Certification of inequalities involving transcendental functions using Semi-Definite Programming Supervisor: Benjamin Werner (TypiCal) Co-Supervisor: Stéphane Gaubert (Maxplus)

2nd year PhD Victor MAGRON

LIX, École Polytechnique

Wednesday July 11 st 2012

(nría

Contents

- Flyspeck-Like Problems
- General Framework
 - Sums of Squares (SOS) and Semi-Definite Programming (SDP) Relaxations
 - Basic Semi-Algebraic Relaxations
 - Transcendental Functions Underestimators
 - Multi-Relaxations Algorithm
- Icoal Solutions to Global Issues
 - Multivariate Taylor-Models Underestimators
 - Branch and Bound Algorithm
 - Decrease the SDP Problems Size

・ 戸 ト ・ ヨ ト ・ ヨ ト

Flyspeck-Like Problems

Inequalities issued from Flyspeck non-linear part involve:

- Semi-Algebraic functions algebra A: composition of polynomials with | · |, (·)^{1/p} (p ∈ ℕ₀), +, -, ×, /, sup, inf
- Transcendental functions *T*: composition of semi-algebraic functions with arctan, arccos, arcsin, exp, log, | · |,
 (·)^{1/p}(p ∈ ℕ₀), +, -, ×, /, sup, inf

Lemma₉₉₂₂₆₉₉₀₂₈ from Flyspeck

$$\begin{split} K &:= [4; 6.3504]^3 \times [6.3504; 8] \times [4; 6.3504]^2 \\ \Delta x &:= x_1 x_4 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) + x_2 x_5 (x_1 - x_2 + x_3 + x_4 - x_5 + x_6) + x_3 x_6 (x_1 + x_2 - x_3 + x_4 + x_5 - x_6) - x_2 x_3 x_4 - x_1 x_3 x_5 - x_1 x_2 x_6 - x_4 x_5 x_6 \\ \forall x \in K, -\frac{\pi}{2} - \arctan \frac{-\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}} + 1.6294 - 0.2213 (\sqrt{x_2} + \sqrt{x_3} + \sqrt{x_5} + \sqrt{x_6} - 8.0) + 0.913 (\sqrt{x_4} - 2.52) + 0.728 (\sqrt{x_1} - 2.0) \ge 0. \end{split}$$

Flyspeck-Like Problems

Hales and Solovyev Method:

- Real numbers are represented by interval arithmetic
- Arithmetic is floating point with IEEE-754 directed rounding
- Analytic functions f are approximated with Taylor expansions with rigorously computed error terms:

$$|f(x) - f(x^{0}) - \nabla f(x^{0}) (x - x^{0})| < \sum_{i,j} m_{ij} \epsilon_{i} \epsilon_{j},$$

 $\epsilon_i = |x_i - x_i^0|$

- The domain K is partitioned into smaller rectangles as needed until the Taylor approximations are accurate enough to yield the desired inequalities.
- The Taylor expansions are generated by symbolic differentiation using the chain rule, product rule, and so forth.
 A few primitive functions (√, ¹/₂, arctan and some common polynomials) are hand-coded.

We consider the same problem: given K a compact set, and f a transcendental function, minor $f^* = \inf_{x \in K} f(x)$ and prove $f^* \ge 0$

- f is underestimated by a semi-algebraic function f_{sa} on a compact set K_{sa}
- 2 We reduce the problem to compute $\inf_{x \in K_{sa}} f_{sa}(x)$ to a polynomial optimization problem in a lifted space K_{pop}
- We classically solve the POP problem $\inf_{x \in K_{pop}} f_{pop}(x)$ using a hierarchy of SDP relaxations by Lasserre

If the relaxations are accurate enough, $f^* \ge f^*_{sa} \ge f^*_{pop} \ge 0$.

