Certifying global optimality of AC-OPF Solutions via the CS-TSSOS hierarchy

Victor Magron (LAAS CNRS) Joint work with Jean-Bernard Lasserre & Jie Wang

AMS Spring Western Virtual Sectional Meeting 14 May 2022

Minimize active power injections of an alternating current transmission network under physical + operational constraints

Minimize active power injections of an alternating current transmission network under physical + operational constraints

Artificial version of the control problem for electricity transmission network

Network = Graph with buses N, from edges E, to edges E^R

Network = Graph with buses *N*, from edges *E*, to edges E^R Generators at bus $i = G_i$, with power demand \mathbf{S}_i^d V_i and S_k^g = voltage at bus *i* and power generation at generator *k*

Network = Graph with buses *N*, from edges *E*, to edges E^R Generators at bus $i = G_i$, with power demand S_i^d V_i and S_k^g = voltage at bus *i* and power generation at generator *k*

Kirchhoff law: $I_i = \sum_{(i,j) \in E_i \cup E_i^R} I_{ij} + I_i^{gr}$

Network = Graph with buses *N*, from edges *E*, to edges E^R Generators at bus $i = G_i$, with power demand S_i^d V_i and S_k^g = voltage at bus *i* and power generation at generator *k*

Kirchhoff law:
$$I_i = \sum_{(i,j) \in E_i \cup E_i^R} I_{ij} + I_i^{gr}$$

Ohm law:
$$\begin{pmatrix} I_{ij} \\ I_{ji} \end{pmatrix} = \mathbf{Y}_{ij} \begin{pmatrix} V_i \\ V_j \end{pmatrix}$$

Network = Graph with buses *N*, from edges *E*, to edges E^R Generators at bus $i = G_i$, with power demand S_i^d V_i and S_k^g = voltage at bus *i* and power generation at generator *k*

Kirchhoff law:
$$I_i = \sum_{(i,j) \in E_i \cup E_i^R} I_{ij} + I_i^{gr}$$

Ohm law:
$$\begin{pmatrix} I_{ij} \\ I_{ji} \end{pmatrix} = \mathbf{Y}_{ij} \begin{pmatrix} V_i \\ V_j \end{pmatrix}$$

Relation power-voltage-current: $\sum_{k \in G_i} S_k^g - \mathbf{S}_i^d = V_i I_i^{\star}$

Network = Graph with buses *N*, from edges *E*, to edges E^R Generators at bus $i = G_i$, with power demand S_i^d V_i and S_k^g = voltage at bus *i* and power generation at generator *k*

Kirchhoff law:
$$I_i = \sum_{(i,j) \in E_i \cup E_i^R} I_{ij} + I_i^{gr}$$

Ohm law:
$$\begin{pmatrix} I_{ij} \\ I_{ji} \end{pmatrix} = \mathbf{Y}_{ij} \begin{pmatrix} V_i \\ V_j \end{pmatrix}$$

Relation power-voltage-current: $\sum_{k \in G_i} S_k^g - \mathbf{S}_i^d = V_i I_i^* \rightarrow \text{leads to power-flow equations}$

$$\begin{cases} \inf_{V_i, S_k^g \in \mathbf{C}} \sum_{k \in G} (\mathbf{c}_{2k}(\Re(S_k^g))^2 + \mathbf{c}_{1k} \Re(S_k^g) + \mathbf{c}_{0k}) \\ \text{s.t.} \qquad \angle V_r = 0 \\ \mathbf{S}_k^{gl} \le S_k^g \le \mathbf{S}_k^{gu} \qquad \forall k \in G \\ \mathbf{v}_i^l \le |V_i| \le \mathbf{v}_i^u \qquad \forall i \in N \\ \sum_{k \in G_i} S_k^g - \mathbf{S}_i^d - \mathbf{Y}_i^k |V_i|^2 = \sum_{(i,j) \in E_i \cup E_i^R} S_{ij} \quad \forall i \in N \\ S_{ij} = (\mathbf{Y}_{ij}^* - \mathbf{i} \frac{\mathbf{b}_{ij}^e}{2}) \frac{|V_i|^2}{|\mathbf{T}_{ij}|^2} - \mathbf{Y}_{ij}^* \frac{V_i V_j^*}{\mathbf{T}_{ij}} \quad \forall (i,j) \in E \\ S_{ji} = (\mathbf{Y}_{ij}^* - \mathbf{i} \frac{\mathbf{b}_{ij}^e}{2}) |\frac{|V_j|^2}{|\mathbf{T}_{ij}|^2} - \mathbf{Y}_{ij}^* \frac{V_i V_j^*}{\mathbf{T}_{ij}^*} \quad \forall (i,j) \in E \\ |S_{ij}| \le \mathbf{s}_{ij}^u \qquad \forall (i,j) \in E \cup E^R \\ \boldsymbol{\theta}_{ij}^{\Delta l} \le \angle (V_i V_j^*) \le \boldsymbol{\theta}_{ij}^{\Delta u} \qquad \forall (i,j) \in E \end{cases}$$

