# Certification of inequalities involving transcendental functions using Semi-Definite Programming 

Supervisor: Benjamin Werner (TypiCal)<br>Co-Supervisor: Stéphane Gaubert (Maxplus)

$2^{\text {nd }}$ year PhD Victor MAGRON<br>LIX, École Polytechnique

Wednesday July $11{ }^{\text {st }} 2012$
Inria

## Contents

(1) Flyspeck-Like Problems
(2) General Framework

- Sums of Squares (SOS) and Semi-Definite Programming (SDP) Relaxations
- Basic Semi-Algebraic Relaxations
- Transcendental Functions Underestimators
- Multi-Relaxations Algorithm
(3) Local Solutions to Global Issues
- Multivariate Taylor-Models Underestimators
- Branch and Bound Algorithm
- Decrease the SDP Problems Size


## Flyspeck-Like Problems

Inequalities issued from Flyspeck non-linear part involve:
(1) Semi-Algebraic functions algebra $\mathcal{A}$ : composition of polynomials with $|\cdot|,(\cdot)^{\frac{1}{p}}\left(p \in \mathbb{N}_{0}\right),+,-, \times, /$, sup, inf
(2) Transcendental functions $\mathcal{T}$ : composition of semi-algebraic functions with arctan, arccos, arcsin, exp, log, |•|,
$(\cdot)^{\frac{1}{p}}\left(p \in \mathbb{N}_{0}\right),+,-, \times, /$, sup, inf

## Lemma9922699028 from Flyspeck

$$
\begin{aligned}
& K:=[4 ; 6.3504]^{3} \times[6.3504 ; 8] \times[4 ; 6.3504]^{2} \\
& \Delta x:=x_{1} x_{4}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right)+x_{2} x_{5}\left(x_{1}-x_{2}+x_{3}+\right. \\
& \left.x_{4}-x_{5}+x_{6}\right)+x_{3} x_{6}\left(x_{1}+x_{2}-x_{3}+x_{4}+x_{5}-x_{6}\right)-x_{2} x_{3} x_{4}- \\
& x_{1} x_{3} x_{5}-x_{1} x_{2} x_{6}-x_{4} x_{5} x_{6} \\
& \forall x \in K,-\frac{\pi}{2}-\arctan \frac{-\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}+1.6294-0.2213\left(\sqrt{x_{2}}+\sqrt{x_{3}}+\right. \\
& \left.\sqrt{x_{5}}+\sqrt{x_{6}}-8.0\right)+0.913\left(\sqrt{x_{4}}-2.52\right)+0.728\left(\sqrt{x_{1}}-2.0\right) \geq 0 .
\end{aligned}
$$

## Flyspeck-Like Problems

Hales and Solovyev Method:

- Real numbers are represented by interval arithmetic
- Arithmetic is floating point with IEEE-754 directed rounding
- Analytic functions $f$ are approximated with Taylor expansions with rigorously computed error terms:

$$
\left|f(x)-f\left(x^{0}\right)-\nabla f\left(x^{0}\right)\left(x-x^{0}\right)\right|<\sum_{i, j} m_{i j} \epsilon_{i} \epsilon_{j},
$$

$$
\epsilon_{i}=\left|x_{i}-x_{i}^{0}\right|
$$

- The domain K is partitioned into smaller rectangles as needed until the Taylor approximations are accurate enough to yield the desired inequalities.
- The Taylor expansions are generated by symbolic differentiation using the chain rule, product rule, and so forth. A few primitive functions ( $\sqrt{ } \cdot, \frac{1}{-}$, arctan and some common polynomials) are hand-coded.


## General Framework

We consider the same problem: given $K$ a compact set, and $f$ a transcendental function, minor $f^{*}=\inf _{x \in K} f(x)$ and prove $f^{*} \geq 0$
(1) $f$ is underestimated by a semi-algebraic function $f_{s a}$ on a compact set $K_{\text {sa }}$
(2) We reduce the problem to compute $\inf _{x \in K_{s a}} f_{s a}(x)$ to a polynomial optimization problem in a lifted space $K_{p o p}$
(3) We classicaly solve the POP problem $\inf _{x \in K_{p o p}} f_{p o p}(x)$ using a hierarchy of SDP relaxations by Lasserre

If the relaxations are accurate enough, $f^{*} \geq f_{s a}^{*} \geq f_{p o p}^{*} \geq 0$.