・ロト ・ 四ト ・ ヨト ・

SOS and SDP Relaxations

Polynomial Optimization Problem (POP):

Let $f, g_1, ..., g_m \in \mathbb{R}[X_1, ..., X_n]$ $K_{pop} := \{x \in \mathbb{R}^n : g_1(x) \ge 0, ..., g_m(x) \ge 0\}$ is the feasible set General POP: compute $f_{pop}^* = \inf_{x \in K_{pop}} f(x)$

SOS Assumption:

K is compact, $\exists u \in \mathbb{R}[X]$ s.t. the level set $\{x \in \mathbb{R}^n : u(x) \ge 0\}$ is compact and $u = u_0 + \sum_{j=1}^m u_j g_j$ for some sum of squares (SOS) $u_0, u_1, \dots, u_m \in \mathbb{R}[X]$

The SOS assumption is always verified if there exists $N \in \mathbb{N}$ such that $N - \sum_{i=1}^{n} X_i^2 = u_0 + \sum_{j=1}^{m} u_j g_j$. In our case, it as always verified since all the polynomial variables X_i are bounded.

SOS and SDP Relaxations

To convexify the problem, use the equivalent formulation:

 $f_{pop}^* = \inf_{x \in K_{pop}} f_{pop}(x) = \inf_{\mu \in \mathcal{P}(K_{pop})} \int f_{pop} d\mu, \text{ where } \mathcal{P}(K_{pop}) \text{ is the set of all probability measures } \mu \text{ supported on the set } K_{pop}.$

Theorem [Putinar]:

$$\exists L : \mathbb{R}[X] \to \mathbb{R} \text{ s.t. } (\exists \mu \in \mathcal{P}(K_{pop}), \forall p \in \mathbb{R}[X], L(p) = \int p \, d\mu) \iff (L(1) = 1 \text{ and } L(s_0 + \sum_{j=1}^m s_j g_j) \ge 0 \text{ for any SOS } s_0, \dots, s_m \in \mathbb{R}[X]).$$

Equivalent formulation:

$$\begin{split} f^*_{pop} &= \min \left\{ L(f) \ : \ L : \mathbb{R}[X] \to \mathbb{R} \text{ linear, } L(1) = 1 \text{ and each } \mathcal{L}_{g_j} \\ \text{is psd } \right\}, \text{ with } g_0 &= 1, \mathcal{L}_{g_0}, ..., \mathcal{L}_{g_m} \text{ defined by:} \\ \mathcal{L}_{g_j} &: \mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R} \\ &\qquad (p, q) \qquad \mapsto \quad L(p \cdot q \cdot g_j) \end{split}$$

SOS and SDP Relaxations

- Let B the monomial basis (X^α)_{α∈ℕⁿ} and set y_b = L(b) for b ∈ B identifies L with the infinite series y = (y_b)_{b∈B}.
- The infinite moment matrix M associated to y indexed by \mathcal{B} is: $M(y)_{u,v} := L(u \cdot v), \ u, v \in \mathcal{B}.$
- The localizing matrix $M(g_j y)$ is: $M(g_j y)_{u,v} := L(u \cdot v \cdot g_j), \ u, v \in \mathcal{B}.$
- Let k ≥ k₀ := max{ [deg f_{pop}]/2, [deg g₀/2], ..., [deg g_m/2]}. By truncating the previous matrices by considering only rows and columns indexed by elements in B of degree at most k, consider the hierarchy Q_k of semidefinite relaxations:

$$\inf_{y} L(f)$$

 $\label{eq:Qk} \begin{array}{ccc} Q_k: & M_{k-\lceil \deg g_j/2\rceil}(g_jy) & \succcurlyeq & 0, & 0 \leq j \leq m, \end{array}$

$$y_1 = 1$$

イロト イポト イヨト イヨト

Convergence Theorem [Lasserre]:

Let the SOS assumption holds. Then the sequence $\inf(Q_k)_{k \ge k_0}$ is monotically non-decreasing and converges to f_{pop}^*

SDP relaxations:

