Flyspeck Inequalities and Semidefinite Programming

Victor Magron, RA Imperial College

Memory Optimization and Co-Design Meeting 29 June 2015

Errors and Proofs

- Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why?

Errors and Proofs

- Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why?

䡒 M. Lecat, Erreurs des Mathématiciens des origines à nos jours, 1935.
$\leadsto 130$ pages of errors! (Euler, Fermat, Sylvester, ...)

Errors and Proofs

- Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why?

击 M. Lecat, Erreurs des Mathématiciens des origines à nos jours, 1935.
$\leadsto 130$ pages of errors! (Euler, Fermat, Sylvester, ...)

Ariane 5 launch failure, Pentium FDIV bug

Errors and Proofs

■ Possible workaround: proof assistants COQ (Coquand, Huet 1984) Hol-Light (Harrison, Gordon 1980) Built in top of OCAML

Complex Proofs

■ Complex mathematical proofs / mandatory computation
嗇 K. Appel and W. Haken , Every Planar Map is Four-Colorable, 1989.

T. Hales, A Proof of the Kepler Conjecture, 1994.

From Oranges Stack...

Kepler Conjecture (1611):

The maximal density of sphere packings in 3D-space is $\frac{\pi}{\sqrt{18}}$

Face-centered cubic Packing

Hexagonal Compact Packing

...to Flyspeck Nonlinear Inequalities

■ The proof of T. Hales (1998) contains mathematical and computational parts

- Computation: check thousands of nonlinear inequalities

■ Robert MacPherson, editor of The Annals of Mathematics: "[...] the mathematical community will have to get used to this state of affairs."

■ Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture

...to Flyspeck Nonlinear Inequalities

■ The proof of T. Hales (1998) contains mathematical and computational parts

- Computation: check thousands of nonlinear inequalities

■ Robert MacPherson, editor of The Annals of Mathematics: "[...] the mathematical community will have to get used to this state of affairs."

■ Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture
■ Project Completion on 10 August by the Flyspeck team!!

...to Flyspeck Nonlinear Inequalities

■ Nonlinear inequalities: quantified reasoning with " \forall "

$$
\forall \mathbf{x} \in \mathbf{K}, f(\mathbf{x}) \geqslant 0
$$

■ NP-hard optimization problem

A "Simple" Example

In the computational part:

- Multivariate Polynomials:

$$
\begin{aligned}
& \Delta \mathbf{x}:=x_{1} x_{4}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right)+x_{2} x_{5}\left(x_{1}-x_{2}+x_{3}+\right. \\
& \left.x_{4}-x_{5}+x_{6}\right)+x_{3} x_{6}\left(x_{1}+x_{2}-x_{3}+x_{4}+x_{5}-x_{6}\right)-x_{2}\left(x_{3} x_{4}+\right. \\
& \left.x_{1} x_{6}\right)-x_{5}\left(x_{1} x_{3}+x_{4} x_{6}\right)
\end{aligned}
$$

A "Simple" Example

In the computational part:

- Semialgebraic functions: composition of polynomials with $|\cdot|, \sqrt{ },+,-, \times, /$, sup, inf, \ldots

$$
\begin{aligned}
& p(\mathbf{x}):=\partial_{4} \Delta \mathbf{x} \quad q(\mathbf{x}):=4 x_{1} \Delta \mathbf{x} \\
& r(\mathbf{x}):=p(\mathbf{x}) / \sqrt{q(\mathbf{x})}
\end{aligned}
$$

$$
l(\mathbf{x}):=-\frac{\pi}{2}+1.6294-0.2213\left(\sqrt{x_{2}}+\sqrt{x_{3}}+\sqrt{x_{5}}+\sqrt{x_{6}}-\right.
$$

$$
8.0)+0.913\left(\sqrt{x_{4}}-2.52\right)+0.728\left(\sqrt{x_{1}}-2.0\right)
$$

A "Simple" Example

In the computational part:

■ Transcendental functions \mathcal{T} : composition of semialgebraic functions with arctan, exp, $\sin ,+,-, \times, \ldots$

