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Flyspeck-Like Problems

Inequalities issued from Flyspeck non-linear part involve:

1 Semi-Algebraic functions algebra A: composition of
polynomials with | · |, (·)

1
p (p ∈ N0), +,−,×, /, sup, inf

2 Transcendental functions T : composition of semi-algebraic
functions with arctan, arccos, arcsin, exp, log, | · |,
(·)

1
p (p ∈ N0), +,−,×, /, sup, inf

Lemma9922699028 from Flyspeck

K := [4; 6.3504]3 × [6.3504; 8]× [4; 6.3504]2

∆x := x1x4(−x1 + x2 + x3− x4 + x5 + x6) + x2x5(x1− x2 + x3 +
x4 − x5 + x6) + x3x6(x1 + x2 − x3 + x4 + x5 − x6) − x2x3x4 −
x1x3x5 − x1x2x6 − x4x5x6
∀x ∈ K,−π

2
− arctan

−∂4∆x√
4x1∆x

+ 1.6294 − 0.2213 (
√
x2 +

√
x3 +

√
x5 +

√
x6 − 8.0) + 0.913 (

√
x4 − 2.52) + 0.728 (

√
x1 − 2.0) ≥ 0.
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Flyspeck-Like Problems

Hales and Solovyev Method:

Real numbers are represented by interval arithmetic
Arithmetic is floating point with IEEE-754 directed rounding
Analytic functions f are approximated with Taylor expansions
with rigorously computed error terms:
|f(x)− f(x0)−5f(x0) (x− x0)| <

∑
i,j

mij εi εj ,

εi = |xi − x0i |
The domain K is partitioned into smaller rectangles as needed
until the Taylor approximations are accurate enough to yield
the desired inequalities.
The Taylor expansions are generated by symbolic
differentiation using the chain rule, product rule, and so forth.

A few primitive functions (
√
·, 1

·
, arctan and some common

polynomials) are hand-coded.
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General Framework

We consider the same problem: given K a compact set, and f a
transcendental function, minor f∗ = inf

x∈K
f(x) and prove f∗ ≥ 0

1 f is underestimated by a semi-algebraic function fsa on a
compact set Ksa

2 We reduce the problem to compute inf
x∈Ksa

fsa(x) to a

polynomial optimization problem in a lifted space Kpop

3 We classicaly solve the POP problem inf
x∈Kpop

fpop(x) using a

hierarchy of SDP relaxations by Lasserre

If the relaxations are accurate enough, f∗ ≥ f∗sa ≥ f∗pop ≥ 0.
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SOS and SDP Relaxations

Polynomial Optimization Problem (POP):

Let f , g1,..., gm ∈ R[X1,..., Xn]
Kpop := {x ∈ Rn : g1(x) ≥ 0, ..., gm(x) ≥ 0} is the feasible set
General POP: compute f∗pop = inf

x∈Kpop

f(x)

SOS Assumption:

K is compact, ∃u ∈ R[X] s.t. the level set {x ∈ Rn : u(x) ≥ 0}

is compact and u = u0 +

m∑
j=1

uj gj for some sum of squares (SOS)

u0, u1,...,um ∈ R[X]

The SOS assumption is always verified if there exists N ∈ N such

that N −
n∑
i=1

X2
i = u0 +

m∑
j=1

uj gj . In our case, it as always

verified since all the polynomial variables Xi are bounded.
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SOS and SDP Relaxations

To convexify the problem, use the equivalent formulation:

f∗pop = inf
x∈Kpop

fpop(x) = inf
µ∈P(Kpop)

∫
fpop dµ, where P(Kpop) is the

set of all probability measures µ supported on the set Kpop.
Theorem [Putinar]:

∃L : R[X] → R s.t. (∃µ ∈ P(Kpop),∀p ∈ R[X], L(p) =∫
p dµ) ⇐⇒ (L(1) = 1 and L(s0 +

m∑
j=1

sjgj) ≥ 0 for any SOS

s0,..., sm ∈ R[X]).

Equivalent formulation:

f∗pop = min {L(f) : L : R[X] → R linear, L(1) = 1 and each Lgj
is psd }, with g0 = 1, Lg0 , ...,Lgm defined by:

Lgj : R[X]× R[X] → R

(p, q) 7→ L(p · q · gj)
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SOS and SDP Relaxations

Let B the monomial basis (Xα)α∈Nn and set yb = L(b) for
b ∈ B identifies L with the infinite series y = (yb)b∈B.

