Exploiting sparsity \& symmetries in polynomial optimization

Victor Magron
LAAS CNRS

Lectures on polynomial optimization
University of Murcia
19 May 2022

What is a sparse/symmetric POP?

Looks like a regular polynomial optimization problem (POP):

$$
\begin{array}{cl}
\inf & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in \mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}
\end{array}
$$

What is a sparse/symmetric POP?

Looks like a regular polynomial optimization problem (POP):

$$
\begin{array}{ll}
\inf & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in \mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}
\end{array}
$$

" But the input data f, g_{j} are "SPARSE" or "SYMMETRIC"!

What is a sparse/symmetric POP?

Looks like a regular polynomial optimization problem (POP):

$$
\begin{array}{cl}
\inf & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in \mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}
\end{array}
$$

学 But the input data f, g_{j} are "SPARSE" or "SYMmETRIC"!
Correlative sparsity: few products between each variable and the others in f, g_{j}

What is a sparse/symmetric POP?

Looks like a regular polynomial optimization problem (POP):

$$
\begin{array}{cl}
\inf & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in \mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}
\end{array}
$$

学 But the input data f, g_{j} are "SPARSE" or "SYMMETRIC"!
Correlative sparsity: few products between each variable and the others in f, g_{j}
$\rightsquigarrow f(\mathbf{x})=x_{1} x_{2}+x_{2} x_{3}+\ldots x_{99} x_{100}$

What is a sparse/symmetric POP?

Looks like a regular polynomial optimization problem (POP):

$$
\begin{array}{ll}
\inf & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in \mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}
\end{array}
$$

棠 But the input data f, g_{j} are "SPARSE" or "SYMmETRIC"!
Correlative sparsity: few products between each variable and the others in f, g_{j}
$\rightsquigarrow f(\mathbf{x})=x_{1} x_{2}+x_{2} x_{3}+\ldots x_{99} x_{100}$
Term sparsity: few terms in f, g_{j}

What is a sparse/symmetric POP?

Looks like a regular polynomial optimization problem (POP):

$$
\begin{array}{cl}
\inf & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in \mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}
\end{array}
$$

棠 But the input data f, g_{j} are "SPARSE" or "SYMmETRIC"!
Correlative sparsity: few products between each variable and the others in f, g_{j}
$\rightsquigarrow f(\mathbf{x})=x_{1} x_{2}+x_{2} x_{3}+\ldots x_{99} x_{100}$
Term sparsity: few terms in f, g_{j}
$\rightsquigarrow f(\mathbf{x})=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$

What is a sparse/symmetric POP?

Looks like a regular polynomial optimization problem (POP):

$$
\begin{array}{cl}
\inf & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in \mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}
\end{array}
$$

棠 But the input data f, g_{j} are "SPARSE" or "SYMmETRIC"!
Correlative sparsity: few products between each variable and the others in f, g_{j}
$\rightsquigarrow f(\mathbf{x})=x_{1} x_{2}+x_{2} x_{3}+\ldots x_{99} x_{100}$
Term sparsity: few terms in f, g_{j}
$\rightsquigarrow f(\mathbf{x})=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$
Symmetry under a subgroup of $\mathrm{GL}(n)$:

What is a sparse/symmetric POP?

Looks like a regular polynomial optimization problem (POP):

$$
\begin{array}{cl}
\inf & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in \mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}
\end{array}
$$

棠 But the input data f, g_{j} are "SPARSE" or "SYMmETRIC"!
Correlative sparsity: few products between each variable and the others in f, g_{j}
$\rightsquigarrow f(\mathbf{x})=x_{1} x_{2}+x_{2} x_{3}+\ldots x_{99} x_{100}$
Term sparsity: few terms in f, g_{j}
$\rightsquigarrow f(\mathbf{x})=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$
Symmetry under a subgroup of $\mathrm{GL}(n)$:
$\rightsquigarrow f(\mathbf{x})=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}$

Where do we find sparse/symmetric POPs?

Where do we find sparse/symmetric POPs?

Everywhere (almost)!

Where do we find sparse/symmetric POPs?

Everywhere (almost)!

Deep learning

\rightsquigarrow robustness, computer vision

Where do we find sparse/symmetric POPs?

Everywhere (almost)!

Deep learning

\rightsquigarrow robustness, computer vision

Power systems

\rightsquigarrow AC optimal power-flow, stability

Where do we find sparse/symmetric POPs?

Everywhere (almost)!

Deep learning

\rightsquigarrow robustness, computer vision

Power systems

\rightsquigarrow AC optimal power-flow, stability

Quantum Systems

\rightsquigarrow condensed matter, entanglement

The Moment-SOS Hierarchy for POP

Correlative sparsity

Term sparsity

Symmetries

The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem $f_{\min }=\inf f(\mathbf{x})$

Theory

(Dual)
with μ proba $\Rightarrow \quad$ INFINITE LP \Leftarrow with $f-\lambda \geqslant 0$

The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem $f_{\min }=\inf f(\mathbf{x})$

Practice

(Primal Relaxation) moments $\int \mathbf{x}^{\alpha} d \mu$
finite number $\Rightarrow \quad$ SDP $\quad \Leftarrow$ fixed degree

Lasserre's Hierarchy of CONVEX Problems $\uparrow f^{*}$ [Lasserre '01]
degree $d \& n$ vars $\Longrightarrow\binom{n+2 d}{n}$ SDP vaRIABLES

The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem $f_{\min }=\inf f(\mathbf{x})$

Practice

(Primal Relaxation) moments $\int x^{\alpha} d \mu$
finite number $\Rightarrow \quad$ SDP $\quad \Leftarrow$ fixed degree

Lasserre's Hierarchy of CONVEX Problems $\uparrow f^{*}$ [Lasserre '01]
degree d \& n vars $\Longrightarrow\binom{n+2 d}{n}$ SDP vARIABLES

The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem $f_{\text {min }}=\inf _{\mathbf{x} \in \mathrm{X}} f(\mathbf{x})$

■ space $\mathcal{M}_{+}(\mathbf{X})$ of probability measures supported on \mathbf{X}

- quadratic module $\mathcal{Q}(\mathbf{X})=\left\{\sigma_{0}+\sum_{j} \sigma_{j} g_{j}\right.$, with σ_{j} SOS $\}$

Infinite-dimensional linear programs (LP)

$$
\begin{aligned}
& \\
&
\end{aligned}
$$

The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem $f_{\text {min }}=\inf _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

■ Pseudo-moment sequences y up to order r

- Truncated quadratic module $\mathcal{Q}(\mathbf{X})_{r}$

Finite-dimensional semidefinite programs (SDP)

\[

\]

The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem $f_{\text {min }}=\inf _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

- Pseudo-moment sequences y up to order r
- Truncated quadratic module $\mathcal{Q}(\mathbf{X})_{r}$

Finite-dimensional semidefinite programs (SDP)

\[

\]

What is the primal-dual "SPARSE/SYMMETRIC" variant?

