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Errors and Proofs

®m Mathematicians and Computer Scientists want to
eliminate all the uncertainties on their results. Why?
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[§ M. Lecat, Erreurs des Mathématiciens des origines a nos
jours, 1935.

~» 130 pages of errors! (Euler, Fermat, Sylvester, ...)

intel

Ariane 5 launch failure, Pentium FDIV bug | i

—
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Errors and Proofs

m Possible workaround: proof assistants
CoQ (Coquand, Huet 1984) )’
HOL-LIGHT (Harrison, Gordon 1980) @g
Built in top of OCAML g
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Complex Proofs

m Complex mathematical proofs / mandatory computation

[4 K. Appel and W. Haken , Every Planar Map is
Four-Colorable, 1989.

[ T. Hales, A Proof of the Kepler Conjecture, 1994.
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From Oranges Stack...

Kepler Conjecture (1611):

_TT

The maximal density of sphere packings in 3D-space is T

Face-centered cubic Packing  Hexagonal Compact Packing
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...to Flyspeck Nonlinear Inequalities

The proof of T. Hales (1998) contains mathematical and
computational parts

Computation: check thousands of nonlinear inequalities

Robert MacPherson, editor of The Annals of Mathematics:
“[...] the mathematical community will have to get used to
this state of affairs.”

Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture
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...to Flyspeck Nonlinear Inequalities

The proof of T. Hales (1998) contains mathematical and
computational parts

Computation: check thousands of nonlinear inequalities

Robert MacPherson, editor of The Annals of Mathematics:
“[...] the mathematical community will have to get used to
this state of affairs.”

Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture

Project Completion on 10 August by the Flyspeck team!!
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...to Flyspeck Nonlinear Inequalities

m Nonlinear inequalities: quantified reasoning with “v”

vx €K, f(x) >0

m NP-hard optimization problem
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A “Simple” Example

In the computational part:
m Multivariate Polynomials:
Ax = x1x4(—x1 + X2 + X3 — X4 + X5+ Xg) + X2X5(x1 — X2 + X3 +
X4 — X5+ X6) + X3X6 (X1 + X2 — X3 + X4 + X5 — X6) — X2(x3x4 +
X1X6) — X5(x1X3 + X4X6)
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A “Simple” Example

In the computational part:
m Semialgebraic functions: composition of polynomials with
-1,/ + = %, /,sup,inf, ...

p(x) := d1Ax g(x) 1= 4x1Ax

r(x) :=p(x)/Vaq(x)

1(x) := = + 16294 — 02213 (VX3 + /X5 + /%5 + /o —
8.0) + 0.913 (/x5 — 2.52) + 0.728 (/%1 — 2.0)
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A “Simple” Example

In the computational part:

m Transcendental functions 7: composition of semialgebraic
functions with arctan, exp, sin, +, —, X, ...
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A “Simple” Example

In the computational part:
m Feasible set K := [4,6.3504] x [6.3504, 8] x [4,6.3504]>

Lemmaggnoe99028 from Flyspeck:

Vx € K,arctan( P(x) >+l(x) >0
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Existing Formal Frameworks

Formal proofs for Global Optimization:

m Bernstein polynomial methods [Zumkeller’s PhD 08]
m SMT methods [Gao et al. 12]

m Interval analysis and Sums of squares
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Existing Formal Frameworks

Interval analysis

m Certified interval arithmetic in COQ [Melquiond 12]

m Taylor methods in HOL Light [Solovyev thesis 13]

m Formal verification of floating-point operations

m robust but subject to the Curse of Dimensionality
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Existing Formal Frameworks

Lemmaggnoe99028 from Flyspeck:

84AX
vV 4X1AX

m Dependency issue using Interval Calculus:
m One can bound d;Ax/+/4x1Ax and I(x) separately

vx € K, arctan( ) +I1(x) =0

m Too coarse lower bound: —0.87

m Subdivide K to prove the inequality

T
|
|
|

Ks

K Ky
— |Kj Ky

G

I 1
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Flyspeck Inequalities and Semidefinite Programming



Semidefinite Programming

m Linear Programming (LP):

. T
min ¢ z
z

st. Az>d .

m Linear cost ¢

m Linear inequalities “}; A;;z; > d;” Polyhedron
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Semidefinite Programming

m Semidefinite Programming (SDP):

. T
mm ¢ Z

z
s.t. ZFZ' zi = Fp .
i

m Linear cost ¢

m Symmetric matrices Fo, F;

Spectrahedron

m Linear matrix inequalities “F >= 0”
(F has nonnegative eigenvalues)
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Semidefinite Programming

m Semidefinite Programming (SDP):

. T
mm ¢ z

z
s.t. ZFizi¢F0 , Az=d.
i

m Linear cost ¢

m Symmetric matrices Fo, F;

Spectrahedron

m Linear matrix inequalities “F >= 0”
(F has nonnegative eigenvalues)
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SDP for Polynomial Optimization

Prove polynomial inequalities with SDP:

p(a,b) :=a*—2ab+1*> >0 .

Find z s.t. p(a,b) = (a b) (; 23> < ) .

