +

x4 − x5 + x6) + x3x6(x1 + x2 − x3 + x4 + x5 − x6)− x2(x3x4 +

x1x6)− x5(x1x3 + x4x6)
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A “Simple” Example

In the computational part:

Semialgebraic functions: composition of polynomials with
| · |,√,+,−,×, /, sup, inf, . . .

p(x) := ∂4∆x q(x) := 4x1∆x
r(x) := p(x)/

√
q(x)

l(x) := −π

2
+ 1.6294− 0.2213 (

√
x2 +

√
x3 +

√
x5 +

√
x6 − 8.0) +

0.913 (
√

x4 − 2.52) + 0.728 (
√

x1 − 2.0)
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A “Simple” Example

In the computational part:

Transcendental functions T : composition of semialgebraic
functions with arctan, exp, sin, +,−,×, . . .
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A “Simple” Example

In the computational part:

Feasible set S := [4, 6.3504]3 × [6.3504, 8]× [4, 6.3504]2

Lemma9922699028 from Flyspeck:

∀x ∈ S, arctan
( p(x)√

q(x)

)
+ l(x) > 0
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New Framework (in my PhD thesis)

Certificates for Nonlinear Optimization using SDP and:
Maxplus approximation (Optimal Control)

Nonlinear templates (Static Analysis)

Verification of these certificates inside COQ:
p = σ0 + ∑j σjgj =⇒ ∀x ∈ S, p(x) > 0 .
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Contribution: Publications and Software

V. M., X. Allamigeon, S. Gaubert and B. Werner.
Formal Proofs for Nonlinear Optimization,
arxiv:1404.7282, 2015. Journal of Formalized Reasoning.

Software Implementation NLCertify:

https://forge.ocamlcore.org/projects/nl-certify/

15 000 lines of OCAML code

4000 lines of COQ code

V. M. NLCertify: A Tool for Formal Nonlinear Optimization,
arxiv:1405.5668, 2014. ICMS.
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Introduction

SDP for Nonlinear (Formal) Optimization

SDP for Real Algebraic Geometry

SDP for Program Verification

Conclusion



Projections of Semialgebraic Sets

Semialgebraic set S := {x ∈ Rn : g1(x) > 0, . . . , gl(x) > 0}

A polynomial map f : Rn → Rm,
x 7→ f (x) := (f1(x), . . . , fm(x))

F := f (S) ⊆ B, with B ⊂ Rm a box or a ball

Tractable approximations of F ?
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Projections of Semialgebraic Sets

g1 := −(x1 − 2)3/2− x2 + 2.5 ,

g2 := −x1 − x2 + 8(−x1 + x2 + 0.65)2 + 3.85 ,

S := {x ∈ R2 : g1(x) > 0, g2(x) > 0} .

S

f1 := (x1 + x2 − 7.5)2/4 + (−x1 + x2 + 3)2 ,

f2 := (x1 − 1)2/4 + (x2 − 4)2/4 .

F = f (S)
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Projections of Semialgebraic Sets

Includes important special cases:

1 m = 1: polynomial optimization

F ⊆ [min
x∈S

f (x), max
x∈S

f (x)]

2 Approximate projections of S when f (x) := (x1, . . . , xm)
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Existential Quantifier Elimination

Another point of view:

F = {y ∈ B : ∃x ∈ S s.t. f (x) = y} ,
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Existential Quantifier Elimination

Another point of view:

F = {y ∈ B : ∃x ∈ S s.t. ‖y− f (x)‖2
2 = 0} ,
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Existential Quantifier Elimination

Another point of view:

F = {y ∈ B : ∃x ∈ S s.t. hf (x, y) > 0} ,

with
hf (x, y) := −‖y− f (x)‖2

2 .

Define h(y) := supx∈S hf (x, y)
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Existential Quantifier Elimination

Hierarchy of SDP:

inf
q

{∫
B
(q− h)dy : q− hf ∈ Qk(S× B))

}
.

Existential QE: approximate F as closely as desired [Lasserre 14]

Fk := {y ∈ B : qk(y) > 0} ,

for some polynomials qk ∈ R2k[y].
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Existential Quantifier Elimination

Theorem
Assuming that S has non empty interior,

lim
k→∞

vol(Fk\F) = 0 .
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Approximating Projections

f (x) = (x1, x2): projection on R2 of the semialgebraic set

S := {x ∈ R3 :‖x‖2
2 6 1, 1/4− (x1 + 1/2)2 − x2

2 > 0,

1/9− (x1 − 1/2)4 − x4
2 > 0}

F2
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Approximating Projections
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Approximating Pareto Curves

g1 := −(x1 − 2)3/2− x2 + 2.5 ,

g2 := −x1 − x2 + 8(−x1 + x2 + 0.65)2 + 3.85 ,

S := {x ∈ R2 : g1(x) > 0, g2(x) > 0} .

