Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		00	00

Certification of Bounds of Non-linear Functions : the Templates Method

Joint Work with B. Werner, S. Gaubert and X. Allamigeon

Third year PhD Victor MAGRON

LIX/CMAP INRIA, École Polytechnique

CICM 2013 Monday July 8 th

LX

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000			
		0000000000	00

The Kepler Conjecture

Kepler Conjecture (1611):

The maximal density of sphere packings in 3D-space is $rac{\pi}{\sqrt{18}}$

- It corresponds to the way people would intuitively stack oranges, as a tetrahedron shape
- The proof of T. Hales (1998) consists of thousands of non-linear inequalities
- Many recent efforts have been done to give a formal proof of these inequalities: Flyspeck Project
- Motivation: get positivity certificates and check them with Proof assistants like Cog

イロト イタト イヨト イヨト

0000 00000	00000		
		000000 00	
	00	00	

Contents

1 Flyspeck-Like Global Optimization

- 2 Classical Approach: Taylor + SOS
- 3 Max-Plus Based Templates
- 4 Certified Global Optimization with Coq

・ロト ・ 日 ・ ・ 目 ・ ・

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000			

The Kepler Conjecture

Inequalities issued from Flyspeck non-linear part involve:

Multivariate Polynomials:

 $\begin{array}{l} x_1x_4(-x_1+x_2+x_3-x_4+x_5+x_6)+x_2x_5(x_1-x_2+x_3+x_4-x_5+x_6)+\\ x_3x_6(x_1+x_2-x_3+x_4+x_5-x_6)-x_2(x_3x_4+x_1x_6)-x_5(x_1x_3+x_4x_6) \end{array}$

- Semi-Algebraic functions algebra A: composition of polynomials with | · |, √, +, -, ×, /, sup, inf, · · ·
- 3 Transcendental functions *T*: composition of semi-algebraic functions with arctan, exp, sin, +, −, ×, ···

Lemma from Flyspeck (inequality ID 6096597438)

 $\forall x \in [3, 64], 2\pi - 2x \arcsin(\cos(0.797)\sin(\pi/x)) + 0.0331x - 2.097 \ge 0$

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		00	00

Global Optimization Problems: Examples from the Literature

• H3:
$$\min_{\mathbf{x}\in[0,1]^3} -\sum_{i=1}^4 c_i \exp\left[-\sum_{j=1}^3 a_{ij}(x_j - p_{ij})^2\right]$$

• MC: $\min_{\substack{x_1\in[-3,3]\\x_2\in[-1.5,4]}} \sin(x_1 + x_2) + (x_1 - x_2)^2 - 0.5x_2 + 2.5x_1 + 1$
• SBT: $\min_{\mathbf{x}\in[-10,10]^n} \prod_{i=1}^n \left(\sum_{j=1}^5 j \cos((j+1)x_i + j)\right)$
• SWF: $\min_{\mathbf{x}\in[1,500]^n} -\sum_{i=1}^n (x_i + \epsilon x_{i+1}) \sin(\sqrt{x_i}) \quad (\epsilon \in \{0,1\})$

イロト イロト イヨト イヨト

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		00	00

Global Optimization Problems: a Framework

Given *K* a compact set, and *f* a transcendental function, minor $f^* = \inf_{x \to 0} f(x)$ and prove $f^* > 0$

- $f^* = \inf_{\mathbf{x} \in K} f(\mathbf{x})$ and prove $f^* \ge 0$
 - f is underestimated by a semialgebraic function f_{sa}
 - 2 We reduce the problem $f_{sa}^* := \inf_{\mathbf{x} \in K} f_{sa}(\mathbf{x})$ to a polynomial optimization problem in a lifted space K_{pop} (with lifting variables \mathbf{z})
 - We solve the POP problem $f^*_{pop} := \inf_{(\mathbf{x}, \mathbf{z}) \in K_{pop}} f_{pop}(\mathbf{x}, \mathbf{z})$ using a hierarchy of SDP relaxations by Lasserre

If the relaxations are accurate enough, $f^* \ge f^*_{sa} \ge f^*_{pop} \ge 0$.

