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Errors and Proofs

Mathematicians and Computer Scientists want to
eliminate all the uncertainties on their results. Why?

M. Lecat, Erreurs des Mathématiciens des origines à nos
jours, 1935.

; 130 pages of errors! (Euler, Fermat, Sylvester, . . . )

Ariane 5 launch failure, Pentium FDIV bug
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Errors and Proofs

Possible workaround: proof assistants

COQ (Coquand, Huet 1984)

HOL-LIGHT (Harrison, Gordon 1980)

Built in top of OCAML
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Complex Proofs

Complex mathematical proofs / mandatory computation

K. Appel and W. Haken , Every Planar Map is
Four-Colorable, 1989.

T. Hales, A Proof of the Kepler Conjecture, 1994.
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From Oranges Stack...

Kepler Conjecture (1611):

The maximal density of sphere packings in 3D-space is π√
18

Face-centered cubic Packing Hexagonal Compact Packing
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...to Flyspeck Nonlinear Inequalities

The proof of T. Hales (1998) contains mathematical and
computational parts

Computation: check thousands of nonlinear inequalities

Robert MacPherson, editor of The Annals of Mathematics:
“[...] the mathematical community will have to get used to
this state of affairs.”

Flyspeck [Hales 06]: Formal Proof of Kepler Conjecture

Project Completion on 10 August by the Flyspeck team!!
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...to Flyspeck Nonlinear Inequalities

Nonlinear inequalities: quantified reasoning with “∀”

∀x ∈ K, f (x) > 0

NP-hard optimization problem
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A “Simple” Example

In the computational part:

Multivariate Polynomials:
∆x := x1x4(−x1 + x2 + x3 − x4 + x5 + x6) + x2x5(x1 − x2 + x3 +

x4 − x5 + x6) + x3x6(x1 + x2 − x3 + x4 + x5 − x6)− x2(x3x4 +

x1x6)− x5(x1x3 + x4x6)
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A “Simple” Example

In the computational part:

Semialgebraic functions: composition of polynomials with
| · |,√,+,−,×, /, sup, inf, . . .

p(x) := ∂4∆x q(x) := 4x1∆x
r(x) := p(x)/

√
q(x)

l(x) := −π

2
+ 1.6294− 0.2213 (

√
x2 +

√
x3 +

√
x5 +

√
x6 −

8.0) + 0.913 (
√

x4 − 2.52) + 0.728 (
√

x1 − 2.0)
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A “Simple” Example

In the computational part:

Transcendental functions T : composition of semialgebraic
functions with arctan, exp, sin, +,−,×, . . .
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A “Simple” Example

In the computational part:

Feasible set K := [4, 6.3504]3 × [6.3504, 8]× [4, 6.3504]2

Lemma9922699028 from Flyspeck:

∀x ∈ K, arctan
( p(x)√

q(x)

)
+ l(x) > 0
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Existing Formal Frameworks

Formal proofs for Global Optimization:

Bernstein polynomial methods [Zumkeller’s PhD 08]

SMT methods [Gao et al. 12]

Interval analysis and Sums of squares
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Existing Formal Frameworks

Interval analysis

Certified interval arithmetic in COQ [Melquiond 12]

Taylor methods in HOL Light [Solovyev thesis 13]
Formal verification of floating-point operations

robust but subject to the Curse of Dimensionality
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Existing Formal Frameworks

Lemma9922699028 from Flyspeck:

∀x ∈ K, arctan
( ∂4∆x√

4x1∆x

)
+ l(x) > 0

Dependency issue using Interval Calculus:
One can bound ∂4∆x/

√
4x1∆x and l(x) separately

Too coarse lower bound: −0.87

Subdivide K to prove the inequality

K
=⇒

K0
K1

K2

K3

K4
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Introduction

Flyspeck Inequalities and Semidefinite Programming



Semidefinite Programming

Linear Programming (LP):

min
z

c
>

z

s.t. A z > d .

Linear cost c

Linear inequalities “∑i Aij zj > di” Polyhedron

Victor Magron Flyspeck Inequalities and Semidefinite Programming 10 / 18



Semidefinite Programming

Semidefinite Programming (SDP):

min
z

c
>

z

s.t. ∑
i

Fi zi < F0 .

Linear cost c

Symmetric matrices F0, Fi

Linear matrix inequalities “F < 0”
(F has nonnegative eigenvalues)

Spectrahedron
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Semidefinite Programming

Semidefinite Programming (SDP):

min
z

c
>

z

s.t. ∑
i

Fi zi < F0 , A z = d .

Linear cost c

Symmetric matrices F0, Fi

Linear matrix inequalities “F < 0”
(F has nonnegative eigenvalues)

Spectrahedron
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SDP for Polynomial Optimization

Prove polynomial inequalities with SDP:

p(a, b) := a2 − 2ab + b2 > 0 .

Find z s.t. p(a, b) =
(

a b
)(z1 z2

z2 z3

)
︸ ︷︷ ︸

<0

(
a
b

)
.