The infinite moment matrix M associated to y indexed by B is:
M(y)u,v := L(u · v), u, v ∈ B.
The localizing matrix M(gjy) is:
M(gjy)u,v := L(u · v · gj), u, v ∈ B.
Let k ≥ k0 := max{ddeg fpope/2, ddeg g0/2e, ..., ddeg gm/2e}.
By truncating the previous matrices by considering only rows
and columns indexed by elements in B of degree at most k,
consider the hierarchy Qk of semidefinite relaxations:

inf
y
L(f)

Qk : Mk−ddeg gj/2e(gjy) < 0, 0 ≤ j ≤ m,

y1 = 1
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SOS and SDP Relaxations

Convergence Theorem [Lasserre]:

Let the SOS assumption holds. Then the sequence inf(Qk)k≥k0 is
monotically non-decreasing and converges to f∗pop

SDP relaxations:

Let B = |B|. Many solvers (Sedumi, SDPA) solve the following
standard form semidefinite program and its dual:

(SDP )



P : min
y

B∑
α=1

cαyα

subject to
B∑
α=1

Fα yα − F0 < 0

D : max
Y

Trace (F0 Y )

subject to Trace (Fα Y ) = cα (α = 1, ..., B)
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Basic Semi-Algebraic Relaxations

Let A be a set of semi-algebraic functions and fsa ∈ A.

We consider the problem f∗sa = inf
x∈Ksa

fsa(x) with

Ksa := {x ∈ Rn : g1(x) ≥ 0, ..., gm(x) ≥ 0} a basic
semi-algebraic set

Basic Semi-Algebraic Lifting:

A function fsa ∈ A is said to have a basic semi-algebraic lifting (a
b.s.a.l.), or f is basic semi-algebraic (b.s.a.) if ∃ p, s ∈ N, polynomi-
als (hk)1≤k≤s ∈ R[X,Z1, ..., Zp] and a b.s.a. set
Kpop := {(x, z) ∈ Rn+p : x ∈ Ksa, hk(x, z) ≥ 0, k = 1, ..., s}
such that the graph of fsa (denoted Ψfsa) satisfies:
Ψfsa := {(x, fsa(x)) : x ∈ Ksa} = {(x, zp) : (x, z) ∈ Kpop}
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Basic Semi-Algebraic Relaxations

b.s.a.l. lemma [Lasserre, Putinar] :

LetA be the semi-algebraic functions algebra obtained by composi-
tion of polynomials with | · |, (·)

1
p (p ∈ N0), +,−,×, /, sup, inf. Then

every well-defined fsa ∈ A has a basic semi-algebraic lifting.

Example from Flyspeck:

fsa :=
−∂4∆x√
4x1∆x

, Ksa := [4; 6.3504]3 × [6.3504; 8]× [4; 6.3504]2.

Define z1 :=
√

4x1∆x, m1 = inf
x∈Ksa

z1(x), M1 = sup
x∈Ksa

z1(x).

Define h1 := z1 −m1, h2 := M1 − z1, h3 := z21 −
√

4x1∆x,
h4 := −z21 +

√
4x1∆x, h5 := z1, h6 := z2 z1 + ∂4∆x,

h7 := −z2 z1 − ∂4∆x, s = 7, p = 2.

Kpop := {(x, z) ∈ R6+2 : x ∈ Ksa, hk(x, z) ≥ 0, k =
1, ..., 7}.
Ψfsa := {(x, fsa(x)) : x ∈ Ksa} = {(x, z2) : (x, z) ∈ Kpop}.
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Basic Semi-Algebraic Relaxations

Example from Flyspeck:

fsa :=
−∂4∆x√
4x1∆x

, Ksa := [4; 6.3504]3 × [6.3504; 8]× [4; 6.3504]2.

Define g1 := x1 − 4, g2 := 6.3504− x1, ..., g11 := x6 − 4,
g12 := 6.3504− x6. Solve:

inf
y
L(fpop) = inf

y
y0...01

Qk : Mk−ddeg gj/2e(gj y) < 0, 1 ≤ j ≤ 12,

Mk−ddeg hk/2e(hk y) < 0, 1 ≤ k ≤ 7,

y0...0 = 1
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Basic Semi-Algebraic Relaxations

Example from Flyspeck:

fsa :=
−∂4∆x√
4x1∆x

, Ksa := [4; 6.3504]3 × [6.3504; 8]× [4; 6.3504]2.