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		00	00

Contents

Flyspeck-Like Global Optimization

- 2 Classical Approach: Taylor + SOS
 - 3 Max-Plus Based Templates
 - 4 Certified Global Optimization with Coq

イロト イロト イヨト イヨ

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
	0000		
		0000000000	00

• Polynomial Optimization Problem (POP): $p^* := \min_{\mathbf{x} \in K} p(\mathbf{x})$ with K the compact set of constraints:

$$K = \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \cdots, g_m(\mathbf{x}) \ge 0\}$$

 Let Σ_d[x] be the cone of Sum-of-Squares (SOS) of degree at most 2d:

$$\Sigma_d[\mathbf{x}] = \left\{ \sum_i q_i(\mathbf{x})^2, \text{ with } q_i \in \mathbb{R}_d[\mathbf{x}]
ight\}$$

- Let $g_0 := 1$ and $M_d(\mathbf{g})$ be the quadratic module: $M_d(\mathbf{g}) = \left\{ \sum_{j=0}^{m} \sigma_j(\mathbf{x}) g_j(\mathbf{x}), \text{ with } \sigma_j \in \Sigma[\mathbf{x}], (\sigma_j g_j) \in \mathbb{R}_{2d}[\mathbf{x}] \right\}$
- Certificates for positive polynomials: Sum-of-Squares

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
	00000		
		0000000000	00

$$M(\mathbf{g}) := \bigcup_{d \in \mathbb{N}} M_d(\mathbf{g})$$

Proposition (Putinar)

Suppose $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$. $p(\mathbf{x}) - p^* > 0$ on $K \Longrightarrow (p(\mathbf{x}) - p^*) \in M(\mathbf{g})$

- $M_0(\mathbf{g}) \subset M_1(\mathbf{g}) \subset M_2(\mathbf{g}) \subset \cdots \subset M(\mathbf{g})$
- Hence, we consider the hierarchy of SOS relaxation programs: $\mu_k := \sup_{\mu, \sigma_0, \cdots, \sigma_m} \left\{ \mu : (p(\mathbf{x}) \mu) \in M_k(\mathbf{g}) \right\}$

《曰》《卽》《臣》《臣》

• $\mu_k \uparrow p^*$ (Lasserre Hierarchy Convergence)

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
	00000		
		0000000000	00

Example from Flyspeck:

Also works for Semialgebraic functions via *lifting* variables:

$$\Delta(\mathbf{x}) = x_1 x_4 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) + x_2 x_5 (x_1 - x_2 + x_3 + x_4 - x_5 + x_6) + x_3 x_6 (x_1 + x_2 - x_3 + x_4 + x_5 - x_6) - x_2 (x_3 x_4 + x_1 x_6) - x_5 (x_1 x_3 + x_4 x_6)$$

$$\partial_4 \Delta \mathbf{x} = x_1(-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) + x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6$$

イロト イロト イヨト イヨ

$$f_{\mathsf{sa}}^* := \min_{\mathbf{x} \in [4, 6.3504]^6} \frac{\partial_4 \Delta \mathbf{x}}{\sqrt{4x_1 \Delta \mathbf{x}}}$$

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
	00000		
		0000000000	00

Example from Flyspeck:

$$z_1 := \sqrt{4x_1 \Delta \mathbf{x}}, m_1 = \inf_{\mathbf{x} \in [4, 6.3504]^6} z_1(\mathbf{x}), M_1 = \sup_{\mathbf{x} \in [4, 6.3504]^6} z_1(\mathbf{x}).$$

$$K := \{ (\mathbf{x}, \mathbf{z}) \in \mathbb{R}^8 : \mathbf{x} \in [4, 6.3504]^6, h_1(\mathbf{x}, \mathbf{z}) \ge 0, \cdots, h_7(\mathbf{x}, \mathbf{z}) \ge 0 \}$$

$$\begin{aligned} h_1 &:= z_1 - m_1 & h_4 &:= -z_1^2 + 4x_1 \Delta \mathbf{x} \\ h_2 &:= M_1 - z_1 & h_5 &:= z_2 z_1 - \partial_4 \Delta \mathbf{x} \\ h_3 &:= z_1^2 - 4x_1 \Delta \mathbf{x} & h_6 &:= -z_2 z_1 + \partial_4 \Delta \mathbf{x} \end{aligned}$$

イロト イロト イヨト イヨト

э

 $p^* := \inf_{(\mathbf{x}, \mathbf{z}) \in K} z_2 = f^*_{sa}$. We obtain $\mu_2 = -0.618$ and $\mu_3 = -0.445$.