## SOS and SDP Relaxations

## Polynomial Optimization Problem (POP):

Let $f, g_{1}, \ldots, g_{m} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$
$K_{\text {pop }}:=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$ is the feasible set
General POP: compute $f_{\text {pop }}^{*}=\inf _{x \in K_{p o p}} f(x)$

## SOS Assumption:

$K$ is compact, $\exists u \in \mathbb{R}[X]$ s.t. the level set $\left\{x \in \mathbb{R}^{n}: u(x) \geq 0\right\}$ is compact and $u=u_{0}+\sum_{j=1}^{m} u_{j} g_{j}$ for some sum of squares (SOS) $u_{0}, u_{1}, \ldots, u_{m} \in \mathbb{R}[X]$

The SOS assumption is always verified if there exists $N \in \mathbb{N}$ such that $N-\sum_{i=1}^{n} X_{i}^{2}=u_{0}+\sum_{j=1}^{m} u_{j} g_{j}$. In our case, it as always
verified since all the polynomial variables $X_{i}$ are bounded.

## SOS and SDP Relaxations

To convexify the problem, use the equivalent formulation:
$f_{\text {pop }}^{*}=\inf _{x \in K_{\text {pop }}} f_{\text {pop }}(x)=\inf _{\mu \in \mathcal{P}\left(K_{\text {pop }}\right)} \int f_{\text {pop }} d \mu$, where $\mathcal{P}\left(K_{\text {pop }}\right)$ is the set of all probability measures $\mu$ supported on the set $K_{\text {pop }}$.

## Theorem [Putinar]:

$\exists L: \mathbb{R}[X] \rightarrow \mathbb{R}$ s.t. $\quad\left(\exists \mu \in \mathcal{P}\left(K_{p o p}\right), \forall p \in \mathbb{R}[X], L(p)=\right.$ $\left.\int p d \mu\right) \Longleftrightarrow\left(L(1)=1\right.$ and $L\left(s_{0}+\sum_{j=1}^{m} s_{j} g_{j}\right) \geq 0$ for any SOS $\left.s_{0}, \ldots, s_{m} \in \mathbb{R}[X]\right)$.

## Equivalent formulation:

 $f_{\text {pop }}^{*}=\min \left\{L(f): L: \mathbb{R}[X] \rightarrow \mathbb{R}\right.$ linear, $L(1)=1$ and each $\mathcal{L}_{g_{j}}$ is psd $\}$, with $g_{0}=1, \mathcal{L}_{g_{0}}, \ldots, \mathcal{L}_{g_{m}}$ defined by:$$
\mathcal{L}_{g_{j}}: \mathbb{R}[X] \times \mathbb{R}[X] \rightarrow \quad \mathbb{R}
$$

$$
(p, q) \quad \mapsto \quad L\left(p \cdot q \cdot g_{j}\right)
$$

## SOS and SDP Relaxations

- Let $\mathcal{B}$ the monomial basis $\left(X^{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$ and set $y_{b}=L(b)$ for $b \in \mathcal{B}$ identifies $L$ with the infinite series $y=\left(y_{b}\right)_{b \in \mathcal{B}}$.
- The infinite moment matrix $M$ associated to $y$ indexed by $\mathcal{B}$ is: $M(y)_{u, v}:=L(u \cdot v), u, v \in \mathcal{B}$.
- The localizing matrix $M\left(g_{j} y\right)$ is:
$M\left(g_{j} y\right)_{u, v}:=L\left(u \cdot v \cdot g_{j}\right), u, v \in \mathcal{B}$.
- Let $k \geq k_{0}:=\max \left\{\left\lceil\operatorname{deg} f_{\text {pop }}\right\rceil / 2\right.$, $\left.\left\lceil\operatorname{deg} g_{0} / 2\right\rceil, \ldots,\left\lceil\operatorname{deg} g_{m} / 2\right\rceil\right\}$. By truncating the previous matrices by considering only rows and columns indexed by elements in $\mathcal{B}$ of degree at most $k$, consider the hierarchy $Q_{k}$ of semidefinite relaxations:

$$
\begin{aligned}
\inf _{y} L(f) & \\
Q_{k}: \quad M_{k-\left\lceil\operatorname{deg} g_{j} / 2\right\rceil}\left(g_{j} y\right) & \succcurlyeq 0, \quad 0 \leq j \leq m, \\
y_{1} & =1
\end{aligned}
$$