The Moment-SOS Hierarchy for POP

Correlative sparsity

Term sparsity

Symmetries

Sparse matrices

Symmetric matrices indexed by graph vertices

Sparse matrices

Symmetric matrices indexed by graph vertices

$$
1-2-3
$$

当 no edge between 1 and $3 \Longleftrightarrow 0$ entry in the $(1,3)$ entry

Sparse matrices

Symmetric matrices indexed by graph vertices
(
cycle $=\begin{array}{rr}1 & -2 \\ 1 & 1 \\ 4 & -3\end{array}$

Sparse matrices

Symmetric matrices indexed by graph vertices

$\ddot{\nabla}$ no edge between 1 and $3 \Longleftrightarrow 0$ entry in the $(1,3)$ entry
cycle $=\begin{array}{r}1-2 \\ 1 \\ 4\end{array}$
chord = edge between two nonconsecutive vertices in a cycle

Sparse matrices

Symmetric matrices indexed by graph vertices

$\ddot{\nabla}$ no edge between 1 and $3 \Longleftrightarrow 0$ entry in the $(1,3)$ entry
cycle $=\begin{array}{rr}1-2 \\ 1 & - \\ 4 & -3\end{array}$
chord = edge between two nonconsecutive vertices in a cycle
chordal graph $=$ all cycles of length $\geqslant 4$ have at least one chord

Sparse matrices

Symmetric matrices indexed by graph vertices

no edge between 1 and $3 \Longleftrightarrow 0$ entry in the $(1,3)$ entry
cycle $=\begin{array}{rr}1 & -2 \\ 1 & 1 \\ 4 & -3\end{array}$
chord = edge between two nonconsecutive vertices in a cycle
chordal graph $=$ all cycles of length $\geqslant 4$ have at least one chord
clique $=$ a fully connected subset of vertices

Chordal extensions

$$
\begin{array}{r}
1-2 \\
1 \\
4-3
\end{array}
$$

Chordal extensions

$$
\begin{array}{r}
1-2 \\
4-3
\end{array}
$$

Fact

Any non-chordal graph can always be extended to a chordal graph, by adding appropriate edges

Chordal extensions

$$
\begin{array}{r}
1-2 \\
4 \\
4
\end{array}
$$

Fact

Any non-chordal graph can always be extended to a chordal graph, by adding appropriate edges
\quad - Chordal extension is not unique!

Chordal extensions

$$
\begin{array}{r}
1-2 \\
1 \\
4-3
\end{array}
$$

Fact

Any non-chordal graph can always be extended to a chordal graph, by adding appropriate edges

- Chordal extension is not unique!

approximately minimal

maximal

Theorem [Gavril '72, Vandenberghe \& Andersen '15]

The maximal cliques of a chordal graph can be enumerated in linear time in the number of nodes and edges.

Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair \& Peyton '93]

For a chordal graph with maximal cliques I_{1}, \ldots, I_{p} :

$$
\text { (RIP) } \quad \forall k<p \quad I_{k+1} \cap \bigcup_{j \leqslant k} I_{j} \subseteq I_{i} \quad \text { for some } i \leqslant k
$$

(possibly after reordering)

Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair \& Peyton '93]

For a chordal graph with maximal cliques I_{1}, \ldots, I_{p} :

$$
\text { (RIP) } \forall k<p \quad I_{k+1} \cap \bigcup_{j \leqslant k} I_{j} \subseteq I_{i} \quad \text { for some } i \leqslant k
$$

(possibly after reordering)

RIP always holds for $p=2$

Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair \& Peyton '93]

For a chordal graph with maximal cliques I_{1}, \ldots, I_{p} :

$$
\text { (RIP) } \quad \forall k<p \quad I_{k+1} \cap \bigcup_{j \leqslant k} I_{j} \subseteq I_{i} \quad \text { for some } i \leqslant k
$$

(possibly after reordering)

RIP always holds for $p=2$

RIP holds for chains

Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair \& Peyton '93]

For a chordal graph with maximal cliques I_{1}, \ldots, I_{p} :

$$
\text { (RIP) } \quad \forall k<p \quad I_{k+1} \cap \bigcup_{j \leqslant k} I_{j} \subseteq I_{i} \quad \text { for some } i \leqslant k
$$

(possibly after reordering)

RIP always holds for $p=2$

RIP holds for chains
(1)-2-3-99-100

RIP holds for numerous applications!

Semidefinite Programming (SDP)

$$
\begin{aligned}
\min _{\mathrm{y}} & \mathbf{c}^{\top} \mathbf{y} \\
\text { s.t. } & \sum_{i} \mathbf{F}_{i} y_{i} \succcurlyeq \mathbf{F}_{0}
\end{aligned}
$$

- Linear cost c

■ Symmetric matrices $\mathbf{F}_{0}, \mathbf{F}_{i}$

Spectrahedron

■ Linear matrix inequalities " $\mathrm{F} \succcurlyeq 0$ " (F has nonnegative eigenvalues)

Sparse SDP matrices

Theorem [Griewank Toint '84, Agler et al. '88]

Chordal graph G with n vertices \& maximal cliques I_{1}, I_{2} $Q_{G} \succcurlyeq 0$ with nonzero entries corresponding to edges of G $\Longrightarrow Q_{G}=P_{1}{ }^{T} Q_{1} P_{1}+P_{2}{ }^{T} Q_{2} P_{2}$ with $Q_{k} \succcurlyeq 0$ indexed by I_{k}

Sparse SDP matrices

Theorem [Griewank Toint '84, Agler et al. '88]

Chordal graph G with n vertices \& maximal cliques I_{1}, I_{2} $Q_{G} \succcurlyeq 0$ with nonzero entries corresponding to edges of G $\Longrightarrow Q_{G}=P_{1}{ }^{T} Q_{1} P_{1}+P_{2}{ }^{T} Q_{2} P_{2}$ with $Q_{k} \succcurlyeq 0$ indexed by I_{k}

What are P_{1}, P_{2} ?

Sparse SDP matrices

Theorem [Griewank Toint '84, Agler et al. '88]

Chordal graph G with n vertices \& maximal cliques I_{1}, I_{2} $Q_{G} \succcurlyeq 0$ with nonzero entries corresponding to edges of G $\Longrightarrow Q_{G}=P_{1}{ }^{T} Q_{1} P_{1}+P_{2}{ }^{T} Q_{2} P_{2}$ with $Q_{k} \succcurlyeq 0$ indexed by I_{k}

What are $P_{1}, P_{2} ? P_{1} \in \mathbb{R}^{\left|I_{1}\right| \times n}$

$$
P(i, j)= \begin{cases}1 & \text { if } I(i)=j \\ 0 & \text { otherwise }\end{cases}
$$

Sparse SDP matrices

Theorem [Griewank Toint '84, Agler et al. '88]

Chordal graph G with n vertices \& maximal cliques I_{1}, I_{2}
$Q_{G} \succcurlyeq 0$ with nonzero entries corresponding to edges of G $\Longrightarrow Q_{G}=P_{1}{ }^{T} Q_{1} P_{1}+P_{2}{ }^{T} Q_{2} P_{2}$ with $Q_{k} \succcurlyeq 0$ indexed by I_{k}

What are P_{1}, P_{2} ? $P_{1} \in \mathbb{R}^{\left|I_{1}\right| \times n}$

$$
P(i, j)= \begin{cases}1 & \text { if } I(i)=j \\ 0 & \text { otherwise }\end{cases}
$$

$I_{1}=(1,2) \Longrightarrow P_{1}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$

Sparse SDP matrices

Theorem [Griewank Toint '84, Agler et al. '88]

Chordal graph G with n vertices \& maximal cliques I_{1}, I_{2} $Q_{G} \succcurlyeq 0$ with nonzero entries corresponding to edges of G $\Longrightarrow Q_{G}=P_{1}{ }^{T} Q_{1} P_{1}+P_{2}{ }^{T} Q_{2} P_{2}$ with $Q_{k} \succcurlyeq 0$ indexed by I_{k}

What are P_{1}, P_{2} ? $P_{1} \in \mathbb{R}^{\left|I_{1}\right| \times n}$

$$
P(i, j)= \begin{cases}1 & \text { if } I(i)=j \\ 0 & \text { otherwise }\end{cases}
$$

$I_{1}=(1,2) \Longrightarrow P_{1}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
当 $P_{1}^{T} Q_{1} P_{1}$ inflates a $\left|I_{1}\right| \times\left|I_{1}\right|$ matrix Q_{1} into a sparse $n \times n$ matrix

What is correlative sparsity?