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
		0000000000	00

Taylor Approximation of Transcendental Functions

SWF:
$$\min_{\mathbf{x}\in[1,500]^n} f(\mathbf{x}) = -\sum_{i=1}^n (x_i + x_{i+1}) \sin(\sqrt{x_i})$$

Classical idea: approximate $\sin(\sqrt{\cdot})$ by a degree-*d* Taylor
Polynomial f_d , solve
$$\min_{\mathbf{x}\in[1,500]^n} -\sum_{i=1}^n (x_i + x_{i+1}) f_d(x_i) \text{ (POP)}$$

Issues:

- Lack of accuracy if d is not large enough \implies expensive Branch and Bound
- POP may involve many lifting variables : depends on semialgebraic and univariate transcendental components of *f*
- No free lunch: solving POP with Sum-of-Squares of degree 2k involves $O(n^{2k})$ variables

SWF with n = 10, d = 4: takes already $38 \min$ to certify a lower bound of -430n

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		00	00

Contents

1 Flyspeck-Like Global Optimization

- 2 Classical Approach: Taylor + SOS
- 3 Max-Plus Based Templates
 - 4 Certified Global Optimization with Coq

・ロト ・ 日 ・ ・ 目 ・ ・

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	0000	00
		0000000000	00

<u>Goals:</u>

- Reduce the $O(n^{2k})$ polynomial dependency: decrease the number of lifting variables
- Reduce the $O(n^{2k})$ exponential dependency: use low degree approximations

• Reduce the Branch and Bound iterations: refine the approximations with an adaptive iterative algorithm

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
		00000	
		00	00

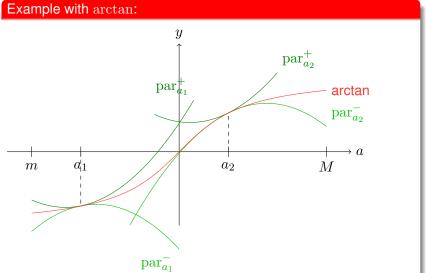
- Let $\hat{f} \in \mathcal{T}$ be a transcendental univariate function (arctan, exp) defined on an interval *I*.
- \hat{f} is semi-convex: there exists a constant $c_j > 0$ s.t. $a \mapsto \hat{f}(a) + c_j/2(a - a_j)^2$ is convex
- By convexity: $\forall a \in I, \hat{f}(a) \ge -c_j/2(a-a_j)^2 + \hat{f}'(a_j)(a-a_j) + \hat{f}(a_j) = \operatorname{par}_{a_j}^-(a)$ • $\forall j, \hat{f} \ge \operatorname{par}_{a_j}^- \Longrightarrow \hat{f} \ge \max_j \{\operatorname{par}_{a_j}^-\}$ Max-Plus underestimator

Example with arctan:

•
$$\hat{f}'(a_j) = \frac{1}{1+a_j^2}, \quad c_j = \sup_{a \in I} \{-\hat{f}''(a)\}$$
 (always work)

• c_j depends on a_j and the curvature variations of \arctan on the considered interval I

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		0000000000	00
Max Dive Cating			



Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
		00000	
		00	00

•
$$l := -\frac{\pi}{2} + 1.6294 - 0.2213 \left(\sqrt{x_2} + \sqrt{x_3} + \sqrt{x_5} + \sqrt{x_6} - 8.0\right) + 0.913 \left(\sqrt{x_4} - 2.52\right) + 0.728 \left(\sqrt{x_1} - 2.0\right)$$

Lemma₉₉₂₂₆₉₉₀₂₈ from Flyspeck:

$$\forall \mathbf{x} \in [4, 6.3504]^6, \arctan\left(\frac{\partial_4 \Delta \mathbf{x}}{\sqrt{4x_1 \Delta \mathbf{x}}}\right) + l(\mathbf{x}) \ge 0$$