Find z s.t. a> — 2ab + b?> = z1a® 4+ 2zpab + 230>  (Az = d)

w (72 (10, (0 1), (00, (00
z z) \0 0/ 1 0/ 0o 1)2%7 0 0
Fy ) F3 Fo
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SDP for Polynomial Optimization

m Choose a cost ce.g. (1,0,1) and solve:

. T
min ¢ z
z

st. Y Fizi=F, Az=d.
i

m Solution (Zl Zz) = ( 1 _1) =0 (eigenvalues 0 and 1)
Zy Z3 —1 1
1 -1 a
2 _ 2 _ — (g —1D)2
ma*—2ab+b*= (a D) (_1 1)(17) (a—b)>.
—_————
=0

Solving SDP — Finding SUMS OF SQUARES certificates
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Polynomial Optimization A

Semidefinite Programming (i 1 ZZ) =0
b ¢ 1

~» control, polynomial optim (Henrion, Lasserre, Parrilo)

~» combinatorial optim. electrical engineering(Laurent, Steurers)
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Polynomial Optimization A

a c

Semidefinite Programming (1 1 b) =0
b ¢ 1

~» control, polynomial optim (Henrion, Lasserre, Parrilo)
~» combinatorial optim. electrical engineering(Laurent, Steurers)

Theoretical Approach

p* = infre p(x) ?

= SHE-

<with p—A >0
INFINITE LP
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Polynomial Optimization A

a c

Semidefinite Programming (1 1 b) 50
b ¢ 1

~» control, polynomial optim (Henrion, Lasserre, Parrilo)
~» combinatorial optim. electrical engineering(Laurent, Steurers)

Practical Approach

p* = infre p(x) ?

= SHE-

< with p — A = sums of squares
FINITE SDP of fixed degree
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Polynomial Optimization A

Semidefinite Programming (1 1 i’) 0
1

~» control, polynomial optim (Henrion, Lasserre, Parrilo)

~» combinatorial optim. electrical engineering(Laurent, Steurers)

Practical Approach

p* = infre p(x) ?

= SHE-

< with p — A = sums of squares
FINITE SDP of fixed degree

SDP bounds Hierarchy 1 p*

degree d
n variables

_ (™24} yariables SDP
(

n

? Strengthening p — A = sums of squares — p > A

P14 xp—2x3xd 4 x5 =1+ (23 — x3)?
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Non-polynomial Optimization

TAYLOR + INTERVALS : @ scalable © coarse

P

K Ko
— K Ky

oK

~+ Curse of dimensionality
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Non-polynomial Optimization

TAYLOR + INTERVALS : @ scalable © coarse
- ~> Curse of dimensionality
TAYLOR + SUMS OF SQUARES : © not scalable @ precise
high degree d
g des — (”J;Zd) ~+ No free lunch

n variables
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Non-polynomial Optimization

TAYLOR + INTERVALS : @ scalable © coarse
- m : ~> Curse of dimensionality
TAYLOR + SUMS OF SQUARES : © not scalable @ precise
high degree d
g des — (";2‘1) ~+ No free lunch

n variables

MAXPLUS + SUMS OF SQUARES : @ scalable @ precise
Maxplus in control (Akian Gaubert)

1 ~+ Curse reduction
Templates in static analysis (Manna)

Maxplus Approximations
Approximate f : R" — R with supremum of quadratic forms.
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Non-polynomial Optimization

MAXPLUS + SUMS OF SQUARES: @ scalable @ precise

Function from “simple” inequality:
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Non-polynomial Optimization

MAXPLUS + SUMS OF SQUARES: @ scalable @ precise

Verification software NLCertify, 1st iteration:

Y
control point
arctan
T~ {a1}
2 Py,
: 3 ——a =— -3
p” FA— my 47 x 10

——— / <0
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Non-polynomial Optimization

MAXPLUS + SUMS OF SQUARES: @ scalable @ precise
Verification software NLCertify, 2nd iteration:
y
control points
arctan
;7,‘.4:’: {ﬂl,ﬂ2}
Parg,
‘ ‘ L _ -5
o ’1"2 7 o om= —6.1 x 10
— | e, <0
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Non-polynomial Optimization

MAXPLUS + SUMS OF SQUARES: @ scalable

arctan

@ precise

Verification software NLCertify, 3rd iteration:

Y

control points

{lllrﬂzlﬂ3}
msz =4.1x107°

>0
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Non-polynomial Optimization

MAXPLUS + SUMS OF SQUARES: @ scalable @ precise

Verification software NLCertify, 3rd iteration:

control points
{111 ;2,03 }

msz =4.1x107°

>0

The algorithm converges to a global optimum and certifies inequalities.

Npales : time ratio between formal and numerical certification (V.
Veevodsky)

~> NHales <10 (Maxplus + Sums of squares) << 2000 (Taylor + Intervals)

~
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Contributions

CERTIFICATION MAXPLUS—-SUMS OF SQUARES: NUMERIC b OR FORMAL
Journals
n Magron, Allamigeon, Gaubert & Werner, Journal Math. Prog. Ser. B 2014

ll
o Magron, Allamigeon, Gaubert & Werner, Journal of Formalized Reasoning 2015

Conferences

n Allamigeon, Gaubert, Magron & Werner, Calculemus Conference 2013

m Allamigeon, Gaubert, Magron & Werner, European Control Conference 2013

\/
o Magron, ICMS Conference 2014 + software NLCertify

A FORMAL PROOF OF KEPLER CONJECTURE

£ Hales, Adams, Bauer, Dang, Harrison, Hoang, Kaliszyk, Magron, Mclaughlin,
Nguyen, Nguyen, Nipkow, Obua, Pleso, Rute, Solovyev, Ta, Tran, Trieu, Urban,
Vu & Zumkeller, Prepublication, submitted Sigma/Pi Journal 2015
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End

Thank you for your attention!
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