## SOS and SDP Relaxations

## Convergence Theorem [Lasserre]:

Let the SOS assumption holds. Then the sequence $\inf \left(Q_{k}\right)_{k \geq k_{0}}$ is monotically non-decreasing and converges to $f_{p o p}^{*}$

## SDP relaxations:

Let $B=|\mathcal{B}|$. Many solvers (Sedumi, SDPA) solve the following standard form semidefinite program and its dual:
$\{\mathcal{P}:$

$\mathcal{D}: \quad \max _{Y} \quad$ Trace $\left(F_{0} Y\right)$
subject to $\quad$ Trace $\left(F_{\alpha} Y\right)=c_{\alpha}(\alpha=1, \ldots, B)$

## Basic Semi-Algebraic Relaxations

- Let $\mathcal{A}$ be a set of semi-algebraic functions and $f_{s a} \in \mathcal{A}$.
- We consider the problem $f_{s a}^{*}=\inf _{x \in K_{s a}} f_{s a}(x)$ with $K_{s a}:=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$ a basic semi-algebraic set


## Basic Semi-Algebraic Lifting:

A function $f_{s a} \in \mathcal{A}$ is said to have a basic semi-algebraic lifting (a b.s.a.l.), or f is basic semi-algebraic (b.s.a.) if $\exists p, s \in \mathbb{N}$, polynomials $\left(h_{k}\right)_{1 \leq k \leq s} \in \mathbb{R}\left[X, Z_{1}, \ldots, Z_{p}\right]$ and a b.s.a. set
$K_{\text {pop }}:=\left\{(x, z) \in \mathbb{R}^{n+p}: x \in K_{\text {sa }}, h_{k}(x, z) \geq 0, k=1, \ldots, s\right\}$
such that the graph of $f_{s a}$ (denoted $\Psi_{f_{s a}}$ ) satisfies:
$\Psi_{f_{s a}}:=\left\{\left(x, f_{s a}(x)\right): x \in K_{s a}\right\}=\left\{\left(x, z_{p}\right):(x, z) \in K_{p o p}\right\}$

## Basic Semi-Algebraic Relaxations

## b.s.a.I. Iemma [Lasserre, Putinar] :

Let $\mathcal{A}$ be the semi-algebraic functions algebra obtained by composition of polynomials with $|\cdot|,(\cdot)^{\frac{1}{p}}\left(p \in \mathbb{N}_{0}\right),+,-, \times, /$, sup, inf. Then every well-defined $f_{s a} \in \mathcal{A}$ has a basic semi-algebraic lifting.

Example from Flyspeck:

$$
f_{s a}:=\frac{-\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}, K_{s a}:=[4 ; 6.3504]^{3} \times[6.3504 ; 8] \times[4 ; 6.3504]^{2}
$$

- Define $z_{1}:=\sqrt{4 x_{1} \Delta x}, m_{1}=\inf _{x \in K_{s a}} z_{1}(x), M_{1}=\sup _{x \in K_{s a}} z_{1}(x)$.
- Define $h_{1}:=z_{1}-m_{1}, h_{2}:=M_{1}-z_{1}, h_{3}:=z_{1}^{2}-\sqrt{4 x_{1} \Delta x}$, $h_{4}:=-z_{1}^{2}+\sqrt{4 x_{1} \Delta x}, h_{5}:=z_{1}, h_{6}:=z_{2} z_{1}+\partial_{4} \Delta x$, $h_{7}:=-z_{2} z_{1}-\partial_{4} \Delta x, s=7, p=2$.
- $K_{\text {pop }}:=\left\{(x, z) \in \mathbb{R}^{6+2}: x \in K_{\text {sa }}, h_{k}(x, z) \geq 0, k=\right.$ $1, \ldots, 7\}$.
- $\Psi_{f_{s a}}:=\left\{\left(x, f_{s a}(x)\right): x \in K_{s a}\right\}=\left\{\left(x, z_{2}\right):(x, z) \in K_{\text {pop }}\right\}$.