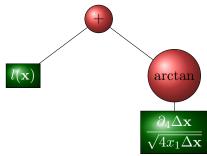
- Using semialgebraic optimization methods: $\forall x \in [4, 6.3504]^6, m \le \frac{\partial_4 \Delta \mathbf{x}}{\sqrt{4\pi \Delta \mathbf{x}}} \le M$
- Using the arctan properties with two points $a_1, a_2 \in [m, M]$: $\forall \mathbf{x} \in [4, 6.3504]^6, \arctan\left(\frac{\partial_4 \Delta \mathbf{x}}{\sqrt{4x_1 \Delta \mathbf{x}}}\right) \ge \max_{j \in \{1,2\}} \{\operatorname{par}_{a_j}^-\left(\frac{\partial_4 \Delta \mathbf{x}}{\sqrt{4x_1 \Delta \mathbf{x}}}\right)\}$

ヘロト 人間 ト ヘヨト ヘヨト

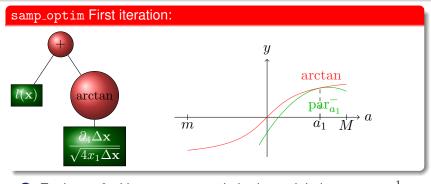
Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
		0000000000	
		00	00

Abstract syntax tree representations of multivariate transcendental function:

- leaves are semialgebraic functions of ${\cal A}$
- nodes are univariate transcendental functions of \mathcal{T} or binary operations

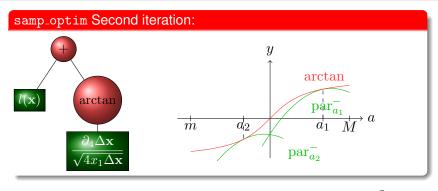


Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		0000000000	00
		00	00



Q Evaluate f with randeval and obtain a minimizer guess x¹_{opt}. Compute a₁ := ∂₄∆x / √4x₁∆x (x¹_{opt}) = f_{sa}(x¹_{opt}) = 0.84460
 Q Get the equation of par⁻_{a1} with build_{par}
 Q Compute m₁ ≤ min / x∈[4,6.3504] (l(x) + par⁻_{a1}(f_{sa}(x)))

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		000000000	00
		00	00

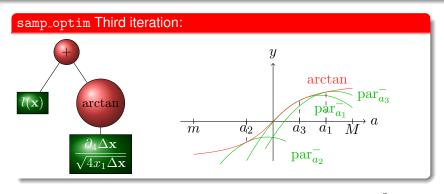


- For $k = 3, m_1 = -0.746 < 0$, obtain a new minimizer \mathbf{x}_{opt}^2 .
- 2 Compute $a_2 := f_{sa}(\mathbf{x}_{opt}^2) = -0.374$ and $par_{a_2}^-$
- Sompute $m_2 \le \min_{\mathbf{x} \in [4, 6.3504]} (l(\mathbf{x}) + \max_{i \in \{1, 2\}} \{ \operatorname{par}_{a_i}^-(f_{\mathsf{sa}}(\mathbf{x})) \})$

イロト 不得 トイヨト イヨト

э

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		000000000	
		00	00



- For $k = 3, m_2 = -0.112 < 0$, obtain a new minimizer \mathbf{x}_{out}^3 .
- 2 Compute $a_3 := f_{sa}(\mathbf{x}_{opt}^3) = 0.357$ and $\operatorname{par}_{a_3}^-$
- Sompute $m_3 \le \min_{\mathbf{x} \in [4, 6.3504]} (l(\mathbf{x}) + \max_{i \in \{1, 2, 3\}} \{ \operatorname{par}_{a_i}^-(f_{\mathsf{sa}}(\mathbf{x})) \})$

э

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		000000000	
		00	00

• For $k = 3, m_3 = -0.0333 < 0$, obtain a new minimizer \mathbf{x}_{opt}^4 and iterate again...

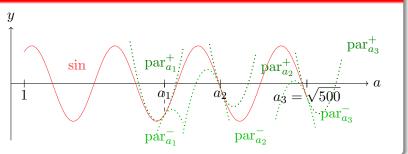
Theorem: Convergence of Semialgebraic underestimators

Let $f: K \to \mathbb{R}$ be a multivariate transcendental function. Let $(\mathbf{x}_{opt}^p)_{p \in \mathbb{N}}$ be a sequence of control points. Suppose that $(\mathbf{x}_{opt}^p)_{p \in \mathbb{N}} \to \mathbf{x}^*$. Then, \mathbf{x}^* is a global minimizer of f on K.