Let $B = |\mathcal{B}|$. Many solvers (Sedumi, SDPA) solve the following standard form semidefinite program and its dual:

$$(SDP) \begin{cases} \mathcal{P}: & \min_{y} & \sum_{\alpha=1}^{B} c_{\alpha} y_{\alpha} \\ & \text{subject to} & \sum_{\alpha=1}^{B} F_{\alpha} y_{\alpha} - F_{0} \succcurlyeq 0 \\ \mathcal{D}: & \max_{Y} & \text{Trace } (F_{0} Y) \\ & \text{subject to} & \text{Trace } (F_{\alpha} Y) = c_{\alpha} (\alpha = 1, ..., B) \end{cases}$$

э

Basic Semi-Algebraic Relaxations

- Let \mathcal{A} be a set of semi-algebraic functions and $f_{sa} \in \mathcal{A}$.
- We consider the problem $f_{sa}^* = \inf_{x \in K_{sa}} f_{sa}(x)$ with $K_{sa} := \{x \in \mathbb{R}^n : g_1(x) \ge 0, ..., g_m(x) \ge 0\}$ a basic semi-algebraic set

Basic Semi-Algebraic Lifting:

A function $f_{sa} \in \mathcal{A}$ is said to have a basic semi-algebraic lifting (a b.s.a.l.), or f is basic semi-algebraic (b.s.a.) if $\exists p, s \in \mathbb{N}$, polynomials $(h_k)_{1 \leq k \leq s} \in \mathbb{R}[X, Z_1, ..., Z_p]$ and a b.s.a. set $K_{pop} := \{(x, z) \in \mathbb{R}^{n+p} : x \in K_{sa}, h_k(x, z) \geq 0, k = 1, ..., s\}$ such that the graph of f_{sa} (denoted $\Psi_{f_{sa}}$) satisfies: $\Psi_{f_{sa}} := \{(x, f_{sa}(x)) : x \in K_{sa}\} = \{(x, z_p) : (x, z) \in K_{pop}\}$

(日)

Basic Semi-Algebraic Relaxations

b.s.a.l. lemma [Lasserre, Putinar] :

Let \mathcal{A} be the semi-algebraic functions algebra obtained by composition of polynomials with $|\cdot|$, $(\cdot)^{\frac{1}{p}}(p \in \mathbb{N}_0)$, $+, -, \times, /, \sup$, inf. Then every well-defined $f_{sa} \in \mathcal{A}$ has a basic semi-algebraic lifting.

Example from Flyspeck:

$$\begin{split} f_{sa} &:= \frac{-\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}, K_{sa} := [4; 6.3504]^3 \times [6.3504; 8] \times [4; 6.3504]^2. \\ \bullet \text{ Define } z_1 &:= \sqrt{4x_1 \Delta x}, m_1 = \inf_{x \in K_{sa}} z_1(x), M_1 = \sup_{x \in K_{sa}} z_1(x). \\ \bullet \text{ Define } h_1 &:= z_1 - m_1, h_2 &:= M_1 - z_1, h_3 &:= z_1^2 - \sqrt{4x_1 \Delta x}, \\ h_4 &:= -z_1^2 + \sqrt{4x_1 \Delta x}, h_5 &:= z_1, h_6 &:= z_2 z_1 + \partial_4 \Delta x, \\ h_7 &:= -z_2 z_1 - \partial_4 \Delta x, s = 7, p = 2. \\ \bullet K_{pop} &:= \{(x, z) \in \mathbb{R}^{6+2} : x \in K_{sa}, h_k(x, z) \ge 0, k = 1, ..., 7\}. \\ \bullet \Psi_{f_{sa}} &:= \{(x, f_{sa}(x)) : x \in K_{sa}\} = \{(x, z_2) : (x, z) \in K_{pop}\}. \end{split}$$

Example from Flyspeck:

$$\begin{split} f_{sa} &:= \frac{-\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}, K_{sa} := [4; 6.3504]^3 \times [6.3504; 8] \times [4; 6.3504]^2. \\ \bullet & \text{Define } g_1 := x_1 - 4, g_2 := 6.3504 - x_1, \dots, g_{11} := x_6 - 4, \\ g_{12} := 6.3504 - x_6. \text{ Solve:} \\ & \inf_y L(f_{pop}) = \inf_y y_{0\dots 01} \\ Q_k : & M_{k-\lceil \deg g_j/2 \rceil}(g_j y) \succcurlyeq 0, \quad 1 \le j \le 12, \\ & M_{k-\lceil \deg h_k/2 \rceil}(h_k y) \succcurlyeq 0, \quad 1 \le k \le 7, \\ & y_{0\dots 0} = 1 \end{split}$$