## Basic Semi-Algebraic Relaxations

## Example from Flyspeck:

$f_{s a}:=\frac{-\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}, K_{s a}:=[4 ; 6.3504]^{3} \times[6.3504 ; 8] \times[4 ; 6.3504]^{2}$.

- Define $g_{1}:=x_{1}-4, g_{2}:=6.3504-x_{1}, \ldots, g_{11}:=x_{6}-4$, $g_{12}:=6.3504-x_{6}$. Solve:

$$
\inf _{y} L\left(f_{p o p}\right)=\inf _{y} y_{0 \ldots 01}
$$

$Q_{k}: \quad M_{k-\left\lceil\operatorname{deg} g_{j} / 2\right\rceil}\left(g_{j} y\right) \succcurlyeq \quad 0, \quad 1 \leq j \leq 12$,

$$
\begin{aligned}
M_{k-\left\lceil\operatorname{deg} h_{k} / 2\right\rceil}\left(h_{k} y\right) & \succcurlyeq \quad 0, \quad 1 \leq k \leq 7, \\
y_{0 \ldots 0} & =1
\end{aligned}
$$

## Basic Semi-Algebraic Relaxations

Example from Flyspeck:

$$
f_{s a}:=\frac{-\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}, K_{s a}:=[4 ; 6.3504]^{3} \times[6.3504 ; 8] \times[4 ; 6.3504]^{2}
$$

- Define $g_{1}:=x_{1}-4, g_{2}:=6.3504-x_{1}, \ldots, g_{11}:=x_{6}-4$, $g_{12}:=6.3504-x_{6}$. Solve:

$$
\inf _{y} y_{0 \ldots 01}
$$

$Q_{k}:$

$$
M_{k-1}\left(g_{j} y\right) \succcurlyeq 0, \quad 1 \leq j \leq 12
$$

$$
\begin{aligned}
M_{k-\left\lceil\operatorname{deg} h_{k} / 2\right\rceil}\left(h_{k} y\right) & \succcurlyeq 0, \quad 1 \leq k \leq 7, \\
y_{0} \ldots 0 & =1
\end{aligned}
$$

b.s.a.l. Convergence:

- Let $k \geq k_{0}:=\max \left\{f_{\text {pop }}, 1,\left\lceil\operatorname{deg} h_{1} / 2\right\rceil, \ldots,\left\lceil\operatorname{deg} h_{7} / 2\right\rceil\right\}$.
- The sequence $\inf \left(Q_{k}\right)_{k \geq k_{0}}$ is monotically non-decreasing and converges to $f_{s a}^{*}$.


## Transcendental Functions Underestimators

- Let $f \in \mathcal{T}$ be a transcendental univariate elementary function such as arctan, exp, ..., defined on a real interval $I$.
- Basic convexity/semi-convexity properties and monotonicity of $f$ are used to find lower and upper semi-algebraic bounds.


## Example with arctan:

- $\forall a \in I=[m ; M], \arctan (a) \geq \max _{p \in \mathcal{C}}\left\{\operatorname{par}_{\leq_{p}}(a)\right\}$ where $\mathcal{C}$ define an index collection of parabola tangent to the function curve and minoring $f$.
- $\operatorname{par}_{\leq_{p}}:=\frac{c_{p}}{2}\left(a-a_{p}\right)^{2}+f_{a_{p}}^{\prime}\left(a-a_{p}\right)+f\left(a_{p}\right), f_{a_{p}}^{\prime}=\frac{1}{1+a_{p}^{2}}$, $f\left(a_{p}\right)=\arctan \left(a_{p}\right)$.
- $c_{p}$ depends on $a_{p}$ and the curvature variations of arctan on the considered interval $I$. This is a consequence of the convexity of the $\arctan (\cdot)-\frac{c_{p}}{2}(\cdot)^{2}$ function for a well-chosen $c_{p}$.