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		000000000	
		00	00

Max-Plus Based Templates Approach

Example with sin:



イロト イロト イヨト イヨト

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		0000000000	

SWF:
$$\min_{\mathbf{x} \in [1,500]^n} - \sum_{i=1}^n (x_i + x_{i+1}) \sin(\sqrt{x_i}) \quad (\epsilon = 1)$$

• Use one lifting variable y_i to represent $x_i \mapsto \sqrt{x_i}$ and one lifting variable z_i to represent $x_i \mapsto \sin(x_i)$

$$\begin{cases} \min_{\mathbf{x}\in[1,500]^{n},\mathbf{y}\in[1,\sqrt{500}]^{n},\mathbf{z}\in[-1,1]^{n}} & -\sum_{i=1}^{n}(x_{i}+x_{i+1})z_{i} \\ \text{s.t.} & z_{i}\leq \operatorname{par}_{a_{ji}}^{+}(y_{i}), j\in\{1,2,3\} \\ & y_{i}^{2}=x_{i} \end{cases}$$

• • • • • • • • • • • •

• POP with n + 2n variables ($n_{\text{lifting}} = 2n$ variables), with Sum-of-Squares of degree 2d: $O((3n)^{2d})$ complexity

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
		00000000000	
		00	00

Algorithm template_optim:

Input: tree t, box K, number of lifting variables n_{lifting}

- 1: if t is semi-algebraic then
- 2: Define lifting variables and solve the resulting POP
- 3: else if bop := root (t) is a binary operation with children c_1 and c_2 then
- 4: Apply template_optim recursively to c_1, c_2
- 5: Compose the results
- 6: else if r := root(t) is univariate transcendental function with child c then
- 7: Apply template_optim recursively to *c*
- 8: Build estimators for a sub-tree of t with up to n_{lifting} variables

イロト イポト イヨト イヨト

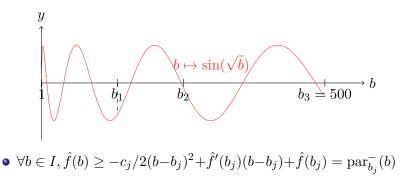
9: Solve the resulting POP

10: **end**

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		00000000000	
		00	00

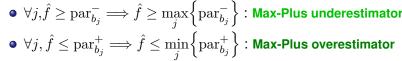
SWF:
$$\min_{\mathbf{x} \in [1,500]^n} - \sum_{i=1}^n (x_i + x_{i+1}) \sin(\sqrt{x_i})$$

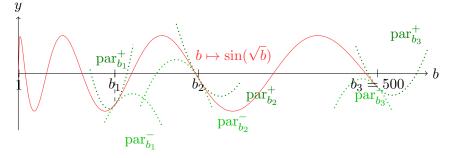
• Consider the univariate function $b \mapsto \sin(\sqrt{b})$ on I = [1, 500]



イロト イロト イヨト イヨト

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization			
Semialgebraic Max-Plus Algorithm						
• $\forall i \hat{f} > non^{-1}$	$f \rightarrow \hat{f} \rightarrow max \int par^{-}$		derectimeter			





Templates based on Max-plus Estimators for $b \mapsto \sin(\sqrt{b})$: $\max_{j \in \{1,2,3\}} \{ \operatorname{par}_{b_j}^-(x_i) \} \le \sin \sqrt{x_i} \le \min_{j \in \{1,2,3\}} \{ \operatorname{par}_{b_j}^+(x_i) \}$

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		0000000000	
		00	00

- Use a lifting variable z_i to represent $x_i \mapsto \sin(\sqrt{x_i})$
- For each i, pick points b_{ji}
- With 3 points b_{ji} , we solve the POP:

$$\begin{cases} \min_{\mathbf{x}\in[1,500]^n, \mathbf{z}\in[-1,1]^n} & -\sum_{i=1}^n (x_i + x_{i+1})z_i \\ \text{s.t.} & z_i \le \operatorname{par}_{b_{ji}}^+(x_i), j \in \{1,2,3\} \end{cases}$$

