Flyspeck Inequalities and Semidefinite Programming

Victor Magron, RA Imperial College

Memory Optimization and Co-Design Meeting 29 June 2015

Flyspeck Inequalities and Semidefinite Programming

Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why?

- Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why?
- M. Lecat, Erreurs des Mathématiciens des origines à nos jours, 1935.
- \rightsquigarrow 130 pages of errors! (Euler, Fermat, Sylvester, . . .)

- Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why?
- M. Lecat, Erreurs des Mathématiciens des origines à nos jours, 1935.
- \rightsquigarrow 130 pages of errors! (Euler, Fermat, Sylvester, ...)

Ariane 5 launch failure, Pentium FDIV bug

 Possible workaround: proof assistants COQ (Coquand, Huet 1984)
 HOL-LIGHT (Harrison, Gordon 1980)
 Built in top of OCAML ^(M)

Complex Proofs

- Complex mathematical proofs / mandatory computation
- K. Appel and W. Haken , Every Planar Map is Four-Colorable, 1989.

T. Hales, A Proof of the Kepler Conjecture, 1994.

Kepler Conjecture (1611):

The maximal density of sphere packings in 3D-space is $\frac{\pi}{\sqrt{18}}$

Face-centered cubic Packing

Hexagonal Compact Packing

...to Flyspeck Nonlinear Inequalities

- The proof of T. Hales (1998) contains mathematical and computational parts
- Computation: check thousands of nonlinear inequalities
- Robert MacPherson, editor of The Annals of Mathematics:
 "[...] the mathematical community will have to get used to this state of affairs."
- Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture

...to Flyspeck Nonlinear Inequalities

- The proof of T. Hales (1998) contains mathematical and computational parts
- Computation: check thousands of nonlinear inequalities
- Robert MacPherson, editor of The Annals of Mathematics:
 "[...] the mathematical community will have to get used to this state of affairs."
- Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture
- Project Completion on 10 August by the Flyspeck team!!

...to Flyspeck Nonlinear Inequalities

■ Nonlinear inequalities: quantified reasoning with " \forall "

$$\forall \mathbf{x} \in \mathbf{K}, f(\mathbf{x}) \ge 0$$

NP-hard optimization problem

Multivariate Polynomials:

$$\Delta \mathbf{x} := x_1 x_4 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) + x_2 x_5 (x_1 - x_2 + x_3 + x_4 - x_5 + x_6) + x_3 x_6 (x_1 + x_2 - x_3 + x_4 + x_5 - x_6) - x_2 (x_3 x_4 + x_1 x_6) - x_5 (x_1 x_3 + x_4 x_6)$$

■ Semialgebraic functions: composition of polynomials with | · |, √, +, -, ×, /, sup, inf, ...

$$p(\mathbf{x}) := \partial_4 \Delta \mathbf{x} \qquad q(\mathbf{x}) := 4x_1 \Delta \mathbf{x}$$
$$r(\mathbf{x}) := p(\mathbf{x}) / \sqrt{q(\mathbf{x})}$$

$$l(\mathbf{x}) := -\frac{\pi}{2} + 1.6294 - 0.2213 \left(\sqrt{x_2} + \sqrt{x_3} + \sqrt{x_5} + \sqrt{x_6} - 8.0\right) + 0.913 \left(\sqrt{x_4} - 2.52\right) + 0.728 \left(\sqrt{x_1} - 2.0\right)$$

Victor Magron

Flyspeck Inequalities and Semidefinite Programming

■ Transcendental functions *T*: composition of semialgebraic functions with arctan, exp, sin, +, -, ×,...

■ Feasible set **K** := [4, 6.3504]³ × [6.3504, 8] × [4, 6.3504]²

Lemma9922699028 from Flyspeck:

$$\forall \mathbf{x} \in \mathbf{K}, \arctan\left(\frac{p(\mathbf{x})}{\sqrt{q(\mathbf{x})}}\right) + l(\mathbf{x}) \ge 0$$

Formal proofs for Global Optimization:

- Bernstein polynomial methods [Zumkeller's PhD 08]
- SMT methods [Gao et al. 12]
- Interval analysis and Sums of squares

Interval analysis

- Certified interval arithmetic in COQ [Melquiond 12]
- Taylor methods in HOL Light [Solovyev thesis 13]
 Formal verification of floating-point operations
- robust but subject to the Curse of Dimensionality