## Transcendental Functions Underestimators

## Example with arctan:



## Transcendental Functions Underestimators



$$
\begin{aligned}
& \min \left(p_{1}, p_{2}\right)=\frac{p_{1}+p_{2}-\left|p_{1}-p_{2}\right|}{2} \\
& z=\left|p_{1}-p_{2}\right| \Longleftrightarrow z^{2}=\left(p_{1}-p_{2}\right)^{2} \wedge z \geq 0
\end{aligned}
$$

Lemma9922699028 from Flyspeck:

- $K:=[4 ; 6.3504]^{3} \times[6.3504 ; 8] \times[4 ; 6.3504]^{2}$

$$
\begin{aligned}
& f:=-\frac{\pi}{2}-\arctan \frac{-\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}+1.6294-0.2213\left(\sqrt{x_{2}}+\sqrt{x_{3}}+\right. \\
& \left.\sqrt{x_{5}}+\sqrt{x_{6}}-8.0\right)+0.913\left(\sqrt{x_{4}}-2.52\right)+0.728\left(\sqrt{x_{1}}-2.0\right)
\end{aligned}
$$

- Using semi-algebraic optimization methods:

$$
\forall x \in K, m \leq \frac{-\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}} \leq M
$$

- Using the arctan properties: $\forall a \in I=[m ; M]$,

$$
\arctan (a) \leq m_{s a}(a)=\min \left\{\operatorname{par}_{\geq_{1}}(a) ; \operatorname{par}_{\geq_{2}}(a)\right\}
$$

- $f^{*} \geq f_{s a}^{*}=\min _{x \in K}\left\{f_{s a}(x)=\right.$

$$
-\frac{\pi}{2}-m_{s a}(x)+1.6294-0.2213\left(\sqrt{x_{2}}+\sqrt{x_{3}}+\sqrt{x_{5}}+\sqrt{x_{6}}-\right.
$$

## Multi-Relaxations Algorithm

- The first step is to build the abstract syntax tree from an inequality, where leaves are semi-algebraic functions and nodes are univariate transcendental functions (arctan, exp, ...) or basic operations $(+, \times,-, /)$.
- With $l:=1.6294-0.2213\left(\sqrt{x_{2}}+\sqrt{x_{3}}+\sqrt{x_{5}}+\sqrt{x_{6}}-8.0\right)+$ $0.913\left(\sqrt{x_{4}}-2.52\right)+0.728\left(\sqrt{x_{1}}-2.0\right)$, the tree for the flyspeck example is:



## Multi-Relaxations Algorithm

algo $\mathcal{T}$
Require: tree $t$, box $K$, sequence $s=\left(x_{k}\right)_{1 \leq k \leq r} \in K^{r}$
Ensure: lower bound $m$, upper bound $M$, lower tree $t_{\leq}$, upper tree $t_{\geq}$
if $t$ is s.a. then
return $\min t, \max t, t, t$
else
if $t$ is a transcendental node with a child $c$ then
$m_{c}, M_{c}, c_{\leq}, c_{\geq}:=\operatorname{algo}_{\mathcal{T}}(t, K, s)$
$t_{\leq}, t_{\geq}:=\operatorname{relax}\left(t, m_{c}, M_{c}, c_{\leq}, c_{\geq}\right)$
return $\min t_{\leq}, \max t_{\geq}, t_{\leq}, t_{\geq}$
else
if $t$ is a dyadic operation node bop parent of $c_{1}$ and $c_{2}$ then
$m_{c_{i}}, M_{c_{i}}, c_{\leq i}, c_{\geq i}:=\operatorname{algo} \mathcal{T}\left(c_{i}, K, s\right)$
$t_{\leq}, t_{\geq}:=\operatorname{bop}\left(c_{\leq 1}, c_{\geq 1}, c_{\leq 2}, c_{\geq 2}\right)$
return $\min t_{\leq}, \max t_{\geq}, t_{\leq}, t_{\geq}$
end if
end if
end if