• local solvers: interior-point (IPOPT, KNITRO) for large-scale ($\simeq 10^5$ nodes)

- local solvers: interior-point (IPOPT, KNITRO) for large-scale ($\simeq 10^5$ nodes)
- relaxations SOCP/SDP ($\simeq 10^5$ nodes)

- local solvers: interior-point (IPOPT, KNITRO) for large-scale ($\simeq 10^5$ nodes)
- relaxations SOCP/SDP ($\simeq 10^5$ nodes)
- Global solutions with branch & bound, Moment-SOS hierarchy (~ 300 nodes) [Kocuk et al. '14, Godard '19]

Y Exploiting sparsity

few terms [Reznick '78] or few correlations [Lasserre, Waki et al. '06]

Fixed Section Section

Correlative sparsity: few products between each variable and the others

Fixed Section Section Section Section Field Section Se

Correlative sparsity: few products between each variable and the others

 $\rightsquigarrow x_1x_2 + x_2x_3 + \ldots x_{99}x_{100}$

Fixed Section Section Section Field Field Section Field Section (Cartering Section Sec

Correlative sparsity: few products between each variable and the others

 $\rightsquigarrow x_1x_2 + x_2x_3 + \dots x_{99}x_{100}$

Term sparsity: few terms

1 - 2 - 3 ----- 99 - 100

Y Exploiting sparsity few terms [Reznick '78] or few correlations [Lasserre, Waki et al. '06]

Correlative sparsity: few products between each variable and the others

 $\rightsquigarrow x_1x_2 + x_2x_3 + \dots x_{99}x_{100}$

Term sparsity: few terms $\rightarrow x_1^{99}x_2 + x_1x_2^{100}$

Y Exploiting sparsity few terms [Reznick '78] or few correlations [Lasserre, Waki et al. '06]

Correlative sparsity: few products between each variable and the others

 $\rightsquigarrow x_1x_2 + x_2x_3 + \dots x_{99}x_{100}$

Term sparsity: few terms $\rightarrow x_1^{99}x_2 + x_1x_2^{100}$

Correlative sparsity $n \simeq 10^3$ [Josz et al. '18]

Correlative sparsity

Term sparsity

Correlative sparsity

Term sparsity

NP-hard NON CONVEX Problem $f_{\min} = \inf f(\mathbf{x})$

[Lasserre '01] HIERARCHY of **CONVEX PROBLEMS** $\uparrow f_{min}$ Based on representation of positive polynomials [Putinar '93]

X Numerical Solvers \implies **Approx** Certificate

X degree d, n vars $\implies \binom{n+d}{n}$ **SDP** VARIABLES

NP hard General Problem: $f_{\min} := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

Semialgebraic set $\mathbf{X} = {\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0}$

NP hard General Problem: $f_{\min} := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

Semialgebraic set $\mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$ $\mathbf{X} = [0, 1]^2 = \{\mathbf{x} \in \mathbb{R}^2 : x_1(1 - x_1) \ge 0, \quad x_2(1 - x_2) \ge 0\}$

NP hard General Problem: $f_{\min} := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

Semialgebraic set
$$\mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$$

 $\mathbf{X} = [0,1]^2 = \{\mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0\}$
 $\overbrace{\mathbf{x}_1 \mathbf{x}_2}^f = \underbrace{\frac{\sigma_0}{1}}_{-\frac{1}{8} + \frac{1}{2}\left(x_1 + x_2 - \frac{1}{2}\right)^2} + \underbrace{\frac{\sigma_1}{12}}_{\frac{1}{2}} \underbrace{\frac{g_1}{x_1(1-x_1)}}_{\frac{g_1}{2} + \frac{\sigma_2}{12}} \underbrace{\frac{g_2}{x_2(1-x_2)}}_{\frac{g_2}{2} + \frac{\sigma_2}{12}}$