Existing Formal Frameworks

Lemma9922699028 from Flyspeck:

$$\forall \mathbf{x} \in \mathbf{K}, \arctan\left(\frac{\partial_4 \Delta \mathbf{x}}{\sqrt{4x_1 \Delta \mathbf{x}}}\right) + l(\mathbf{x}) \ge 0$$

- Dependency issue using Interval Calculus:
 - One can bound $\partial_4 \Delta \mathbf{x} / \sqrt{4x_1 \Delta \mathbf{x}}$ and $l(\mathbf{x})$ separately
 - Too coarse lower bound: -0.87
 - Subdivide **K** to prove the inequality

Introduction

Flyspeck Inequalities and Semidefinite Programming

Linear Programming (LP):

 $\min_{\mathbf{z}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{z} \\ \text{s.t.} \quad \mathbf{A} \mathbf{z} \ge \mathbf{d} \ .$

Linear cost c

• Linear inequalities " $\sum_i A_{ij} z_j \ge d_i$ "

Polyhedron

Semidefinite Programming

Semidefinite Programming (SDP):

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{z} \\ \text{s.t.} \quad \sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} \quad .$$

- Symmetric matrices **F**₀, **F**_{*i*}
- Linear matrix inequalities "F ≽ 0" (F has nonnegative eigenvalues)

Spectrahedron

Semidefinite Programming

Semidefinite Programming (SDP):

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z}$$

s.t.
$$\sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} , \quad \mathbf{A} \mathbf{z} = \mathbf{d}$$

- Linear cost c
- Symmetric matrices **F**₀, **F**_{*i*}
- Linear matrix inequalities "F ≽ 0" (F has nonnegative eigenvalues)

Spectrahedron

SDP for Polynomial Optimization

Prove polynomial inequalities with SDP:

$$p(a,b) := a^2 - 2ab + b^2 \ge 0 .$$

• Find z s.t. $p(a,b) = \begin{pmatrix} a & b \end{pmatrix} \underbrace{\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix}}_{\ge 0} \begin{pmatrix} a \\ b \end{pmatrix} .$

Find z s.t. $a^2 - 2ab + b^2 = z_1a^2 + 2z_2ab + z_3b^2$ (A z = d) $\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{\mathbf{F}_1} z_1 + \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{\mathbf{F}_2} z_2 + \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{\mathbf{F}_3} z_3 \succcurlyeq \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}}_{\mathbf{F}_0}$

SDP for Polynomial Optimization

■ Choose a cost **c** e.g. (1,0,1) and solve:

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z} \\ \text{s.t.} \quad \sum_{i} \mathbf{F}_{i} z_{i} \succeq \mathbf{F}_{0} , \quad \mathbf{A} \mathbf{z} = \mathbf{d} .$$

• Solution
$$\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \succeq 0$$
 (eigenvalues 0 and 1)

•
$$a^2 - 2ab + b^2 = \begin{pmatrix} a & b \end{pmatrix} \underbrace{\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}}_{\geq 0} \begin{pmatrix} a \\ b \end{pmatrix} = (a - b)^2.$$

■ Solving SDP ⇒ Finding SUMS OF SQUARES certificates

Polynomial Optimization

Semidefinite Programming

$$\begin{pmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{pmatrix} \succcurlyeq 0$$

→ control, polynomial optim (Henrion, Lasserre, Parrilo)

~> combinatorial optim. electrical engineering(Laurent, Steurers)

Polynomial Optimization

Semidefinite Programming

$$\begin{pmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{pmatrix} \succcurlyeq 0$$

→ control, polynomial optim (Henrion, Lasserre, Parrilo)

 $\rightsquigarrow combinatorial optim. \ electrical \ engineering (Laurent, \ Steurers)$

Theoretical Approach

$$p^* := \inf_{\mathbb{R}^n} p(\mathbf{x})$$
 ?

$$\sup_{\substack{\lambda \in \text{with } p - \lambda \ge 0}} \lambda$$

INFINITE LP

Polynomial Optimization 🄌

Semidefinite Programming

$$\begin{pmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{pmatrix} \succcurlyeq 0$$

→ control, polynomial optim (Henrion, Lasserre, Parrilo)

 $\rightsquigarrow combinatorial optim. \ electrical \ engineering (Laurent, \ Steurers)$

Practical Approach

	$p^* := \inf_{\mathbb{R}^n} p(\mathbf{x})$?
	$\sup \lambda$
	\Leftarrow with $p - \lambda =$ sums of squares
FINITE SDP	of fixed degree