イロト イヨト イヨト イヨト

æ

Basic Semi-Algebraic Relaxations

Example from Flyspeck:

$$\begin{split} f_{sa} &:= \frac{-\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}, \, K_{sa} := [4; 6.3504]^3 \times [6.3504; 8] \times [4; 6.3504]^2. \\ \bullet \mbox{ Define } g_1 &:= x_1 - 4, \, g_2 := 6.3504 - x_1, \, ..., \, g_{11} := x_6 - 4, \\ g_{12} &:= 6.3504 - x_6. \mbox{ Solve:} \\ & \inf_y y_{0...01} \\ Q_k : & M_{k-1}(g_j \, y) \ \succcurlyeq \ 0, \ 1 \le j \le 12, \\ M_{k-\lceil \deg h_k/2 \rceil}(h_k \, y) \ \succcurlyeq \ 0, \ 1 \le k \le 7, \\ y_{0...0} &= 1 \end{split}$$

b.s.a.l. Convergence:

- Let $k \ge k_0 := \max\{f_{pop}, 1, \lceil \deg h_1/2 \rceil, ..., \lceil \deg h_7/2 \rceil\}.$
- The sequence inf(Q_k)_{k≥k0} is monotically non-decreasing and converges to f^{*}_{sa}.

Transcendental Functions Underestimators

- Let *f* ∈ *T* be a transcendental univariate elementary function such as arctan, exp, ..., defined on a real interval *I*.
- Basic convexity/semi-convexity properties and monotonicity of *f* are used to find lower and upper semi-algebraic bounds.

Example with arctan:

•
$$\forall a \in I = [m; M]$$
, $\arctan(a) \ge \max_{p \in \mathcal{C}} \{ \operatorname{par}_{\le p}(a) \}$ where \mathcal{C}

define an index collection of parabola tangent to the function curve and minoring f.

•
$$\operatorname{par}_{\leq_p} := \frac{c_p}{2}(a-a_p)^2 + f'_{a_p}(a-a_p) + f(a_p), f'_{a_p} = \frac{1}{1+a_p^2},$$

 $f(a_p) = \operatorname{arctan}(a_p).$

• c_p depends on a_p and the curvature variations of arctan on the considered interval *I*. This is a consequence of the convexity of the $\arctan(\cdot) - \frac{c_p}{2}(\cdot)^2$ function for a well-chosen c_p .

Transcendental Functions Underestimators

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

æ

Transcendental Functions Underestimators

$$\min(p_1, p_2) = \frac{p_1 + p_2 - |p_1 - p_2|}{2}$$
$$z = |p_1 - p_2| \iff z^2 = (p_1 - p_2)^2 \land z \ge 0$$

Lemma₉₉₂₂₆₉₉₀₂₈ from Flyspeck:

•
$$K := [4; 6.3504]^3 \times [6.3504; 8] \times [4; 6.3504]^2$$

 $f := -\frac{\pi}{2} - \arctan \frac{-\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}} + 1.6294 - 0.2213 (\sqrt{x_2} + \sqrt{x_3} + \sqrt{x_5} + \sqrt{x_6} - 8.0) + 0.913 (\sqrt{x_4} - 2.52) + 0.728 (\sqrt{x_1} - 2.0)$

Using semi-algebraic optimization methods:

$$\forall x \in K, \ m \le \frac{-\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}} \le M$$

 Using the arctan properties: ∀a ∈ I = [m; M], arctan(a) ≤ m_{sa}(a) = min { par_{≥1}(a); par_{≥2}(a)}

•
$$f^* \ge f^*_{sa} = \min_{x \in K} \{ f_{sa}(x) = -\frac{\pi}{2} - m_{sa}(x) + 1.6294 - 0.2213 (\sqrt{x_2} + \sqrt{x_3} + \sqrt{x_5} + \sqrt{x_6} - 2^{nd} \text{ year PhD Vieter MAGRON}$$