Find z s.t. a2 − 2ab + b2 = z1a2 + 2z2ab + z3b2 (A z = d)(
z1 z2
z2 z3

)
=

(
1 0
0 0

)
︸ ︷︷ ︸

F1

z1 +

(
0 1
1 0

)
︸ ︷︷ ︸

F2

z2 +

(
0 0
0 1

)
︸ ︷︷ ︸

F3

z3 <
(

0 0
0 0

)
︸ ︷︷ ︸

F0
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SDP for Polynomial Optimization

Choose a cost c e.g. (1, 0, 1) and solve:

min
z

c
>

z

s.t. ∑
i

Fi zi < F0 , A z = d .

Solution
(

z1 z2
z2 z3

)
=

(
1 −1
−1 1

)
< 0 (eigenvalues 0 and 1)

a2 − 2ab + b2 =
(
a b

) ( 1 −1
−1 1

)
︸ ︷︷ ︸

<0

(
a
b

)
= (a− b)2 .

Solving SDP =⇒ Finding SUMS OF SQUARES certificates
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Polynomial Optimization

Semidefinite Programming
1 a b

a 1 c
b c 1

 < 0

 control, polynomial optim (Henrion, Lasserre, Parrilo)

 combinatorial optim. electrical engineering(Laurent, Steurers)

Approach

p∗ := infRn p(x) ?

⇐

sup λ

of fixed degree

SDP bounds Hierarchy ↑ p∗

degree d
n variables

=⇒ (n+2d
n ) variables SDP

Strengthening p− λ = sums of squares =⇒ p > λ

1 + x4
1 − 2x2

1x2
2 + x4

2 = 1 + (x2
1 − x2

2)
2
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Non-polynomial Optimization

TAYLOR + INTERVALS : +© scalable −© coarse

K
=⇒

K0
K1

K2

K3

K4  Curse of dimensionality

TAYLOR + SUMS OF SQUARES : −© not scalable +© precise

high degree d
n variables

=⇒ (n+2d
n )  No free lunch

MAXPLUS + SUMS OF SQUARES : +© scalable +© precise

Maxplus in control (Akian Gaubert)

m
Templates in static analysis (Manna)

 Curse reduction

Maxplus Approximations

Approximate f : Rn → R with supremum of quadratic forms.
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Non-polynomial Optimization

MAXPLUS + SUMS OF SQUARES: +© scalable +© precise

Function from “simple” inequality:

+

l(x) arctan

r(x)

Theorem
The algorithm converges to a global optimum and certifies inequalities.

nHales : time ratio between formal and numerical certification (V.

Vœvodsky)

; nHales . 10 (Maxplus + Sums of squares)� 2000 (Taylor + Intervals)

Victor Magron Flyspeck Inequalities and Semidefinite Programming 17 / 18



Non-polynomial Optimization

MAXPLUS + SUMS OF SQUARES: +© scalable +© precise

Verification software NLCertify, 1st iteration:

+

l(x) arctan

r(x)

a

y

par−a1

arctan

m Ma1

1 control point
{a1}

m1 = −4.7× 10−3

< 0

Theorem
The algorithm converges to a global optimum and certifies inequalities.

nHales : time ratio between formal and numerical certification (V.

Vœvodsky)

; nHales . 10 (Maxplus + Sums of squares)� 2000 (Taylor + Intervals)
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Non-polynomial Optimization

MAXPLUS + SUMS OF SQUARES: +© scalable +© precise

Verification software NLCertify, 2nd iteration:

+

l(x) arctan

r(x)

a

y

par−a1

par−a2

arctan

m Ma1a2

2 control points
{a1, a2}

m2 = −6.1× 10−5

< 0

Theorem
The algorithm converges to a global optimum and certifies inequalities.

nHales : time ratio between formal and numerical certification (V.

Vœvodsky)

; nHales . 10 (Maxplus + Sums of squares)� 2000 (Taylor + Intervals)
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Non-polynomial Optimization

MAXPLUS + SUMS OF SQUARES: +© scalable +© precise

Verification software NLCertify, 3rd iteration:
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y

par−a1

par−a2
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Contributions
CERTIFICATION MAXPLUS–SUMS OF SQUARES: NUMERIC OR FORMAL

Journals

Magron, Allamigeon, Gaubert & Werner, Journal Math. Prog. Ser. B 2014

Magron, Allamigeon, Gaubert & Werner, Journal of Formalized Reasoning 2015

Conferences

Allamigeon, Gaubert, Magron & Werner, Calculemus Conference 2013

Allamigeon, Gaubert, Magron & Werner, European Control Conference 2013

Magron, ICMS Conference 2014 + software NLCertify

A FORMAL PROOF OF KEPLER CONJECTURE

Hales, Adams, Bauer, Dang, Harrison, Hoang, Kaliszyk, Magron, Mclaughlin,
Nguyen, Nguyen, Nipkow, Obua, Pleso, Rute, Solovyev, Ta, Tran, Trieu, Urban,
Vu & Zumkeller, Prepublication, submitted Sigma/Pi Journal 2015
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End

Thank you for your attention!

cas.ee.ic.ac.uk/people/vmagron
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