Define g1 := x1 − 4, g2 := 6.3504− x1, ..., g11 := x6 − 4,
g12 := 6.3504− x6. Solve:

inf
y
y0...01

Qk : Mk−1(gj y) < 0, 1 ≤ j ≤ 12,

Mk−ddeg hk/2e(hk y) < 0, 1 ≤ k ≤ 7,

y0...0 = 1

b.s.a.l. Convergence:

Let k ≥ k0 := max{fpop, 1, ddeg h1/2e, ..., ddeg h7/2e}.
The sequence inf(Qk)k≥k0 is monotically non-decreasing and
converges to f∗sa.
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Transcendental Functions Underestimators

Let f ∈ T be a transcendental univariate elementary function
such as arctan, exp, ..., defined on a real interval I.

Basic convexity/semi-convexity properties and monotonicity of
f are used to find lower and upper semi-algebraic bounds.

Example with arctan:

∀a ∈ I = [m;M ], arctan(a) ≥ max
p∈C
{ par≤p(a)} where C

define an index collection of parabola tangent to the function
curve and minoring f .

par≤p :=
cp
2

(a− ap)2 + f
′
ap(a− ap) + f(ap), f

′
ap =

1

1 + a2p
,

f(ap) = arctan(ap).

cp depends on ap and the curvature variations of arctan on the
considered interval I. This is a consequence of the convexity
of the arctan(·)− cp

2
(·)2 function for a well-chosen cp.
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Transcendental Functions Underestimators

Example with arctan:

a

y

par≥1

par≥2

par≤2

par≤1

arctan

m M
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Transcendental Functions Underestimators

min(p1, p2) =
p1 + p2 − |p1 − p2|

2
z = |p1−p2| ⇐⇒ z2 = (p1−p2)2∧z ≥ 0

Lemma9922699028 from Flyspeck:

K := [4; 6.3504]3 × [6.3504; 8]× [4; 6.3504]2

f := −π
2
− arctan

−∂4∆x√
4x1∆x

+ 1.6294− 0.2213 (
√
x2 +

√
x3 +

√
x5 +

√
x6 − 8.0) + 0.913 (

√
x4 − 2.52) + 0.728 (

√
x1 − 2.0)

Using semi-algebraic optimization methods:

∀x ∈ K, m ≤ −∂4∆x√
4x1∆x

≤M

Using the arctan properties: ∀a ∈ I = [m;M ],
arctan(a) ≤ msa(a) = min { par≥1(a); par≥2(a)}
f∗ ≥ f∗sa = min

x∈K
{fsa(x) =

−π
2
−msa(x) + 1.6294− 0.2213 (

√
x2 +

√
x3 +

√
x5 +

√
x6 −

8.0) + 0.913 (
√
x4 − 2.52) + 0.728 (

√
x1 − 2.0)}2nd year PhD Victor MAGRON Certification of transcendental inequalities using SDP



Multi-Relaxations Algorithm

The first step is to build the abstract syntax tree from an
inequality, where leaves are semi-algebraic functions and
nodes are univariate transcendental functions (arctan, exp, ...)
or basic operations (+, ×, −, /).

With l := 1.6294− 0.2213 (
√
x2 +

√
x3 +

√
x5 +

√
x6 − 8.0) +

0.913 (
√
x4 − 2.52) + 0.728 (

√
x1 − 2.0), the tree for the

flyspeck example is:

−

−π
2

+ l(x) arctan

−∂4∆x√
4x1∆x
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Multi-Relaxations Algorithm

algoT

Require: tree t, box K, sequence s = (xk)1≤k≤r ∈ Kr

Ensure: lower bound m, upper bound M , lower tree t≤, upper tree t≥
if t is s.a. then

return min t, max t, t, t
else

if t is a transcendental node with a child c then
mc, Mc, c≤, c≥ := algoT (t, K, s)
t≤, t≥ := relax (t, mc, Mc, c≤, c≥)
return min t≤, max t≥, t≤, t≥

else
if t is a dyadic operation node bop parent of c1 and c2 then
mci , Mci , c≤i, c≥i := algoT (ci, K, s)
t≤, t≥ := bop (c≤1, c≥1, c≤2, c≥2)
return min t≤, max t≥, t≤, t≥

end if
end if

end if
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Multi-Relaxations Algorithm

algonewton

Require: tree t , box K, tol
Ensure: lower bound m, feasible solution xopt
s := [ argmin (randeval t) ] {s ∈ K}
n := 0
m := −1
while m < 0 or n ≤ tol do
m, M , t≤, t≥ := algoT (t, K, s)
xopt := argmin t≤ {t≤(xopt) = m}
s := xopt :: s
n := n+ 1

end while
return m, xopt
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Multi-Relaxations Algorithm

Example from Flyspeck:

fsa :=
−∂4∆x√
4x1∆x

, Ksa := [4; 6.3504]3 × [6.3504; 8]× [4; 6.3504]2.