NP hard General Problem: $f_{\min} := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

Semialgebraic set
$$\mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$$

 $\mathbf{X} = [0,1]^2 = \{\mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0\}$
 $\overbrace{\mathbf{x}_1 \mathbf{x}_2}^f = \underbrace{\frac{\sigma_0}{1}}_{-\frac{1}{8} + \frac{1}{2}\left(x_1 + x_2 - \frac{1}{2}\right)^2} + \underbrace{\frac{\sigma_1}{12}}_{\frac{1}{2}}\underbrace{\frac{g_1}{x_1(1-x_1)}}_{\frac{g_1}{2} + \frac{\sigma_2}{12}}\underbrace{\frac{g_2}{x_2(1-x_2)}}_{\frac{g_2}{2} + \frac{\sigma_2}{2}}$

Sums of squares (SOS) σ_i

NP hard General Problem: $f_{\min} := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

Semialgebraic set
$$\mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$$

 $\mathbf{X} = [0, 1]^2 = \{\mathbf{x} \in \mathbb{R}^2 : x_1(1 - x_1) \ge 0, \quad x_2(1 - x_2) \ge 0\}$
 $\overbrace{\mathbf{x}_1 \mathbf{x}_2}^f = \underbrace{\frac{\sigma_0}{1}}_{-\frac{1}{8} + \frac{1}{2}\left(x_1 + x_2 - \frac{1}{2}\right)^2} + \underbrace{\frac{\sigma_1}{12}}_{\frac{1}{2}}\underbrace{\frac{g_1}{x_1(1 - x_1)}}_{\frac{g_1}{2} + \frac{\sigma_2}{12}}\underbrace{\frac{g_2}{x_2(1 - x_2)}}_{\frac{g_2}{2} + \frac{\sigma_2}{12}}$

Sums of squares (SOS) σ_i

Quadratic module:
$$\mathcal{M}(\mathbf{X})_d = \left\{ \sigma_0 + \sum_j \sigma_j g_j, \deg \sigma_j g_j \leqslant 2d \right\}$$

Hierarchy of SDP relaxations:

$$\lambda_d := \sup_{\lambda} \left\{ \lambda : f - \lambda \in \mathcal{M}(\mathbf{X})_d \right\}$$

Hierarchy of SDP relaxations:

$$\lambda_d := \sup_{\lambda} \left\{ \lambda : f - \lambda \in \mathcal{M}(\mathbf{X})_d \right\}$$

Convergence guarantees $\lambda_d \uparrow f_{\min}$ [Lasserre '01] when $\mathcal{M}(\mathbf{X})$ is Archimedean:

 $\bigvee N - \sum x_i^2 \in \mathcal{M}(\mathbf{X})$ for some N > 0

Hierarchy of SDP relaxations:

$$\lambda_d := \sup_{\lambda} \left\{ \lambda : f - \lambda \in \mathcal{M}(\mathbf{X})_d \right\}$$

Convergence guarantees $\lambda_d \uparrow f_{\min}$ [Lasserre '01] when $\mathcal{M}(\mathbf{X})$ is Archimedean:

$$\bigvee N - \sum x_i^2 \in \mathcal{M}(\mathbf{X})$$
 for some $N > 0$

Can be computed with SDP solvers (CSDP, SDPA, MOSEK)

"No Free Lunch" Rule: $\binom{n+2d}{n}$ SDP variables

Correlative sparsity

Term sparsity

Exploit few links between **variables** [Lasserre, Waki et al. '06] $x_2x_5 + x_3x_6 - x_2x_3 - x_5x_6 + x_1(-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$ Chordal graph *G*

Theorem [Griewank Toint '84]

Chordal graph G with maximal cliques I_1 , I_2

 $Q_G \geq 0$ with nonzero entries at edges of G

 $\implies Q_G = P_1^T Q_1 P_1 + P_2^T Q_2 P_2$ with $Q_k \succeq 0$ indexed by I_k

Theorem [Griewank Toint '84]

Chordal graph G with maximal cliques I_1 , I_2

 $Q_G \geq 0$ with nonzero entries at edges of G

 $\implies Q_G = P_1^T Q_1 P_1 + P_2^T Q_2 P_2$ with $Q_k \succeq 0$ indexed by I_k

Sparse $f = f_1 + f_2$ where f_k involves **only** variables in I_k

Theorem [Griewank Toint '84]