## Multi-Relaxations Algorithm

algonewton
Require: tree $t$, box $K$, tol
Ensure: lower bound $m$, feasible solution $x_{o p t}$

```
    \(s:=[\operatorname{argmin}(r a n d e v a l t)]\{s \in K\}\)
    \(n:=0\)
    \(m:=-1\)
```

    while \(m<0\) or \(n \leq t o l\) do
    ```
\(m, M, t_{\leq}, t_{\geq}:=\operatorname{algo} \mathcal{T}(t, K, s)\)
\(x_{o p t}:=\operatorname{argmin} t_{\leq}\left\{t_{\leq}\left(x_{o p t}\right)=m\right\}\)
\(s:=x_{\text {opt }}:: s\)
\(n:=n+1\)
```

    end while
    return \(m, x_{o p t}\)
    
## Multi-Relaxations Algorithm

Example from Flyspeck:

$$
f_{s a}:=\frac{-\partial_{4} \Delta x}{\sqrt{4 x_{1} \Delta x}}, K_{s a}:=[4 ; 6.3504]^{3} \times[6.3504 ; 8] \times[4 ; 6.3504]^{2}
$$

- Here, $t=f_{s a}$, this is the first case of algo $\mathcal{T}, \min f_{s a}$ is computed by rewritting the problem into a POP.
- Then solve the corresponding SDP problem $Q_{k}$ for a given $k$. If the computed point is not a feasible solution, increase the relaxation order $k$.


## Multi-Relaxations Algorithm

Semi-algebraic relaxations:


(1) Compute $a_{1}=f_{s a}(\operatorname{argmin}(\operatorname{randeval} t))$, the equation of $\operatorname{par}_{\geq_{1}}$ and finally $\min t_{\leq 1}$. This is the first algo ${ }_{\text {newton }}$ iteration.
(2) Suppose that $\min t_{\leq 1} \leq 0$. Then, the POP solver returns a point $x_{2} \in K$ with $\min t_{\leq 1}=t_{\leq 1}\left(x_{2}\right)$. Then compute $a_{1}=f_{s a}\left(x_{2}\right), \operatorname{par}_{\geq_{2}}, \min t_{\leq 2}$
(3) Repeat the procedure $i$ times until $\min t_{\leq i} \geq 0$

## Local Solutions to Global Issues

Two relaxation order types:
(1) Semi-algebraic relaxation order which is the number of considered parabola, and the size of the sequence $s$ in algo ${ }_{\text {newton }}$
(2) SDP relaxation order $k \geq \max \left\{\left\lceil\operatorname{deg} f_{\text {pop }}\right\rceil / 2,\left\lceil\operatorname{deg} g_{j} / 2\right\rceil\right\}$. The size of the moment SDP matrices grows with the SDP-relaxation order and the number of lifting variables: $\mathcal{O}\left((n+p)^{2 k}\right)$ variables and linear matrix inequalities (LMIs) of size $\mathcal{O}\left(n^{k}\right)$

The number of parabola increases
$\Downarrow$
The number $p$ of lifting variables increases:
2 by argument of the max)
$\Downarrow$
The size of the SDP problems growing exponentially, algo $o_{\text {newton }}$ fails to converge in a reasonable time

## Local Solutions to Global Issues

Instead of increasing both relaxation orders, fix a tolerance for both and if algo ${ }_{\text {newton }}$ fails to converge, cut the initial box $K$ in several boxes $\left(K_{i}\right)_{1 \leq i \leq c}$ and solve the inequality on each $K_{i}$. But...
(1) Where $K$ should be cut?
(2) How to partition $K$ ?

## Local Solutions to Global Issues

## Multivariate Taylor-Models Underestimators

## Multivariate Taylor-Models Underestimators:

- Let $x_{c u t} \in K$ a point obtained by algo ${ }_{\text {newton }}(f)$ after reaching the tolerance of both relaxation orders.
- Let $f_{T M 2}$ the quadratic form related to the second order Multivariate Taylor polynomial defined on a neighborhood $\mathcal{B}_{x_{c u t}, r}$ of the point $x_{c u t}$.
- Let $\lambda:=\min _{x \in \mathcal{B}_{x_{c u t}, r}}\left\{\lambda_{\min }\left(\mathcal{H}_{f}(x)-\mathcal{H}_{f}\left(x_{c u t}\right)\right)\right\}$
- $f_{T M 2}:=f(x)-f\left(x_{c u t}\right)-\nabla_{f}\left(x_{c u t}\right)\left(x-x_{c u t}\right)-\frac{1}{2}(x-$
$\left.x_{c u t}\right)^{T} \mathcal{H}_{f}\left(x_{c u t}\right)\left(x-x_{c u t}\right)-\frac{1}{2} \lambda\left(x-x_{c u t}\right)^{2}$.
Theorem:
$\forall x \in \mathcal{B}_{x_{\text {cut }, r}}, f(x) \geq f_{T M 2}(x)$


## Local Solutions to Global Issues

## Branch and Bound Algorithm