- Exploit few links between variables [Lasserre, Waki et al. '06]
$f(\mathbf{x})=x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right)$

Correlative sparsity pattern (csp) graph G
Vertices $=\{1, \ldots, n\}$
$(i, j) \in$ Edges $\Longleftrightarrow x_{i} x_{j}$ appears in f

What is correlative sparsity?

Exploit few links between variables [Lasserre, Waki et al. '06]
$f(\mathbf{x})=x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right)$

Correlative sparsity pattern (csp) graph G
Vertices $=\{1, \ldots, n\}$
$(i, j) \in$ Edges $\Longleftrightarrow x_{i} x_{j}$ appears in f

Similar construction with constraints $\mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}$

What is correlative sparsity?

$$
f(\mathbf{x})=x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right)
$$

Chordal graph after adding edge $(3,5)$

What is correlative sparsity?

$$
f(\mathbf{x})=x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right)
$$

Chordal graph after adding edge $(3,5)$

maximal cliques $I_{1}=\{1,4\} \quad I_{2}=\{1,2,3,5\} \quad I_{3}=\{1,3,5,6\}$
$f=f_{1}+f_{2}+f_{3}$ where f_{k} involves only variables in I_{k}
能 Let us index moment matrices and SOS with the cliques I_{k}

A sparse variant of Putinar's Positivstellensatz

Convergence of the Moment-SOS hierarchy is based on:
Theorem [Putinar '93] Positivstellensatz
If \mathbf{X} contains a ball constraint $N-\sum_{i} x_{i}^{2} \geqslant 0$ then
$f>0$ on $\mathbf{X}=\left\{\mathbf{x}: g_{j}(\mathbf{x}) \geqslant 0\right\} \Longrightarrow f=\sigma_{0}+\sum_{j} \sigma_{j} g_{j}$ with σ_{j} SOS

A sparse variant of Putinar's Positivstellensatz

Convergence of the Moment-SOS hierarchy is based on:
Theorem [Putinar '93] Positivstellensatz
If X contains a ball constraint $N-\sum_{i} x_{i}^{2} \geqslant 0$ then
$f>0$ on $\mathbf{X}=\left\{\mathbf{x}: g_{j}(\mathbf{x}) \geqslant 0\right\} \Longrightarrow f=\sigma_{0}+\sum_{j} \sigma_{j} g_{j}$ with σ_{j} SOS

Theorem: Sparse Putinar's representation [Lasserre '06]

$f=\sum_{k} f_{k}, f_{k}$ depends on $\mathbf{x}\left(I_{k}\right)$
$f>0$ on \mathbf{X}
Each g_{j} depends on some I_{k}
RIP holds for (I_{k})
ball constraints for each $\mathbf{x}\left(I_{k}\right)$
$f=\sum_{k}\left(\sigma_{0 k}+\sum_{j \in J_{k}} \sigma_{j} g_{j}\right)$
SOS $\sigma_{0 k}$ "sees" vars in I_{k}
σ_{j} "sees" vars from g_{j}

A first key message

SUMS OF SQUARES PRESERVE SPARSITY

Sparse moment matrices

For each subset I_{k}, submatrix of $\mathbf{M}_{r}(\mathbf{y})$ corresponding of rows \& columns indexed by monomials in $\mathbf{x}\left(I_{k}\right)$

Sparse moment matrices

For each subset I_{k}, submatrix of $\mathbf{M}_{r}(\mathbf{y})$ corresponding of rows \& columns indexed by monomials in $\mathbf{x}\left(I_{k}\right)$

$$
f(\mathbf{x})=x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right)
$$

Sparse moment matrices

For each subset I_{k}, submatrix of $\mathbf{M}_{r}(\mathbf{y})$ corresponding of rows \& columns indexed by monomials in $\mathbf{x}\left(I_{k}\right)$
$f(\mathbf{x})=x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right)$
$I_{1}=\{1,4\} \Longrightarrow$ monomials in x_{1}, x_{4}

$$
\mathbf{M}_{1}\left(\mathbf{y}, I_{1}\right)=\left(\begin{array}{cccc}
1 & \mid & y_{1,0,0,0,0,0} & y_{0,0,0,1,0,0} \\
& - & - & - \\
y_{1,0,0,0,0,0} & \mid & y_{2,0,0,0,0,0} & y_{1,0,0,1,0,0} \\
y_{0,0,0,1,0,0} & \mid & y_{1,0,0,1,0,0} & y_{0,0,0,2,0,0}
\end{array}\right)
$$

Sparse moment matrices

For each subset I_{k}, submatrix of $\mathbf{M}_{r}(\mathbf{y})$ corresponding of rows \& columns indexed by monomials in $\mathbf{x}\left(I_{k}\right)$
$f(\mathbf{x})=x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right)$
$I_{1}=\{1,4\} \Longrightarrow$ monomials in x_{1}, x_{4}

$$
\mathbf{M}_{1}\left(\mathbf{y}, I_{1}\right)=\left(\begin{array}{cc|cc}
1 & \mid & y_{1,0,0,0,0,0} & y_{0,0,0,1,0,0} \\
& - & - & - \\
y_{1,0,0,0,0,0} & \mid & y_{2,0,0,0,0,0} & y_{1,0,0,1,0,0} \\
y_{0,0,0,1,0,0} & \mid & y_{1,0,0,1,0,0} & y_{0,0,0,2,0,0}
\end{array}\right)
$$

$\ddot{\rho}$ same for each localizing matrix $\mathbf{M}_{r}\left(g_{j} \mathbf{y}\right)$

Sparse primal-dual Moment-SOS hierarchy

$$
f_{\min }=\inf _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \text { with } \mathbf{X}=\left\{\mathbf{x}: g_{j}(\mathbf{x}) \geqslant 0\right\}
$$

Dense Moment-SOS hierarchy
(Moment)
$\inf \sum_{\alpha} f_{\alpha} y_{\alpha}$
s.t. $\quad \mathbf{M}_{r}(\mathbf{y}) \succcurlyeq 0$

$$
\begin{aligned}
& \mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}\right) \succcurlyeq 0 \\
& y_{0}=1
\end{aligned}
$$