- POP with n + n variables ($n_{\text{lifting}} = n$ variables), with Sum-of-Squares of degree 2d: $O((2n)^{2d})$ complexity
- Taylor approximations: templates with *n* variables (*n*_{lifting} = 0 variables)

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		<u>●</u> ∩	00

Benchmarks

$$\min_{\mathbf{x} \in [1,500]^n} f(\mathbf{x}) = -\sum_{i=1}^n (x_i + \epsilon x_{i+1}) \sin(\sqrt{x_i})$$

n	lower bound	$n_{{ m lifting}}$	#boxes	time
$10(\epsilon = 0)$	-430n	2n	16	40s
$10(\epsilon = 0)$	-430n	0	827	177s
$1000(\epsilon = 1)$	-967n	2n	1	543s
$1000(\epsilon = 1)$	-968n	n	1	272s

E 900

イロト イヨト イヨト イヨト

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		0	00

Benchmarks

- n = 6 variables, SOS of degree 2k = 4
- n_T univariate transcendental functions, #boxes sub-problems

Inequality id	$n_{\mathcal{T}}$	$n_{{ m lifting}}$	#boxes	time
9922699028	1	9	47	241s
9922699028	1	3	39	190s
3318775219	1	9	338	26min
7726998381	3	15	70	43min
7394240696	3	15	351	1.8h
4652969746_{-1}	6	15	81	1.3h
OXLZLEZ 6346351218_2_0	6	24	200	5.7h
			A D > A D >	◆臣 ▶ ★ 臣 ▶ 二 百

Tryspeck-Like Global Optimization Ola	assical Approach: Taylor + 505	Max-Plus Based Templates	Certified Global Optimization
000 000	0000	00000	•0

Contents

1 Flyspeck-Like Global Optimization

- 2 Classical Approach: Taylor + SOS
- 3 Max-Plus Based Templates
- 4 Certified Global Optimization with Coq

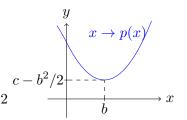
イロト イロト イヨト イヨ

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
			00
		00	00

Certification Framework: who does what?

Polynomial Optimization (POP): $\min_{x \in \mathbb{R}} p(x) = 1/2x^2 - bx + c$

- A program written in OCaml/C provides the SOS decomposition: $1/2(x-b)^2$
- **2** A program written in Coq checks: c $\forall x \in \mathbb{R}, p(x) = 1/2(x-b)^2 + c - b^2/2$



• Sceptical approach: obtain *certificates* of positivity with efficient oracles and check them formally

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
			•0
		00	00

Coq tactics: ring, interval

Formal proofs for lower bounds of POP:

• The oracle returns floating point certificate: $\mu, \sigma_0, \cdots, \sigma_m$

• Check equality of polynomials: $f(\mathbf{x}) - \mu = \sum_{i=0}^{m} \sigma_i(\mathbf{x}) g_i(\mathbf{x})$ with the Cog ming tastic

with the Coq ring tactic.

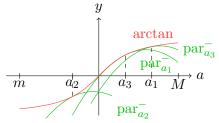
Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
			00
		00	00

Coq tactics: ring, interval

The equality test often fails. <u>Workaround:</u>

Bounds
$$f(\mathbf{x}) - \mu - \sum_{i=0}^{m} \sigma_i(\mathbf{x}) g_i(\mathbf{x}) = \sum_{\alpha} \epsilon_{\alpha} \mathbf{x}^{\alpha}$$
 since $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$

Formal proofs for Max-Plus estimators with the Coq interval tactic



Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
000	00000	00000	00
		00	○ ○

Exploiting System Properties

- Templates preserve system properties: Sparsity / Symmetries
- Implementation in OCaml of the sparse variant of SOS relaxations (Kojima) for SOS and semialgebraic underestimators
- Reducing the size of SOS input data has a positive domino effect:
 - on the global optimization oracle to decrease the O(n^{2d}) complexity

イロト イポト イヨト イヨト

2 to check SOS with ring and interval Coq tactics

Flyspeck-Like Global Optimization	Classical Approach: Taylor + SOS	Max-Plus Based Templates	Certified Global Optimization
		0000000000	00
		00	00
End			

Thank you for your attention! Questions?

イロト イロト イヨト イヨト

Э.