A "Simple" Example

In the computational part:

■ Feasible set K $:=[4,6.3504]^{3} \times[6.3504,8] \times[4,6.3504]^{2}$
Lemma9922699028 from Flyspeck:

$$
\forall \mathbf{x} \in \mathbf{K}, \arctan \left(\frac{p(\mathbf{x})}{\sqrt{q(\mathbf{x})}}\right)+l(\mathbf{x}) \geqslant 0
$$

Existing Formal Frameworks

Formal proofs for Global Optimization:
■ Bernstein polynomial methods [Zumkeller's PhD 08]
■ SMT methods [Gao et al. 12]
■ Interval analysis and Sums of squares

Existing Formal Frameworks

Interval analysis

- Certified interval arithmetic in COQ [Melquiond 12]

■ Taylor methods in HOL Light [Solovyev thesis 13]

- Formal verification of floating-point operations

■ robust but subject to the Curse of Dimensionality

Existing Formal Frameworks

Lemma9922699028 from Flyspeck:

$$
\forall \mathbf{x} \in \mathbf{K}, \arctan \left(\frac{\partial_{4} \Delta \mathbf{x}}{\sqrt{4 x_{1} \Delta \mathbf{x}}}\right)+l(\mathbf{x}) \geqslant 0
$$

■ Dependency issue using Interval Calculus:

- One can bound $\partial_{4} \Delta \mathbf{x} / \sqrt{4 x_{1} \Delta \mathbf{x}}$ and $l(\mathbf{x})$ separately

■ Too coarse lower bound: -0.87

- Subdivide \mathbf{K} to prove the inequality

Introduction

Flyspeck Inequalities and Semidefinite Programming

Semidefinite Programming

■ Linear Programming (LP):

$$
\begin{aligned}
\min _{\mathrm{z}} & \mathrm{c}^{\top} \mathbf{z} \\
\text { s.t. } & \mathbf{A z} \geqslant \mathbf{d} .
\end{aligned}
$$

■ Linear cost \mathbf{c}

- Linear inequalities " $\sum_{i} A_{i j} z_{j} \geqslant d_{i}$ "

Polyhedron

Semidefinite Programming

■ Semidefinite Programming (SDP):

$$
\begin{aligned}
\min _{\mathbf{z}} & \mathbf{c}^{\top} \mathbf{z} \\
\text { s.t. } & \sum_{i} \mathbf{F}_{i} z_{i} \succcurlyeq \mathbf{F}_{0} .
\end{aligned}
$$

■ Linear cost \mathbf{c}

■ Symmetric matrices $\mathbf{F}_{0}, \mathbf{F}_{i}$

- Linear matrix inequalities " $\mathrm{F} \succcurlyeq 0$ "

Spectrahedron (F has nonnegative eigenvalues)

Semidefinite Programming

■ Semidefinite Programming (SDP):

$$
\begin{array}{ll}
\min _{\mathbf{z}} & \mathbf{c}^{\top} \mathbf{z} \\
\text { s.t. } \quad \sum_{i} \mathbf{F}_{i} z_{i} \succcurlyeq \mathbf{F}_{0}, \quad \mathbf{A} \mathbf{z}=\mathbf{d} . \\
\text { ■ Linear cost } \mathbf{c}
\end{array}
$$

■ Symmetric matrices $\mathbf{F}_{0}, \mathbf{F}_{i}$

- Linear matrix inequalities " $\mathbf{F} \succcurlyeq 0$ "

Spectrahedron (F has nonnegative eigenvalues)

SDP for Polynomial Optimization

- Prove polynomial inequalities with SDP:

$$
p(a, b):=a^{2}-2 a b+b^{2} \geqslant 0 .
$$

■ Find z s.t. $p(a, b)=\left(\begin{array}{ll}a & b\end{array}\right) \underbrace{\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{2} & z_{3}\end{array}\right)}_{\succcurlyeq 0}\binom{a}{b}$.
$■$ Find z s.t. $a^{2}-2 a b+b^{2}=z_{1} a^{2}+2 z_{2} a b+z_{3} b^{2} \quad(\mathbf{A} \mathbf{z}=\mathbf{d})$
■ $\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{2} & z_{3}\end{array}\right)=\underbrace{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)}_{\mathbf{F}_{1}} z_{1}+\underbrace{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)}_{\mathbf{F}_{2}} z_{2}+\underbrace{\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)}_{\mathbf{F}_{3}} z_{3} \succcurlyeq \underbrace{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)}_{\mathbf{F}_{0}}$