Here, t = fsa, this is the first case of algoT , min fsa is
computed by rewritting the problem into a POP.

Then solve the corresponding SDP problem Qk for a given k.
If the computed point is not a feasible solution, increase the
relaxation order k.
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Multi-Relaxations Algorithm

Semi-algebraic relaxations:

−

−π
2

+ l(x) arctan

−∂4∆x√
4x1∆x

a

y

par≥1

par≥2

arctan

m Ma1 a2

1 Compute a1 = fsa(argmin(randeval t)), the equation of
par≥1 and finally min t≤1. This is the first algonewton iteration.

2 Suppose that min t≤1 ≤ 0. Then, the POP solver returns a
point x2 ∈ K with min t≤1 = t≤1(x2). Then compute
a1 = fsa(x2), par≥2 , min t≤2

3 Repeat the procedure i times until min t≤i ≥ 0
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Local Solutions to Global Issues

Two relaxation order types:
1 Semi-algebraic relaxation order which is the number of

considered parabola, and the size of the sequence s in
algonewton

2 SDP relaxation order k ≥ max{ddeg fpope/2, ddeg gj/2e}.
The size of the moment SDP matrices grows with the
SDP-relaxation order and the number of lifting variables:
O((n+ p)2k) variables and linear matrix inequalities (LMIs) of
size O(nk)

The number of parabola increases
⇓

The number p of lifting variables increases:
2 by argument of the max)

⇓
The size of the SDP problems growing exponentially,
algonewton fails to converge in a reasonable time
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Local Solutions to Global Issues

Instead of increasing both relaxation orders, fix a tolerance for both
and if algonewton fails to converge, cut the initial box K in several
boxes (Ki)1≤i≤c and solve the inequality on each Ki. But...

1 Where K should be cut?
2 How to partition K?
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Local Solutions to Global Issues
Multivariate Taylor-Models Underestimators

Multivariate Taylor-Models Underestimators:

Let xcut ∈ K a point obtained by algonewton (f) after reaching
the tolerance of both relaxation orders.

Let fTM2 the quadratic form related to the second order
Multivariate Taylor polynomial defined on a neighborhood
Bxcut, r of the point xcut.

Let λ := min
x∈Bxcut, r

{λmin(Hf (x)−Hf (xcut))}

fTM2 := f(x)− f(xcut)−5f (xcut) (x− xcut)−
1

2
(x−

xcut)
THf (xcut) (x− xcut)−

1

2
λ(x− xcut)2.

Theorem:

∀x ∈ Bxcut, r, f(x) ≥ fTM2(x)
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Local Solutions to Global Issues
Branch and Bound Algorithm

algodicho

Require: tree t , K, xcut, r1, r2, rtol
Ensure: lower bound m
r :=

r1 + r2
2

Compute the infinite squared ball Bxcut, r whose
edges are parallel to the K ones and fTM2

m := min
x∈Bxcut, r

fTM2

if m ≥ 0 and |r1 − r| ≤ rtol then
return m

else
if m < 0 then

return algodicho (t, K, xcut, r1, r, rtol)
else

return algodicho (t, K, xcut, r, r2, rtol)
end if

end if

xcut•

Bxcut, r
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Local Solutions to Global Issues
Branch and Bound Algorithm

algobb

Require: tree t , K, tol, rtol
Ensure: lower bound m
m, xcut := algonewton(t, K, tol)
if m ≤ 0 then
r1 := 0; r2 := min{length(edges (K))}
r := algodicho (t, K, xcut, r1, r2, rtol)
Compute the infinite squared ball Bxcut, r
Get a partition of K�Bxcut, r := (Ki)1≤i≤c
K0 := Bxcut, r
m := min

0≤i≤c
{ algobb (t , Ki, tol, rtol) }

return m
else

return m
end if

xcut•

Bxcut, r

⇓

xcut•

K0
K1

K2

K3

K4
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Local Solutions to Global Issues
Decrease the SDP Problems Size

Exploiting symmetries in SDP-relaxations for POP [Riener,
Theobald, Andren, Lasserre] to replace one SDP problem Qk
of size O(nk) by several smaller SDPS of size O(ηki ).

SOS and SDP Relaxations for Polynomial Optimization
Problems with Structured Sparsity [Waki, Kim, Kojima,
Muramatsu] to replace one SDP problem Qk of size O(nk) by
a SDP problem of size O(κk) where κ is the average size of
the polynomial variables correlation sparsity pattern maximal
cliques.
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End

Thank you for your attention!
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