Chordal graph G with maximal cliques I_1 , I_2

 $Q_{G} \geq 0$ with nonzero entries at edges of G

 $\implies Q_G = P_1^T Q_1 P_1 + P_2^T Q_2 P_2$ with $Q_k \succeq 0$ indexed by I_k

Sparse $f = f_1 + f_2$ where f_k involves **only** variables in I_k

Theorem: Sparse Putinar's representation [Lasserre '06]

f > 0 on $\{\mathbf{x} : g_j(\mathbf{x}) \ge 0\}$ chordal graph *G* with cliques $I_k \implies$ ball constraints for each $\mathbf{x}(I_k)$

$$f = \sigma_{01} + \sigma_{02} + \sum_{j} \sigma_{j} g_{j}$$

SOS σ_{0k} "sees" vars in I_{k}
 σ_{i} "sees" vars from σ_{i}

[Postdoc Wang '19-21] ANR Tremplin-ERC

$$f = x_1^2 - 2x_1x_2 + 3x_2^2 - 2x_1^2x_2 + 2x_1^2x_2^2 - 2x_2x_3 + 6x_3^2 + 9x_2^2x_3 - 45x_2x_3^2 + 142x_2^2x_3^2$$
[Reznick '78] \rightarrow Newton polytope method
$$f = \begin{pmatrix} 1 & x_1 & x_2 & x_3 & x_2x_1 & x_3x_2 \end{pmatrix} \underbrace{Q}_{\geqslant 0} \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \\ x_1x_2 \\ x_2x_3 \end{pmatrix}$$
 $\rightsquigarrow \frac{6 \times 7}{2} = 28$ "unknown" entries in Q

[Postdoc Wang '19-21] ANR Tremplin-ERC

$$f = x_1^2 - 2x_1x_2 + 3x_2^2 - 2x_1^2x_2 + 2x_1^2x_2^2 - 2x_2x_3 + 6x_3^2 + 9x_2^2x_3 - 45x_2x_3^2 + 142x_2^2x_3^2$$
[Reznick '78] \rightarrow Newton polytope method
$$f = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_2x_1 \quad x_3x_2) \underbrace{Q}_{\geqslant 0} \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \\ x_1x_2 \\ x_2x_3 \end{pmatrix}$$
 $\approx \frac{6 \times 7}{2} = 28$ "unknown" entries in Q
$$x_1x_2 \quad x_2 \quad x_3$$
Term sparsity pattern graph G
$$x_1x_2 \quad x_2 \quad x_3$$

[Postdoc Wang '19-21] ANR Tremplin-ERC

$$f = x_1^2 - 2x_1x_2 + 3x_2^2 - 2x_1^2x_2 + 2x_1^2x_2^2 - 2x_2x_3$$

$$+ 6x_3^2 + 9x_2^2x_3 - 45x_2x_3^2 + 142x_2^2x_3^2$$
[Reznick '78] \rightarrow Newton polytope method
$$f = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_2x_1 \quad x_3x_2) \underbrace{Q}_{\geqslant 0} \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \\ x_1x_2 \\ x_2x_3 \end{pmatrix}$$

$$\xrightarrow{6 \times 7}_2 = 28 \text{ "unknown" entries in } Q$$

$$\xrightarrow{x_1x_2}_{x_2x_3} \xrightarrow{x_2x_1}_{x_2x_3} \xrightarrow{x_2x_3}_{y_2x_3} \xrightarrow{x_2x_3}_{y_2x_3}$$

$$\xrightarrow{x_1x_2}_{x_2x_3}$$

$$\xrightarrow{x_1x_2}_{x_2x_3}$$

[Postdoc Wang '19-21] ANR Tremplin-ERC

$$f = x_1^2 - 2x_1x_2 + 3x_2^2 - 2x_1^2x_2 + 2x_1^2x_2^2 - 2x_2x_3$$

$$+ 6x_3^2 + 9x_2^2x_3 - 45x_2x_3^2 + 142x_2^2x_3^2$$
[Reznick '78] \rightarrow Newton polytope method
$$f = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_2x_1 \quad x_3x_2) \underbrace{Q}_{\geqslant 0} \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \\ x_1x_2 \\ x_2x_3 \end{pmatrix}$$

$$\xrightarrow{6 \times 7}_2 = 28 \text{ "unknown" entries in } Q \qquad \Rightarrow 0$$

$$\xrightarrow{6 \times 7}_2 = 28 \text{ "unknown" entries in } Q \qquad \Rightarrow 0$$

$$\xrightarrow{(x_1x_2)}_{x_1} \underbrace{(x_1x_2)}_{x_2} \underbrace{(x_1x_2)}_{x_2} \underbrace{(x_1x_2)}_{x_2} \underbrace{(x_1x_2)}_{x_3} \underbrace{(x_1x$$