Multi-Relaxations Algorithm

- The first step is to build the abstract syntax tree from an inequality, where leaves are semi-algebraic functions and nodes are univariate transcendental functions (arctan, exp, ...) or basic operations (+, ×, -, /).
- With $l := 1.6294 0.2213 (\sqrt{x_2} + \sqrt{x_3} + \sqrt{x_5} + \sqrt{x_6} 8.0) + 0.913 (\sqrt{x_4} 2.52) + 0.728 (\sqrt{x_1} 2.0)$, the tree for the flyspeck example is:

Multi-Relaxations Algorithm

 $\texttt{algo}_\mathcal{T}$

```
Require: tree t, box K, sequence s = (x_k)_{1 \le k \le r} \in K^r
Ensure: lower bound m, upper bound M, lower tree t_{<}, upper tree t_{>}
   if t is s.a. then
      return min t, max t, t, t
  else
      if t is a transcendental node with a child c then
         m_c, M_c, c_{\leq}, c_{\geq} := \operatorname{algo}_{\mathcal{T}}(t, K, s)
          t_{<}, t_{>} := \text{relax}(t, m_c, M_c, c_{<}, c_{>})
          return min t_{<}, max t_{>}, t_{<}, t_{>}
      else
          if t is a dyadic operation node bop parent of c_1 and c_2 then
             m_{c_i}, M_{c_i}, c_{\leq i}, c_{\geq i} := \operatorname{algo}_{\mathcal{T}}(c_i, K, s)
             t_{<}, t_{>} := bop(c_{<1}, c_{>1}, c_{<2}, c_{>2})
             return min t_{<}, max t_{>}, t_{<}, t_{>}
          end if
      end if
```

end if

$algo_{newton}$

Require: tree t, box K, tol **Ensure:** lower bound m, feasible solution x_{opt} $s := [\operatorname{argmin} (\operatorname{randeval} t)] \{s \in K\}$ n := 0m = -1while m < 0 or n < tol do $m, M, t_{\leq}, t_{\geq} := \operatorname{algo}_{\mathcal{T}}(t, K, s)$ $x_{ont} := \operatorname{argmin} t_{\leq} \{t_{\leq}(x_{ont}) = m\}$ $s \coloneqq x_{opt} :: s$ n := n + 1end while return m, x_{opt}

Example from Flyspeck:

$$f_{sa} := \frac{-\partial_4 \Delta x}{\sqrt{4x_1 \Delta x}}, K_{sa} := [4; 6.3504]^3 \times [6.3504; 8] \times [4; 6.3504]^2.$$

- Here, $t = f_{sa}$, this is the first case of $algo_T$, $\min f_{sa}$ is computed by rewritting the problem into a POP.
- Then solve the corresponding SDP problem Q_k for a given k. If the computed point is not a feasible solution, increase the relaxation order k.

Multi-Relaxations Algorithm

Semi-algebraic relaxations:

- Compute $a_1 = f_{sa}(\operatorname{argmin}(\operatorname{randeval} t))$, the equation of $\operatorname{par}_{\geq 1}$ and finally $\min t_{\leq 1}$. This is the first $\operatorname{algo}_{\operatorname{newton}}$ iteration.
- Suppose that $\min t_{\leq 1} \leq 0$. Then, the POP solver returns a point $x_2 \in K$ with $\min t_{\leq 1} = t_{\leq 1}(x_2)$. Then compute $a_1 = f_{sa}(x_2)$, $par_{\geq 2}$, $\min t_{\leq 2}$

Repeat the procedure *i* times until $\min t_{\leq i} \geq 0$

Two relaxation order types:

- Semi-algebraic relaxation order which is the number of considered parabola, and the size of the sequence s in algonewton
- **2** SDP relaxation order $k \ge \max\{\lceil \deg f_{pop} \rceil/2, \lceil \deg g_j/2 \rceil\}$. The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables: $\mathcal{O}((n+p)^{2k})$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}(n^k)$

```
The number of parabola increases

\downarrow

The number p of lifting variables increases:

2 by argument of the max)

\downarrow

The size of the SDP problems growing exponentially,

algo<sub>newton</sub> fails to converge in a reasonable time
```

Instead of increasing both relaxation orders, fix a tolerance for both and if $algo_{newton}$ fails to converge, cut the initial box K in several boxes $(K_i)_{1 \le i \le c}$ and solve the inequality on each K_i . But...