(SOS)

$$
=\quad \sup \lambda
$$

s.t. $\lambda \in \mathbb{R}$

$$
f-\lambda=\sigma_{0}+\sum_{j} \sigma_{j} g_{j}
$$

Sparse primal-dual Moment-SOS hierarchy

$$
f_{\min }=\inf _{\mathbf{x} \in \mathbf{x}} f(\mathbf{x}) \text { with } \mathbf{X}=\left\{\mathbf{x}: g_{j}(\mathbf{x}) \geqslant 0\right\}
$$

$f=\sum_{k} f_{k}$, with f_{k} depends on $\mathbf{x}\left(I_{k}\right)$
Each g_{j} depends on some I_{k}

Sparse Moment-SOS hierarchy

(Moment)

$$
\inf \sum_{\alpha} f_{\alpha} y_{\alpha}
$$

$$
\text { s.t. } \quad \mathbf{M}_{r}\left(\mathbf{y}, I_{k}\right) \succcurlyeq 0
$$

$$
\mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}, I_{k}\right) \succcurlyeq 0
$$

$$
y_{0}=1
$$

(SOS)

$$
=\sup \lambda
$$

s.t. $\lambda \in \mathbb{R}$

$$
f-\lambda=\sum_{k}\left(\sigma_{k 0}+\sum_{j \in J_{k}} \sigma_{j} g_{j}\right)
$$

Sparse primal-dual Moment-SOS hierarchy

$f_{\text {min }}=\inf _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$ with $\mathbf{X}=\left\{\mathbf{x}: g_{j}(\mathbf{x}) \geqslant 0\right\}$
$f=\sum_{k} f_{k}$, with f_{k} depends on $\mathbf{x}\left(I_{k}\right)$
Each g_{j} depends on some I_{k}

Sparse Moment-SOS hierarchy

(Moment)

$$
\inf \sum_{\alpha} f_{\alpha} y_{\alpha}
$$

$$
\text { s.t. } \quad \mathbf{M}_{r}\left(\mathbf{y}, I_{k}\right) \succcurlyeq 0
$$

$$
\mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}, I_{k}\right) \succcurlyeq 0
$$

$$
y_{0}=1
$$

(SOS)

$$
=\sup \lambda
$$

s.t. $\lambda \in \mathbb{R}$

$$
f-\lambda=\sum_{k}\left(\sigma_{k 0}+\sum_{j \in J_{k}} \sigma_{j} g_{j}\right)
$$

RIP holds for $\left(I_{k}\right)+$ ball constraints for each $\mathbf{x}\left(I_{k}\right) \Longrightarrow$ Primal and dual optimal value converge to $f_{\text {min }}$ by sparse Putinar

Computational cost

$$
\begin{aligned}
& f_{\min }=\inf _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \text { with } \mathbf{X}=\left\{\mathbf{x}: g_{j}(\mathbf{x}) \geqslant 0, j \leqslant m\right\} \\
& \tau=\max \left\{\left|I_{1}\right|, \ldots,\left|I_{p}\right|\right\}
\end{aligned}
$$

Sparse Moment-SOS hierarchy

(Moment)

$\inf \sum_{\alpha} f_{\alpha} y_{\alpha}$
s.t. $\quad \mathbf{M}_{r}\left(\mathbf{y}, I_{k}\right) \succcurlyeq 0$
$\mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}, I_{k}\right) \succcurlyeq 0$
$y_{0}=1$
(SOS)
$=\sup \lambda$
s.t. $\quad \lambda \in \mathbb{R}$

$$
f-\lambda=\sum_{k}\left(\sigma_{k 0}+\sum_{j \in J_{k}} \sigma_{j} g_{j}\right)
$$

Computational cost

$$
\begin{aligned}
& f_{\min }=\inf _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \text { with } \mathbf{X}=\left\{\mathbf{x}: g_{j}(\mathbf{x}) \geqslant 0, j \leqslant m\right\} \\
& \tau=\max \left\{\left|I_{1}\right|, \ldots,\left|I_{p}\right|\right\}
\end{aligned}
$$

Sparse Moment-SOS hierarchy

(Moment)

$\inf \sum_{\alpha} f_{\alpha} y_{\alpha}$
s.t. $\quad \mathbf{M}_{r}\left(\mathbf{y}, I_{k}\right) \succcurlyeq 0$
$\mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}, I_{k}\right) \succcurlyeq 0$
$y_{0}=1$
(SOS)

$$
=\sup \lambda
$$

s.t. $\lambda \in \mathbb{R}$

$$
f-\lambda=\sum_{k}\left(\sigma_{k 0}+\sum_{j \in J_{k}} \sigma_{j} g_{j}\right)
$$

$(m+p)$ SOS in at most τ vars of degree $\leqslant 2 r$

Computational cost

$$
\begin{aligned}
& f_{\min }=\inf _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \text { with } \mathbf{X}=\left\{\mathbf{x}: g_{j}(\mathbf{x}) \geqslant 0, j \leqslant m\right\} \\
& \tau=\max \left\{\left|I_{1}\right|, \ldots,\left|I_{p}\right|\right\}
\end{aligned}
$$

Sparse Moment-SOS hierarchy

(Moment)

$\inf \sum_{\alpha} f_{\alpha} y_{\alpha}$
s.t. $\quad \mathbf{M}_{r}\left(\mathbf{y}, I_{k}\right) \succcurlyeq 0$

$$
\begin{aligned}
& \mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}, I_{k}\right) \succcurlyeq 0 \\
& y_{0}=1
\end{aligned}
$$

(SOS)
$=\sup \lambda$
s.t. $\lambda \in \mathbb{R}$

$$
f-\lambda=\sum_{k}\left(\sigma_{k 0}+\sum_{j \in J_{k}} \sigma_{j} g_{j}\right)
$$

$(m+p)$ SOS in at most τ vars of degree $\leqslant 2 r$
$\ddot{q}^{-}(m+p) \mathcal{O}\left(r^{2 \tau}\right)$ SDP vars

Computational cost

$$
\begin{aligned}
& f_{\min }=\inf _{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \text { with } \mathbf{X}=\left\{\mathbf{x}: g_{j}(\mathbf{x}) \geqslant 0, j \leqslant m\right\} \\
& \tau=\max \left\{\left|I_{1}\right|, \ldots,\left|I_{p}\right|\right\}
\end{aligned}
$$

Sparse Moment-SOS hierarchy

(Moment)

$\inf \sum_{\alpha} f_{\alpha} y_{\alpha}$
s.t. $\quad \mathbf{M}_{r}\left(\mathbf{y}, I_{k}\right) \succcurlyeq 0$

$$
\begin{aligned}
& \mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}, I_{k}\right) \succcurlyeq 0 \\
& y_{0}=1
\end{aligned}
$$

(SOS)

$$
=\sup \lambda
$$

s.t. $\quad \lambda \in \mathbb{R}$

$$
f-\lambda=\sum_{k}\left(\sigma_{k 0}+\sum_{j \in J_{k}} \sigma_{j} g_{j}\right)
$$

$(m+p)$ SOS in at most τ vars of degree $\leqslant 2 r$
$\ddot{\theta}^{-}(m+p) \mathcal{O}\left(r^{2 \tau}\right)$ SDP vars vs $(m+1) \mathcal{O}\left(r^{2 n}\right)$ in the dense SDP