SDP for Polynomial Optimization

■ Choose a cost c e.g. $(1,0,1)$ and solve:

$$
\begin{aligned}
\min _{\mathbf{z}} & \mathbf{c}^{\top} \mathbf{z} \\
\text { s.t. } & \sum_{i} \mathbf{F}_{i} z_{i} \succcurlyeq \mathbf{F}_{0}, \quad \mathbf{A} \mathbf{z}=\mathbf{d} .
\end{aligned}
$$

■ Solution $\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{2} & z_{3}\end{array}\right)=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right) \succcurlyeq 0 \quad($ eigenvalues 0 and 1$)$

- $a^{2}-2 a b+b^{2}=\left(\begin{array}{ll}a & b\end{array}\right) \underbrace{\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)}_{\succcurlyeq 0}\binom{a}{b}=(a-b)^{2}$.

■ Solving SDP \Longrightarrow Finding Sums of SQuARES certificates

Polynomial Optimization

Semidefinite Programming
\rightsquigarrow control, polynomial optim (Henrion, Lasserre, Parrilo)
\rightsquigarrow combinatorial optim. electrical engineering(Laurent, Steurers)

Polynomial Optimization

Semidefinite Programming
\rightsquigarrow control, polynomial optim (Henrion, Lasserre, Parrilo)
\rightsquigarrow combinatorial optim. electrical engineering(Laurent, Steurers)

Theoretical Approach

$$
\begin{aligned}
& p^{*}:=\inf _{\mathbb{R}^{n}} p(\mathbf{x}) ? \\
& \sup \quad \lambda \\
& \Leftarrow \text { with } \quad p-\lambda \geqslant 0
\end{aligned}
$$

InFinite LP

Polynomial Optimization

Semidefinite Programming
\rightsquigarrow control, polynomial optim (Henrion, Lasserre, Parrilo)
\rightsquigarrow combinatorial optim. electrical engineering(Laurent, Steurers)
Practical Approach
$p^{*}:=\inf _{\mathbb{R}^{n}} p(\mathbf{x}) ?$
$\sup \quad \lambda$
\Leftarrow with $\quad p-\lambda=$ sums of squares
of fixed degree

Polynomial Optimization

Semidefinite Programming $\quad\left(\begin{array}{lll}1 & a & b \\ a & 1 & c \\ b & c & 1\end{array}\right) \succcurlyeq 0$
\rightsquigarrow control, polynomial optim (Henrion, Lasserre, Parrilo)
\rightsquigarrow combinatorial optim. electrical engineering(Laurent, Steurers)
Practical Approach

$$
\begin{aligned}
& p^{*}:=\inf _{\mathbb{R}^{n}} p(\mathbf{x}) ? \\
& \quad \sup \quad \lambda \\
& \Leftarrow \text { with } \quad p-\lambda=\text { sums of squares } \\
& \\
& \quad \text { of fixed degree }
\end{aligned}
$$

SDP bounds Hierarchy $\uparrow p^{*}$
degree d n variables $\Rightarrow\binom{n+2 d}{n}$ variables SDP

Polynomial Optimization

Semidefinite Programming $\quad\left(\begin{array}{lll}1 & a & b \\ a & 1 & c \\ b & c & 1\end{array}\right) \succcurlyeq 0$
\rightsquigarrow control, polynomial optim (Henrion, Lasserre, Parrilo)
\rightsquigarrow combinatorial optim. electrical engineering(Laurent, Steurers)