```
algo dicho
Require: tree \(t, K, x_{c u t}, r_{1}, r_{2}, r_{t o l}\)
Ensure: lower bound \(m\)
    \(r:=\frac{r_{1}+r_{2}}{2}\)
    Compute the infinite squared ball \(\mathcal{B}_{x_{\text {cut }}, r}\) whose
    edges are parallel to the \(K\) ones and \(f_{T M 2}\)
    \(m:=\min _{x \in \mathcal{B}_{x_{c u t}, r}} f_{T M 2}\)
    if \(m \geq 0\) and \(\left|r_{1}-r\right| \leq r_{t o l}\) then
    return \(m\)
else
    if \(m<0\) then
        return algo dicho \(\left(t, K, x_{c u t}, r_{1}, r, r_{t o l}\right)\)
    else
        return algo dicho \(\left(t, K, x_{c u t}, r, r_{2}, r_{t o l}\right)\)
        end if
    end if
```

$$
\mathcal{B}_{x_{c u t}, r}
$$

$$
x_{c u t}
$$

## Local Solutions to Global Issues

## Branch and Bound Algorithm

algobb
Require: tree $t, K$, tol, $r_{t o l}$

$$
\begin{gathered}
\mathcal{B}_{x_{c u t}, r} \\
x_{c u t}
\end{gathered}
$$

$m, x_{c u t}:=$ algonewton $(\mathrm{t}, \mathrm{K}, \mathrm{tol})$
if $m \leq 0$ then
$r_{1}:=0 ; r_{2}:=\min \{$ length(edges $\left.(K))\right\}$
$r:=$ algo $_{\text {dicho }}\left(t, K, x_{c u t}, r_{1}, r_{2}, r_{t o l}\right)$
Compute the infinite squared ball $\mathcal{B}_{x_{c u t}, r}$ Get a partition of $K \backslash \mathcal{B}_{x_{c u t}, r}:=\left(K_{i}\right)_{1 \leq i \leq c}$ $K_{0}:=\mathcal{B}_{x_{\text {cut }}, r}$
$m:=\min _{0 \leq i \leq c}\left\{\right.$ algo $_{\text {bb }}\left(t, K_{i}\right.$, tol,$\left.\left.r_{t o l}\right)\right\}$
return $m$
else
return $m$
end if


- Exploiting symmetries in SDP-relaxations for POP [Riener, Theobald, Andren, Lasserre] to replace one SDP problem $Q_{k}$ of size $\mathcal{O}\left(n^{k}\right)$ by several smaller SDPS of size $\mathcal{O}\left(\eta_{i}^{k}\right)$.
- SOS and SDP Relaxations for Polynomial Optimization Problems with Structured Sparsity [Waki, Kim, Kojima, Muramatsu] to replace one SDP problem $Q_{k}$ of size $\mathcal{O}\left(n^{k}\right)$ by a SDP problem of size $\mathcal{O}\left(\kappa^{k}\right)$ where $\kappa$ is the average size of the polynomial variables correlation sparsity pattern maximal cliques.

Thank you for your attention!