Application to roundoff errors

[Magron Constantinides Donaldson '17]
Exact $f(\mathbf{x})=x_{1} x_{2}+x_{3} x_{4}$

Application to roundoff errors

[Magron Constantinides Donaldson '17]
Exact $f(\mathbf{x})=x_{1} x_{2}+x_{3} x_{4}$
Floating-point $\hat{f}(\mathbf{x}, \mathbf{e})=\left[x_{1} x_{2}\left(1+e_{1}\right)+x_{3} x_{4}\left(1+e_{2}\right)\right]\left(1+e_{3}\right)$

Application to roundoff errors

[Magron Constantinides Donaldson '17]
Exact $f(\mathbf{x})=x_{1} x_{2}+x_{3} x_{4}$
Floating-point $\hat{f}(\mathbf{x}, \mathbf{e})=\left[x_{1} x_{2}\left(1+e_{1}\right)+x_{3} x_{4}\left(1+e_{2}\right)\right]\left(1+e_{3}\right)$
$\mathbf{x} \in \mathbf{X}, \quad\left|e_{i}\right| \leqslant 2^{-\delta} \quad \delta=24$ (single) or 53 (double)

Application to roundoff errors

[Magron Constantinides Donaldson '17]
Exact $f(\mathbf{x})=x_{1} x_{2}+x_{3} x_{4}$
Floating-point $\hat{f}(\mathbf{x}, \mathbf{e})=\left[x_{1} x_{2}\left(1+e_{1}\right)+x_{3} x_{4}\left(1+e_{2}\right)\right]\left(1+e_{3}\right)$
$\mathbf{x} \in \mathbf{X}, \quad\left|e_{i}\right| \leqslant 2^{-\delta} \quad \delta=24$ (single) or 53 (double)
1: $\operatorname{Error} f(\mathbf{x})-\hat{f}(\mathbf{x}, \mathbf{e})=\ell(\mathbf{x}, \mathbf{e})+h(\mathbf{x}, \mathbf{e}), \ell$ linear in \mathbf{e}

Application to roundoff errors

[Magron Constantinides Donaldson '17]
Exact $f(\mathbf{x})=x_{1} x_{2}+x_{3} x_{4}$
Floating-point $\hat{f}(\mathbf{x}, \mathbf{e})=\left[x_{1} x_{2}\left(1+e_{1}\right)+x_{3} x_{4}\left(1+e_{2}\right)\right]\left(1+e_{3}\right)$
$\mathbf{x} \in \mathbf{X}, \quad\left|e_{i}\right| \leqslant 2^{-\delta} \quad \delta=24$ (single) or 53 (double)
1: $\operatorname{Error} f(\mathbf{x})-\hat{f}(\mathbf{x}, \mathbf{e})=\ell(\mathbf{x}, \mathbf{e})+h(\mathbf{x}, \mathbf{e}), \ell$ linear in \mathbf{e}
2: Bound $h(\mathbf{x}, \mathbf{e})$ with interval arithmetic

Application to roundoff errors

[Magron Constantinides Donaldson '17]

Exact $f(\mathbf{x})=x_{1} x_{2}+x_{3} x_{4}$
Floating-point $\hat{f}(\mathbf{x}, \mathbf{e})=\left[x_{1} x_{2}\left(1+e_{1}\right)+x_{3} x_{4}\left(1+e_{2}\right)\right]\left(1+e_{3}\right)$
$\mathbf{x} \in \mathbf{X}, \quad\left|e_{i}\right| \leqslant 2^{-\delta} \quad \delta=24$ (single) or 53 (double)
1: $\operatorname{Error} f(\mathbf{x})-\hat{f}(\mathbf{x}, \mathbf{e})=\ell(\mathbf{x}, \mathbf{e})+h(\mathbf{x}, \mathbf{e}), \ell$ linear in \mathbf{e}
2: Bound $h(\mathbf{x}, \mathbf{e})$ with interval arithmetic
3: Bound $\ell(\mathbf{x}, \mathbf{e})$ with Sparse Sums of Squares
削 $I_{k} \rightarrow\left\{\mathbf{x}, e_{k}\right\} \Longrightarrow m(n+1)^{2 r}$ instead of $(n+m)^{2 r}$ SDP vars

Application to roundoff errors

$$
\begin{gathered}
f=x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right) \\
\mathbf{x} \in[4.00,6.36]^{6}, \quad \mathbf{e} \in[-\epsilon, \epsilon]^{15}, \quad \epsilon=2^{-53}
\end{gathered}
$$

Dense SDP: $\binom{6+15+4}{6+15}=12650$ variables \leadsto Out of memory

Application to roundoff errors

$$
\begin{gathered}
f=x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right) \\
\mathbf{x} \in[4.00,6.36]^{6}, \quad \mathbf{e} \in[-\epsilon, \epsilon]^{15}, \quad \epsilon=2^{-53}
\end{gathered}
$$

Dense SDP: $\binom{6+15+4}{6+15}=12650$ variables \sim Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1}=4950 \sim 759 \epsilon$

Application to roundoff errors

$$
\begin{gathered}
f=x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right) \\
\mathbf{x} \in[4.00,6.36]^{6}, \quad \mathbf{e} \in[-\epsilon, \epsilon]^{15}, \quad \epsilon=2^{-53}
\end{gathered}
$$

Dense SDP: $\binom{6+15+4}{6+15}=12650$ variables \sim Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1}=4950 \sim 759 \epsilon$

Interval arithmetic: $922 \epsilon(10 \times$ less CPU)

Application to roundoff errors

$$
\begin{gathered}
f=x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right) \\
\mathbf{x} \in[4.00,6.36]^{6}, \quad \mathbf{e} \in[-\epsilon, \epsilon]^{15}, \quad \epsilon=2^{-53}
\end{gathered}
$$

Dense SDP: $\binom{6+15+4}{6+15}=12650$ variables \leadsto Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1}=4950 \sim 759 \epsilon$

Interval arithmetic: $922 \epsilon(10 \times$ less CPU)

Symbolic Taylor FPTaylor tool: 721€ (21× more CPU)

Application to roundoff errors

$$
\begin{gathered}
f=x_{2} x_{5}+x_{3} x_{6}-x_{2} x_{3}-x_{5} x_{6}+x_{1}\left(-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}+x_{6}\right) \\
\mathbf{x} \in[4.00,6.36]^{6}, \quad \mathbf{e} \in[-\epsilon, \epsilon]^{15}, \quad \epsilon=2^{-53}
\end{gathered}
$$

Dense SDP: $\binom{6+15+4}{6+15}=12650$ variables \leadsto Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1}=4950 \sim 759 \epsilon$

Interval arithmetic: $922 \epsilon(10 \times$ less CPU)

Symbolic Taylor FPTaylor tool: 721€ (21× more CPU)

SMT-based rosa tool: 762e ($19 \times$ more CPU)

Application to roundoff errors

Application to noncommutative optimization

Self-adjoint noncommutative variables x_{i}, y_{j}
$f=x_{1}\left(y_{1}+y_{2}+y_{3}\right)+x_{2}\left(y_{1}+y_{2}-y_{3}\right)+x_{3}\left(y_{1}-y_{2}\right)-y_{1}-2 y_{1}-y_{2}$
with $x_{1} x_{2} \neq x_{2} x_{1}$, involution $\left(x_{1} y_{3}\right)^{\star}=y_{3} x_{1}$