Practical Approach

$$
\begin{aligned}
p^{*} & :=\inf _{\mathbb{R}^{n}} p(\mathbf{x}) ? \\
& \sup \quad \lambda \\
\Leftarrow & \text { with } \quad p-\lambda= \\
& \begin{array}{c}
\text { sums of squares } \\
\text { of fixed degree }
\end{array}
\end{aligned}
$$

SDP bounds Hierarchy $\uparrow p^{*}$ degree d n variables $\Rightarrow\binom{n+2 d}{n}$ variables SDP
$\$$ Strengthening $p-\lambda=$ sums of squares $\Longrightarrow p \geqslant \lambda$
P $1+x_{1}^{4}-2 x_{1}^{2} x_{2}^{2}+x_{2}^{4}=1+\left(x_{1}^{2}-x_{2}^{2}\right)^{2}$

Non-polynomial Optimization

TAYLOR + INTERVALS :

\oplus scalable
\rightsquigarrow Curse of dimensionality

Non-polynomial Optimization

TAYLOR + INTERVALS :

\oplus scalable
\rightsquigarrow Curse of dimensionality

TAYLOR + SUMS OF SQUARES :
high degree d n variables

\ominus not scalable
\oplus precise
\rightsquigarrow No free lunch

Non-polynomial Optimization

TAYLOR + INTERVALS :

\oplus scalable
\rightsquigarrow Curse of dimensionality

TAYLOR + SUMS OF SQUARES:
high degree d n variables

$$
\Rightarrow\binom{n+2 d}{n}
$$

MAXPLUS + SUMS OF SQUARES:
Maxplus in control (Akian Gaubert)

$$
\Uparrow
$$

Templates in static analysis (Manna)
\rightsquigarrow Curse reduction

Maxplus Approximations

Approximate $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with supremum of quadratic forms.

Non-polynomial Optimization

MAXPLUS + SUMS OF SQUARES:
\oplus scalable
\oplus precise

Function from "simple" inequality:

Non-polynomial Optimization

MAXPLUS + SUMS OF SQUARES: $\quad \oplus$ scalable \oplus precise

Verification software NLCertify, 1st iteration:

Non-polynomial Optimization

MAXPLUS + SUMS OF SQUARES:

\oplus scalable
\oplus precise

Verification software NLCertify, 2nd iteration:

Non-polynomial Optimization

MAXPLUS + SUMS OF SQUARES:
\oplus scalable
\oplus precise

Verification software NLCertify, 3rd iteration:

Non-polynomial Optimization

MAxplus + Sums of squares:
\oplus scalable
\oplus precise

Verification software NLCertify, 3rd iteration:

3 control points $\left\{a_{1}, a_{2}, a_{3}\right\}$
$m_{3}=4.1 \times 10^{-6}$
>0

Theorem

The algorithm converges to a global optimum and certifies inequalities.
$\mathbf{n}_{\text {Hales }}$: time ratio between formal and numerical certification (V .
Vœvodsky)
$\sim \mathbf{n}_{\text {Hales }} \lesssim 10$ (Maxplus + Sums of squares) $\ll 2000$ (Taylor + Intervals)

Contributions

CERTIFICATION MAXPLUS-SUMS OF SQUARES: NUMERIC SUs OR FORMAL
Journals
Magron, Allamigeon, Gaubert \& Werner, Journal Math. Prog. Ser. B 2014

Magron, Allamigeon, Gaubert \& Werner, Journal of Formalized Reasoning 2015

Conferences

Allamigeon, Gaubert, Magron \& Werner, Calculemus Conference 2013

Allamigeon, Gaubert, Magron \& Werner, European Control Conference 2013

Magron, ICMS Conference 2014

```
+ software NLCertify
```

A formal proof of Kepler Conjecture
L Hales, Adams, Bauer, Dang, Harrison, Hoang, Kaliszyk, Magron, Mclaughlin, Nguyen, Nguyen, Nipkow, Obua, Pleso, Rute, Solovyev, Ta, Tran, Trieu, Urban, Vu \& Zumkeller, Prepublication, submitted Sigma/Pi Journal 2015

Thank you for your attention!

cas.ee.ic.ac.uk/people/vmagron