- Where K should be cut?
- **2** How to partition K?

何下 イヨト イヨト

Multivariate Taylor-Models Underestimators

Multivariate Taylor-Models Underestimators:

- Let $x_{cut} \in K$ a point obtained by $algo_{newton}(f)$ after reaching the tolerance of both relaxation orders.
- Let f_{TM2} the quadratic form related to the second order Multivariate Taylor polynomial defined on a neighborhood $\mathcal{B}_{x_{cut}, r}$ of the point x_{cut} .

• Let
$$\lambda := \min_{x \in \mathcal{B}_{x_{cut}, r}} \{\lambda_{\min}(\mathcal{H}_f(x) - \mathcal{H}_f(x_{cut}))\}$$

•
$$f_{TM2} := f(x) - f(x_{cut}) - \bigtriangledown_f(x_{cut}) (x - x_{cut}) - \frac{1}{2}(x - x_{cut})$$

$$(x_{cut})^T \mathcal{H}_f(x_{cut}) (x - x_{cut}) - \frac{1}{2}\lambda(x - x_{cut})^2.$$

Theorem:

$$\forall x \in \mathcal{B}_{x_{cut}, r}, \, f(x) \ge f_{TM2}(x)$$

э

Branch and Bound Algorithm

algodicho **Require:** tree t, K, x_{cut} , r_1 , r_2 , r_{tol} **Ensure:** lower bound *m* $r := \frac{r_1 + r_2}{2}$ Compute the infinite squared ball $\mathcal{B}_{x_{out},r}$ whose edges are parallel to the K ones and f_{TM2} $m := \min_{x \in \mathcal{B}_{x \dots t}, r} f_{TM2}$ if m > 0 and $|r_1 - r| < r_{tol}$ then return m else if m < 0 then **return** algodicho $(t, K, x_{cut}, r_1, r, r_{tol})$ else

```
return \operatorname{algo}_{\operatorname{dicho}}(t, K, x_{cut}, r, r_2, r_{tol}) end if end if
```


Branch and Bound Algorithm

 $algo_{bb}$

Require: tree t, K, tol, r_{tol} **Ensure:** lower bound m $m, x_{cut} := algo_{newton}(t, K, tol)$ if m < 0 then $r_1 := 0; r_2 := \min\{\texttt{length}(\texttt{edges}(K))\}$ $r := \operatorname{algo}_{\operatorname{dicho}} (t, K, x_{cut}, r_1, r_2, r_{tol})$ Compute the infinite squared ball $\mathcal{B}_{x_{cut}, r}$ Get a partition of $K \setminus \mathcal{B}_{x_{cut}, r} := (K_i)_{1 \le i \le c}$ $K_0 := \mathcal{B}_{x_{out}, r}$ $m := \min_{0 \leq i \leq c} \{ \text{ algo}_{bb} (t , K_i, tol, r_{tol}) \}$ return m else return m end if

∜

- Exploiting symmetries in SDP-relaxations for POP [Riener, Theobald, Andren, Lasserre] to replace one SDP problem Q_k of size $\mathcal{O}(n^k)$ by several smaller SDPS of size $\mathcal{O}(\eta_i^k)$.
- SOS and SDP Relaxations for Polynomial Optimization Problems with Structured Sparsity [Waki, Kim, Kojima, Muramatsu] to replace one SDP problem Q_k of size $\mathcal{O}(n^k)$ by a SDP problem of size $\mathcal{O}(\kappa^k)$ where κ is the average size of the polynomial variables correlation sparsity pattern maximal cliques.

Thank you for your attention!

イロト イヨト イヨト イヨト