Application to noncommutative optimization

Self-adjoint noncommutative variables x_{i}, y_{j}
$f=x_{1}\left(y_{1}+y_{2}+y_{3}\right)+x_{2}\left(y_{1}+y_{2}-y_{3}\right)+x_{3}\left(y_{1}-y_{2}\right)-y_{1}-2 y_{1}-y_{2}$ with $x_{1} x_{2} \neq x_{2} x_{1}$, involution $\left(x_{1} y_{3}\right)^{\star}=y_{3} x_{1}$

Constraints $\mathbf{X}=\left\{(x, y): x_{i}, y_{j} \succcurlyeq 0, x_{i}^{2}=x_{i}, y_{j}^{2}=y_{j}, x_{i} y_{j}=y_{j} x_{i}\right\}$

Application to noncommutative optimization

Self-adjoint noncommutative variables x_{i}, y_{j}
$f=x_{1}\left(y_{1}+y_{2}+y_{3}\right)+x_{2}\left(y_{1}+y_{2}-y_{3}\right)+x_{3}\left(y_{1}-y_{2}\right)-y_{1}-2 y_{1}-y_{2}$ with $x_{1} x_{2} \neq x_{2} x_{1}$, involution $\left(x_{1} y_{3}\right)^{\star}=y_{3} x_{1}$

Constraints $\mathbf{X}=\left\{(x, y): x_{i}, y_{j} \succcurlyeq 0, x_{i}^{2}=x_{i}, y_{j}^{2}=y_{j}, x_{i} y_{j}=y_{j} x_{i}\right\}$
Minimal eigenvalue optimization

$$
\lambda_{\min }=\inf \{\langle f(x, y) \mathbf{v}, \mathbf{v}\rangle:(x, y) \in \mathbf{X},\|\mathbf{v}\|=1\}
$$

Application to noncommutative optimization

Self-adjoint noncommutative variables x_{i}, y_{j}
$f=x_{1}\left(y_{1}+y_{2}+y_{3}\right)+x_{2}\left(y_{1}+y_{2}-y_{3}\right)+x_{3}\left(y_{1}-y_{2}\right)-y_{1}-2 y_{1}-y_{2}$ with $x_{1} x_{2} \neq x_{2} x_{1}$, involution $\left(x_{1} y_{3}\right)^{\star}=y_{3} x_{1}$

Constraints $\mathbf{X}=\left\{(x, y): x_{i}, y_{j} \succcurlyeq 0, x_{i}^{2}=x_{i}, y_{j}^{2}=y_{j}, x_{i} y_{j}=y_{j} x_{i}\right\}$
Minimal eigenvalue optimization

$$
\begin{aligned}
& \lambda_{\min }= \inf \{\langle f(x, y) \mathbf{v}, \mathbf{v}\rangle:(x, y) \in \mathbf{X},\|\mathbf{v}\|=1\} \\
&= \sup \quad \lambda \\
& \quad \text { s.t. } \quad f(x, y)-\lambda \mathbf{I} \succcurlyeq 0, \quad \forall(x, y) \in \mathbf{X}
\end{aligned}
$$

Application to noncommutative optimization

Ball constraint $N-\sum_{i} x_{i}^{2} \succcurlyeq 0$ in \mathbf{X}
Theorem: NC Putinar's representation [Helton \& McCullough '02]
$f \succ 0$ on $\mathbf{X} \Longrightarrow f=\sum_{i} s_{i}^{\star} s_{i}+\sum_{j} \sum_{i} t_{j i}^{\star} g_{j} t_{j i}$ with $s_{i}, t_{j i} \in \mathbb{R}\langle\underline{x}\rangle$

Application to noncommutative optimization

Ball constraint $N-\sum_{i} x_{i}^{2} \succcurlyeq 0$ in \mathbf{X}
Theorem: NC Putinar's representation [Helton \& McCullough '02]
$f \succ 0$ on $\mathbf{X} \Longrightarrow f=\sum_{i} s_{i}^{\star} s_{i}+\sum_{j} \sum_{i} t_{j i}^{\star} g_{j} t_{j i}$ with $s_{i}, t_{j i} \in \mathbb{R}\langle\underline{x}\rangle$

NC variant of Lasserre's Hierarchy for $\lambda_{\text {min }}$:
". replace " $f-\lambda \mathbf{I} \succcurlyeq 0$ on \mathbf{X} " by $f-\lambda \mathbf{I}=\sum_{i} s_{i}^{\star} s_{i}+\sum_{j} \sum_{i} t_{j i}^{\star} g_{j} t_{j i}$
with $s_{i}, t_{j i}$ of bounded degrees $=\operatorname{SDP} \mathcal{L}$

Application to noncommutative optimization

Self-adjoint noncommutative (NC) variables $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$
Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)

Application to noncommutative optimization

Self-adjoint noncommutative (NC) variables $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$
Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)
BAD NEWS: there is no sparse analog!
[Klep Magron Povh '21] sparse f SOS $\nRightarrow f$ is a sparse SOS

Application to noncommutative optimization

Self-adjoint noncommutative (NC) variables $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$
Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)
BAD NEWS: there is no sparse analog! sparse f SOS $\nRightarrow f$ is a sparse SOS
[Klep Magron Povh '21]
Take $f=\left(x_{1}+x_{2}+x_{3}\right)^{2}$

Application to noncommutative optimization

Self-adjoint noncommutative (NC) variables $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$
Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)
BAD NEWS: there is no sparse analog! sparse f SOS $\nRightarrow f$ is a sparse SOS
[Klep Magron Povh '21]
Take $f=\left(x_{1}+x_{2}+x_{3}\right)^{2}$

Good news: there is an NC analog of the sparse Putinar's Positivstellensatz!

Application to noncommutative optimization

Self-adjoint noncommutative (NC) variables $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$
Theorem [Helton \& McCullough '02]
$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)
BAD NEWS: there is no sparse analog! sparse f SOS $\nRightarrow f$ is a sparse SOS
[Klep Magron Povh '21]
Take $f=\left(x_{1}+x_{2}+x_{3}\right)^{2}$

Good news: there is an NC analog of the sparse Putinar's Positivstellensatz! Based on GNS construction \& amalgamation [Blackadar '78, Voiculescu '85]

Application to noncommutative optimization

Self-adjoint noncommutative (NC) variables $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$

Theorem [Helton \& McCullough '02]

$f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)
BAD NEWS: there is no sparse analog! sparse f SOS $\nRightarrow f$ is a sparse SOS
[Klep Magron Povh '21]
Take $f=\left(x_{1}+x_{2}+x_{3}\right)^{2}$

GOOD NEWS: there is an NC analog of the sparse Putinar's Positivstellensatz! Based on GNS construction \& amalgamation [Blackadar '78, Voiculescu '85]

Theorem: Sparse NC Positivstellensatz [Klep Magron Povh '21]