Polynomial Optimization 🄌

Semidefinite Programming

$$\begin{pmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{pmatrix} \succcurlyeq 0$$

→ control, polynomial optim (Henrion, Lasserre, Parrilo)

 $\rightsquigarrow combinatorial optim. \ electrical \ engineering (Laurent, \ Steurers)$

Practical Approach

	$p^* := \inf_{\mathbb{R}^n} p(\mathbf{x})$?
	sup λ
	\Leftarrow with $p - \lambda =$ sums of squares
FINITE SDP	of fixed degree

SDP bounds Hierarchy $\uparrow p^*$

degree dn variables $\xrightarrow{n+2d} n$ variables **SDP**

Polynomial Optimization 🄌

Semidefinite Programming

$$\begin{pmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{pmatrix} \succcurlyeq 0$$

→ control, polynomial optim (Henrion, Lasserre, Parrilo)

 $\rightsquigarrow combinatorial optim. \ electrical \ engineering ({\rm Laurent, Steurers})$

Practical Approach

	$p^* := \inf_{\mathbb{R}^n} p(\mathbf{x})$?
	$\sup \lambda$
	\Leftarrow with $p - \lambda =$ sums of squares
FINITE SDP	of fixed degree

SDP bounds Hierarchy $\uparrow p^*$

degree $d \to \binom{n+2d}{n}$ variables **SDP**

Strengthening $p - \lambda =$ sums of squares $\implies p \ge \lambda$ $1 + x_1^4 - 2x_1^2x_2^2 + x_2^4 = 1 + (x_1^2 - x_2^2)^2$

Flyspeck Inequalities and Semidefinite Programming

TAYLOR + INTERVALS :

 \oplus scalable

 \bigcirc coarse

 \rightsquigarrow Curse of dimensionality

TAYLOR + INTERVALS :

TAYLOR + SUMS OF SQUARES :

high degree *d n* variables

$$\rightarrow \binom{n+2d}{n}$$

 \oplus scalable \bigcirc coarse

 \rightsquigarrow Curse of dimensionality

 \bigcirc not scalable \bigcirc precise

→ No free lunch

Approximate $f : \mathbb{R}^n \to \mathbb{R}$ with supremum of quadratic forms.

MAXPLUS + SUMS OF SQUARES:

 \oplus scalable

 \oplus precise

Function from "simple" inequality:

MAXPLUS + SUMS OF SQUARES:

 \oplus scalable

 \oplus precise

Verification software NLCertify, 1st iteration:

MAXPLUS + SUMS OF SQUARES:

 \oplus scalable

 \oplus precise

Verification software NLCertify, 2nd iteration:

MAXPLUS + SUMS OF SQUARES:

 \oplus scalable

 \oplus precise

Verification software NLCertify, 3rd iteration:

MAXPLUS + SUMS OF SQUARES:

 \oplus scalable

 \oplus precise

Verification software NLCertify, 3rd iteration:

Theorem

The algorithm **converges** to a global optimum and **certifies** inequalities.

 n_{Hales} : time ratio between formal and numerical certification (V. Vævodsky)

 $\sim n_{Hales} \lesssim 10$ (Maxplus + Sums of squares) $\ll 2000$ (Taylor + Intervals)

Flyspeck Inequalities and Semidefinite Programming

Contributions

CERTIFICATION MAXPLUS–SUMS OF SQUARES: NUMERIC 🕷 OR FORMAL 🦻

Journals

Magron, Allamigeon, Gaubert & Werner, Journal Math. Prog. Ser. B 2014

Magron, Allamigeon, Gaubert & Werner, Journal of Formalized Reasoning 2015

Conferences

Allamigeon, Gaubert, Magron & Werner, Calculemus Conference 2013

Allamigeon, Gaubert, Magron & Werner, European Control Conference 2013

Magron, ICMS Conference 2014

+ software NLCertify

A FORMAL PROOF OF KEPLER CONJECTURE

Hales, Adams, Bauer, Dang, Harrison, Hoang, Kaliszyk, Magron, Mclaughlin, Nguyen, Nguyen, Nipkow, Obua, Pleso, Rute, Solovyev, Ta, Tran, Trieu, Urban, Vu & Zumkeller, *Prepublication, submitted Sigma/Pi* Journal 2015

Victor Magron

Flyspeck Inequalities and Semidefinite Programming

Thank you for your attention!

cas.ee.ic.ac.uk/people/vmagron