Replace Q by $Q_{G'}$ with nonzero entries at edges of $G' \rightarrow 6 + 9 = 15$ "unknown" entries in $Q_{G'}$

Victor Magron

AC-OPF Solutions via CS-TSSOS

At step *d* of the hierarchy, one considers vector \mathbf{v}_d of monomials with degree at most *d*

The tsp graph G has edges E with

$$\{\mathbf{x}^{\alpha}, \mathbf{x}^{\beta}\} \in E \Leftrightarrow \mathbf{x}^{\alpha+\beta} \in \operatorname{supp}(f) \bigcup \cup_{j} \operatorname{supp}(g_{j}) \bigcup \{\mathbf{x}^{2\alpha} \mid \mathbf{x}^{\alpha} \in \mathbf{v}_{d}\}$$

→ support extension

At step *d* of the hierarchy, one considers vector \mathbf{v}_d of monomials with degree at most *d*

The tsp graph G has edges E with

$$\{\mathbf{x}^{\alpha}, \mathbf{x}^{\beta}\} \in \underline{E} \Leftrightarrow \mathbf{x}^{\alpha+\beta} \in \operatorname{supp}(f) \bigcup \cup_{j} \operatorname{supp}(g_{j}) \bigcup \{\mathbf{x}^{2\alpha} \mid \mathbf{x}^{\alpha} \in \mathbf{v}_{d}\}$$

 \rightsquigarrow support extension \rightsquigarrow chordal extension G'

At step *d* of the hierarchy, one considers vector \mathbf{v}_d of monomials with degree at most *d*

The tsp graph G has edges E with

 $\{\mathbf{x}^{\alpha}, \mathbf{x}^{\beta}\} \in \underline{E} \Leftrightarrow \mathbf{x}^{\alpha+\beta} \in \operatorname{supp}(f) \bigcup \cup_{j} \operatorname{supp}(g_{j}) \bigcup \{\mathbf{x}^{2\alpha} \mid \mathbf{x}^{\alpha} \in \mathbf{v}_{d}\}$

 \rightsquigarrow support extension \rightsquigarrow chordal extension G'

By iteratively performing support extension & chordal extension

$$G^{(1)} = G' \subseteq \cdots \subseteq G^{(\ell)} \subseteq G^{(\ell+1)} \subseteq \cdots$$

 \forall Two-level hierarchy of lower bounds for f_{\min} on **X**, indexed by sparse order ℓ and relaxation order d

Victor Magron

V CONVERGENCE GUARANTEES

♥ CONVERGENCE GUARANTEES

V CONVERGENCE GUARANTEES

Y handles Combo with correlative sparsity

1 Partition the variables w.r.t. the maximal cliques of the csp graph

V CONVERGENCE GUARANTEES

- **1** Partition the variables w.r.t. the maximal cliques of the csp graph
- 2 For each subsystem involving variables from one maximal clique, apply the iterative procedure to exploit term sparsity

V CONVERGENCE GUARANTEES

- **1** Partition the variables w.r.t. the maximal cliques of the csp graph
- 2 For each subsystem involving variables from one maximal clique, apply the iterative procedure to exploit term sparsity
- \forall two-level hierarchy of lower bounds for f_{min} : CS-TSSOS hierarchy

[™] CONVERGENCE GUARANTEES

- **1** Partition the variables w.r.t. the maximal cliques of the csp graph
- 2 For each subsystem involving variables from one maximal clique, apply the iterative procedure to exploit term sparsity
- \forall two-level hierarchy of lower bounds for f_{min} : CS-TSSOS hierarchy
- \overleftrightarrow{V} Julia library TSSOS \rightarrow solve problems with $n=10^3$