$f=\sum_{k} f_{k}, f_{k}$ depends on $\mathbf{x}\left(I_{k}\right)$
$f>0$ on \mathbf{X}
Each g_{j} depends on some I_{k}
RIP holds for (I_{k})
ball constraints for each $\mathbf{x}\left(I_{k}\right)$

$$
f=\sum_{k, i}\left(s_{k i}^{\star} s_{k i}+\sum_{j \in J_{k}} t_{j i}{ }^{\star} g_{j} t_{j i}\right)
$$

$s_{k i}$ "sees" vars in I_{k}
$t_{j i}$ "sees" vars from g_{j}

Application to noncommutative optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(y_{1}+y_{2}+y_{3}\right)+x_{2}\left(y_{1}+y_{2}-y_{3}\right)+x_{3}\left(y_{1}-y_{2}\right)-x_{1}-2 y_{1}-y_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{(x, y): x_{i}^{2}=x_{i}, y_{j}^{2}=y_{j}, x_{i} y_{j}=y_{j} x_{i}\right\}$

Application to noncommutative optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(y_{1}+y_{2}+y_{3}\right)+x_{2}\left(y_{1}+y_{2}-y_{3}\right)+x_{3}\left(y_{1}-y_{2}\right)-x_{1}-2 y_{1}-y_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{(x, y): x_{i}^{2}=x_{i}, y_{j}^{2}=y_{j}, x_{i} y_{j}=y_{j} x_{i}\right\}$
${ }^{-} I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, y_{k}\right\}$

Application to noncommutative optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(y_{1}+y_{2}+y_{3}\right)+x_{2}\left(y_{1}+y_{2}-y_{3}\right)+x_{3}\left(y_{1}-y_{2}\right)-x_{1}-2 y_{1}-y_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{(x, y): x_{i}^{2}=x_{i}, y_{j}^{2}=y_{j}, x_{i} y_{j}=y_{j} x_{i}\right\}$
$\ddot{\theta}^{\prime} I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, y_{k}\right\}$

level	sparse	dense [Pál \& Vértesi '18]
2	0.2550008	0.2509397

Application to noncommutative optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(y_{1}+y_{2}+y_{3}\right)+x_{2}\left(y_{1}+y_{2}-y_{3}\right)+x_{3}\left(y_{1}-y_{2}\right)-x_{1}-2 y_{1}-y_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{(x, y): x_{i}^{2}=x_{i}, y_{j}^{2}=y_{j}, x_{i} y_{j}=y_{j} x_{i}\right\}$
$\ddot{\theta}^{\prime} I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, y_{k}\right\}$

level	sparse	dense [Pál \& Vértesi '18]
2	0.2550008	0.2509397
3	0.2511592	0.2508756

Application to noncommutative optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(y_{1}+y_{2}+y_{3}\right)+x_{2}\left(y_{1}+y_{2}-y_{3}\right)+x_{3}\left(y_{1}-y_{2}\right)-x_{1}-2 y_{1}-y_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{(x, y): x_{i}^{2}=x_{i}, y_{j}^{2}=y_{j}, x_{i} y_{j}=y_{j} x_{i}\right\}$
$\ddot{\theta}^{\prime} I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, y_{k}\right\}$

level	sparse	dense [Pál \& Vértesi '18]
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3		0.2508754 (1 day)

Application to noncommutative optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(y_{1}+y_{2}+y_{3}\right)+x_{2}\left(y_{1}+y_{2}-y_{3}\right)+x_{3}\left(y_{1}-y_{2}\right)-x_{1}-2 y_{1}-y_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{(x, y): x_{i}^{2}=x_{i}, y_{j}^{2}=y_{j}, x_{i} y_{j}=y_{j} x_{i}\right\}$
${ }^{-} I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, y_{k}\right\}$

level	sparse	dense [Pál \& Vértesi '18]
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3		0.2508754 (1 day)
4	0.2508917	

Application to noncommutative optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(y_{1}+y_{2}+y_{3}\right)+x_{2}\left(y_{1}+y_{2}-y_{3}\right)+x_{3}\left(y_{1}-y_{2}\right)-x_{1}-2 y_{1}-y_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{(x, y): x_{i}^{2}=x_{i}, y_{j}^{2}=y_{j}, x_{i} y_{j}=y_{j} x_{i}\right\}$
${ }^{\prime \prime} I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, y_{k}\right\}$

level	sparse	dense [Pál \& Vértesi '18]
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3		0.2508754 (1 day)
4	0.2508917	
5	0.2508763	

Application to noncommutative optimization

\mathbf{I}_{3322} Bell inequality (entanglement in quantum information)

$$
f=x_{1}\left(y_{1}+y_{2}+y_{3}\right)+x_{2}\left(y_{1}+y_{2}-y_{3}\right)+x_{3}\left(y_{1}-y_{2}\right)-x_{1}-2 y_{1}-y_{2}
$$

Maximal violation levels \rightarrow upper bounds on $\lambda_{\text {max }}$ of f on $\left\{(x, y): x_{i}^{2}=x_{i}, y_{j}^{2}=y_{j}, x_{i} y_{j}=y_{j} x_{i}\right\}$

$$
I_{k} \rightarrow\left\{x_{1}, x_{2}, x_{3}, y_{k}\right\}
$$

level sparse
20.2550008
30.2511592

3'
$4 \quad 0.2508917$
50.2508763
$6 \quad 0.2508753977180$ (1 hour)

More and more applications!

Sparse positive definite forms [Mai, Lasserre \& Magron '21]

More and more applications!

Sparse positive definite forms [Mai, Lasserre \& Magron '21]

Robust Geometric Perception [Yang \& Carlone '20]

More and more applications!

Sparse positive definite forms [Mai, Lasserre \& Magron '21]

Robust Geometric Perception [Yang \& Carlone '20]

Polynomial matrix inequalities [Zheng \& Fantuzzi '20]

More and more applications!

Sparse positive definite forms [Mai, Lasserre \& Magron '21]
Robust Geometric Perception [Yang \& Carlone '20]
Polynomial matrix inequalities [Zheng \& Fantuzzi '20]
Region of attraction [Tacchi et al., Schlosser et al. '21]

More and more applications!

Sparse positive definite forms [Mai, Lasserre \& Magron '21]
Robust Geometric Perception [Yang \& Carlone '20]
Polynomial matrix inequalities [Zheng \& Fantuzzi '20]
Region of attraction [Tacchi et al., Schlosser et al. '21]
Volume computation [Tacchi et al. '21]

More and more applications!