f1 := (x1 + x2 − 7.5)2/4 + (−x1 + x2 + 3)2 ,

f2 := (x1 − 1)2/4 + (x2 − 4)2/4 .
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Approximating Pareto Curves

F1
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Approximating Pareto Curves

F2
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Approximating Pareto Curves

F4
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Approximating Pareto Curves

“Zoom” on the region which is hard to approximate:

F4
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Approximating Pareto Curves

“Zoom” on the region which is hard to approximate:

F5
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Contributions

V. Magron, D. Henrion, J.B. Lasserre. Semidefinite
approximations of projections and polynomial images of
semialgebraic sets. oo:2014.10.4606, October 2014.
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Introduction

SDP for Nonlinear (Formal) Optimization

SDP for Real Algebraic Geometry

SDP for Program Verification

Conclusion



Polynomial Programs (One-loop with Guards)

r, s, Ti, Te ∈ R[x]

x0 ∈ X0, with X0 semialgebraic set

x = x0;
while (r(x) 6 0){

if (s(x) 6 0){
x = Ti(x);
}

else{
x = Te(x);
}

}
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Polynomial Inductive Invariants

Sufficient condition to get inductive invariant:

α := min
q∈R[x]

sup
x∈X0

q(x)

s.t. q− q ◦ Ti > 0 , if s(x) 6 0 and r(x) 6 0 ,

q− q ◦ Te > 0 , if s(x) > 0 and r(x) 6 0 ,

q− κ > 0 .

⋃
k∈N

Xk ⊆ {x ∈ Rn : q(x) 6 α} ⊆ {x ∈ Rn : κ(x) 6 α}
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Bounding Polynomial Invariants

Sufficient condition to get bounding inductive invariant:

α := min
q∈R[x]

sup
x∈X0

q(x)

s.t. q− q ◦ Ti > 0 , if s(x) 6 0 and r(x) 6 0 ,

q− q ◦ Te > 0 , if s(x) > 0 and r(x) 6 0 ,

q− ‖ · ‖2
2 > 0 .

⋃
k∈N

Xk ⊆ {x ∈ Rn : q(x) 6 α} ⊆ {x ∈ Rn : ‖x‖2 6 α}
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Bounds for
⋃

k∈N Xk

X0 := [0.9, 1.1]× [0, 0.2] r(x) := 1 s(x) := 1− ‖x‖2

Ti(x) := (x2
1 + x3

2, x3
1 + x2

2) Te(x) := (
1
2

x2
1 +

2
5

x3
2,−3

5
x3

1 +
3
10

x2
2)

κ(x) = ‖x‖2

Degree 6
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Does
⋃

k∈N Xk avoid unsafe region?

X0 := [0.5, 0.7]2 r(x) := 1 s(x) := 1− ‖x‖2

Ti(x) := (x2
1 + x3

2, x3
1 + x2

2) Te(x) := (
1
2

x2
1 +

2
5

x3
2,−3

5
x3

1 +
3
10

x2
2)

κ(x) =
1
4
− (x1 +

1
2
)2 − (x2 +

1
2
)2

Degree 6
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Ongoing: Bounding Floating-point Errors

Exact:
f (x) := x1x2 + x3x4

Floating-point:

f̂ (x, ε) := [x1x2(1 + ε1) + x3x4(1 + ε2)](1 + ε3)

x ∈ S , | εi |6 2−p p = 24 (single) or 53 (double)
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Ongoing: Bounding Floating-point Errors

Input: exact f (x), floating-point f̂ (x, ε), x ∈ S, | εi |6 2−p

Output: Bounds for f − f̂

1: Error r(x, ε) := f (x)− f̂ (x, ε) = ∑
α

rα(ε)xα

2: Decompose r(x, ε) = l(x, ε) + h(x, ε), l linear in ε

3: Bound h(x, ε) with interval arithmetic

4: Bound l(x, ε) with SPARSE SUMS OF SQUARES
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Introduction

SDP for Nonlinear (Formal) Optimization

SDP for Real Algebraic Geometry

SDP for Program Verification

Conclusion



Conclusion

SDP is powerful to handle NONLINEARITY:

Optimize nonlinear (transcendental) functions

Approximate Pareto Curves, projections of semialgebraic
sets

Analyze nonlinear programs
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Conclusion

Further research:

Alternative polynomial bounds using geometric
programming (T. de Wolff, S. Iliman)

Mixed linear/SDP certificates (trade-off CPU/precision)

More program verification

Flyspeck nonlinear inequalities : decrease current
verification time (5000 CPU hours!!)
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End

Thank you for your attention!

cas.ee.ic.ac.uk/people/vmagron
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