[™] CONVERGENCE GUARANTEES

- **1** Partition the variables w.r.t. the maximal cliques of the csp graph
- 2 For each subsystem involving variables from one maximal clique, apply the iterative procedure to exploit term sparsity
- \forall two-level hierarchy of lower bounds for f_{min} : CS-TSSOS hierarchy
- \overleftrightarrow Julia library TSSOS \rightarrow solve problems with $n=10^3$
- V choice of the CHORDAL EXTENSION: min / max

mb: max block size gap: the optimality gap w.r.t. local optimal solution

n	т	CS (<i>d</i> = 2)				CS+TS ($d = 2, \ell = 1$)			
		mb	opt	time	gap	mb	opt	time	gap
20	55	28	1.754 e 4	0.56	0.05%	22	1.754 e 4	0.30	0.05%
114	315	66	1.344 e 5	5.59	0.39%	31	1.339e5	2.01	0.73%
344	971	153	4.224e5	758	0.06%	44	4.207e5	96.0	0.48%
	1325	253	_	_	_	73	1.047 e 5	169	0.50%
1112	4613	231	4.241e4	3114	0.85%	39	4.240e4	46.6	0.86%
		496	_	_	_	31	7.239e4	410	0.25%
4356	18257	378	_	_	_	27	1.395 e 6	934	0.51%
6698	29283	1326	_	_	—	76	5.985 e 5	1886	0.47%

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize large-scale polynomials

FAST IMPLEMENTATION IN JULIA: TSSOS

 $\overleftarrow{\mathsf{V}}$ Combine correlative & term sparsity \rightsquigarrow solves problems with thousand variables

Conclusion and perspectives

Solving Alternative Current OPF to global optimality \rightarrow benchmarks [PGLIB '18] with up to 25 000 buses!

Solving Alternative Current OPF to global optimality \rightarrow benchmarks [PGLIB '18] with up to 25 000 buses!

COMPLEX vs REAL hierarchy of relaxations? [D'Angelo Putinar '09, Josz et al. '18, Magron Wang '21] $6515_RTE \rightarrow n = 7000$ complex variables (14000 real variables) solved at 0.6% gap within 3 hours on PFCALCUL at LAAS Solving Alternative Current OPF to global optimality \rightarrow benchmarks [PGLIB '18] with up to 25 000 buses!

COMPLEX vs REAL hierarchy of relaxations? [D'Angelo Putinar '09, Josz et al. '18, Magron Wang '21] $6515_RTE \rightarrow n = 7000$ complex variables (14000 real variables) solved at 0.6% gap within 3 hours on PFCALCUL at LAAS

SDP have CONSTANT TRACE PROPERTY

[PhD Mai '19-22]

Solving Alternative Current OPF to global optimality \rightarrow benchmarks [PGLIB '18] with up to 25 000 buses!

COMPLEX vs REAL hierarchy of relaxations? [D'Angelo Putinar '09, Josz et al. '18, Magron Wang '21] $6515_RTE \rightarrow n = 7000$ complex variables (14000 real variables) solved at 0.6% gap within 3 hours on PFCALCUL at LAAS

SDP have CONSTANT TRACE PROPERTY

 \overrightarrow{V} Replace interior-point solvers by 1st-order methods \Rightarrow handle matrices of size up to 2000 with more than 1.5 million constraints... in 1 hour!

[PhD Mai '19-22]

♥ powerful & accurate MODELING tool

♥ powerful & accurate MODELING tool

 \overrightarrow{V} CERTIFICATION cost \simeq optimization cost

♥ powerful & accurate MODELING tool

 $\overleftarrow{\mathbf{v}}$ CERTIFICATION cost \simeq optimization cost

V EFFICIENCY guaranteed on structured applications

Thank you for your attention!

https://homepages.laas.fr/vmagron

Reznick. Extremal PSD forms with few terms. Duke mathematical journal, 1978	
Lasserre. Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM Optim., 2006	
Waki, Kim, Kojima & Muramatsu. Sums of squares and semidefinite program relaxations for polyno optimization problems with structured sparsity. SIAM Optim., 2006	mial parsePOP
Josz & Molzahn. Lasserre hierarchy for large scale polynomial optimization in real and complex var SIAM Optim., 2018	iables.
Wang, Magron & Lasserre. TSSOS: A Moment-SOS hierarchy that exploits term sparsity. SIAM Op TSSOS	tim., 2021
Wang, Magron & Lasserre. Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity w chordal extension. SIAM Optim., 2021	rith TSSOS
Wang, Magron, Lasserre & Mai. CS-TSSOS: Correlative and term sparsity for large-scale polynomi optimization. arxiv:2005.02828	al TSSOS
Wang & Magron. Exploiting Sparsity in Complex Polynomial Optimization. JOTA, 2021	
Wang, Magron & Lasserre. Certifying Global Optimality of AC-OPF Solutions via the CS-TSSOS Hi arxiv:2109.10005	erarchy. TSSOS