Sparse positive definite forms [Mai, Lasserre \& Magron '21]
Robust Geometric Perception [Yang \& Carlone '20]
Polynomial matrix inequalities [Zheng \& Fantuzzi '20]
Region of attraction [Tacchi et al., Schlosser et al. '21]
Volume computation [Tacchi et al. '21]
Robustness of implicit deep networks [Chen et al. '21]

The Moment-SOS Hierarchy for POP

Correlative sparsity

Term sparsity

Symmetries

Term sparsity via Newton polytope

$f=4 x_{1}^{4} x_{2}^{6}+x_{1}^{2}-x_{1} x_{2}^{2}+x_{2}^{2}$ $\operatorname{spt}(f)=\{(4,6),(2,0),(1,2),(0,2)\}$

Newton polytope $\mathscr{B}=\operatorname{conv}(\operatorname{spt}(f))$

Squares in SOS decomposition $\subseteq \frac{\mathscr{B}}{2} \cap \mathbb{N}^{n}$ [Reznick '78]

$$
f=\left(\begin{array}{lllll}
x_{1} & x_{2} & x_{1} x_{2} & x_{1} x_{2}^{2} & x_{1}^{2} x_{2}^{3}
\end{array}\right) \underbrace{Q}_{\succcurlyeq 0}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1} x_{2} \\
x_{1} x_{2}^{2} \\
x_{1}^{2} x_{2}^{3}
\end{array}\right)
$$

Term sparsity: the unconstrained case

$$
\begin{align*}
f= & x_{1}^{2}-2 x_{1} x_{2}+3 x_{2}^{2}-2 x_{1}^{2} x_{2}+2 x_{1}^{2} x_{2}^{2}-2 x_{2} x_{3} \\
& +6 x_{3}^{2}+18 x_{2}^{2} x_{3}-54 x_{2} x_{3}^{2}+142 x_{2}^{2} x_{3}^{2} \tag{array}
\end{align*}
$$

[Reznick '78] $\rightarrow f=\left(\begin{array}{llllll}1 & x_{1} & x_{2} & x_{3} & x_{1} x_{2} & x_{2} x_{3}\end{array}\right), Q$ $\rightsquigarrow \frac{6 \times 7}{2}=21$ "unknown" entries in Q

Term sparsity: the unconstrained case

$$
\begin{aligned}
f= & x_{1}^{2}-2 x_{1} x_{2}+3 x_{2}^{2}-2 x_{1}^{2} x_{2}+2 x_{1}^{2} x_{2}^{2}-2 x_{2} x_{3} \\
& +6 x_{3}^{2}+18 x_{2}^{2} x_{3}-54 x_{2} x_{3}^{2}+142 x_{2}^{2} x_{3}^{2}
\end{aligned}
$$

[Reznick '78] $\rightarrow f=\left(\begin{array}{llllll}1 & x_{1} & x_{2} & x_{3} & x_{1} x_{2} & x_{2} x_{3}\end{array}\right) \underbrace{Q}_{=0} \quad \begin{aligned} & x_{2} \\ & x_{3}\end{aligned}$
$\rightsquigarrow \frac{6 \times 7}{2}=21$ "unknown" entries in Q

Term sparsity pattern graph G

Term sparsity: the unconstrained case

$$
\begin{aligned}
f= & x_{1}^{2}-2 x_{1} x_{2}+3 x_{2}^{2}-2 x_{1}^{2} x_{2}+2 x_{1}^{2} x_{2}^{2}-2 x_{2} x_{3} \\
& +6 x_{3}^{2}+18 x_{2}^{2} x_{3}-54 x_{2} x_{3}^{2}+142 x_{2}^{2} x_{3}^{2}
\end{aligned}
$$

[Reznick '78] $\rightarrow f=\left(\begin{array}{llllll}1 & x_{1} & x_{2} & x_{3} & x_{1} x_{2} & x_{2} x_{3}\end{array}\right) \underbrace{Q}_{=0} \quad \begin{aligned} & x_{2} \\ & x_{3}\end{aligned}$
$\rightsquigarrow \frac{6 \times 7}{2}=21$ "unknown" entries in Q

Term sparsity pattern graph G + chordal extension G^{\prime}

Term sparsity: the unconstrained case

$$
\begin{aligned}
f= & x_{1}^{2}-2 x_{1} x_{2}+3 x_{2}^{2}-2 x_{1}^{2} x_{2}+2 x_{1}^{2} x_{2}^{2}-2 x_{2} x_{3} \\
& +6 x_{3}^{2}+18 x_{2}^{2} x_{3}-54 x_{2} x_{3}^{2}+142 x_{2}^{2} x_{3}^{2}
\end{aligned}
$$

[Reznick '78] $\rightarrow f=(\begin{array}{llllll}1 & x_{1} & x_{2} & x_{3} & x_{1} x_{2} & x_{2} x_{3}\end{array} \underbrace{Q} \quad \begin{array}{l}x_{2} \\ x_{3}\end{array}$
$\rightsquigarrow \frac{6 \times 7}{2}=21$ "unknown" entries in Q

Term sparsity pattern graph G + chordal extension G^{\prime}

Replace Q by $Q_{G^{\prime}}$ with nonzero entries at edges of G^{\prime}
$\rightsquigarrow 6+9=15$ "unknown" entries in $Q_{G^{\prime}}$

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes $V=$ monomials of degree $\leqslant r$

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes $V=$ monomials of degree $\leqslant r$
Edges E with

$$
\{\alpha, \beta\} \in E \Leftrightarrow \alpha+\beta \in \operatorname{supp} f \bigcup \operatorname{supp} g_{j} \bigcup_{|\alpha| \leqslant r} 2 \alpha
$$

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has
Nodes $V=$ monomials of degree $\leqslant r$
Edges E with

$$
\{\alpha, \beta\} \in E \Leftrightarrow \alpha+\beta \in \operatorname{supp} f \bigcup \operatorname{supp} g_{j} \bigcup_{|\alpha| \leqslant r} 2 \alpha
$$

An example with $r=2$

$$
\begin{aligned}
& f=x_{1}^{4}+x_{1} x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} x_{4}^{2} \\
& g_{1}=1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2} \quad g_{2}=1-x_{3} x_{4}
\end{aligned}
$$

Term sparsity: support extension

$$
\alpha^{\prime}+\beta^{\prime}=\alpha+\beta \text { and }(\alpha, \beta) \in E \Rightarrow\left(\alpha^{\prime}, \beta^{\prime}\right) \in E
$$

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes $V=$ monomials of degree $\leqslant r$

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes $V=$ monomials of degree $\leqslant r$
Edges E with

$$
\{\alpha, \beta\} \in E \Leftrightarrow \alpha+\beta \in \operatorname{supp} f \bigcup \operatorname{supp} g_{j} \bigcup_{|\alpha| \leqslant r} 2 \alpha
$$

\rightsquigarrow support extension

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes $V=$ monomials of degree $\leqslant r$
Edges E with

$$
\{\alpha, \beta\} \in E \Leftrightarrow \alpha+\beta \in \operatorname{supp} f \bigcup \operatorname{supp} g_{j} \bigcup_{|\alpha| \leqslant r} 2 \alpha
$$

\rightsquigarrow support extension \rightsquigarrow chordal extension G^{\prime}

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has
Nodes $V=$ monomials of degree $\leqslant r$
Edges E with

$$
\{\alpha, \beta\} \in E \Leftrightarrow \alpha+\beta \in \operatorname{supp} f \bigcup \operatorname{supp} g_{j} \bigcup_{|\alpha| \leqslant r} 2 \alpha
$$

\rightsquigarrow support extension \rightsquigarrow chordal extension G^{\prime}

By iteratively performing support extension \& chordal extension

$$
G^{(1)}=G^{\prime} \subseteq \cdots \subseteq G^{(s)} \subseteq G^{(s+1)} \subseteq \cdots
$$

Two-level hierarchy of lower bounds for $f_{\text {min }}$, indexed by sparse order s and relaxation order r

Term sparsity: primal moment relaxations

Let G^{\prime} be a chordal extension of G with maximal cliques $\left(C_{i}\right)$

$$
C_{i} \longmapsto \mathbf{M}_{C_{i}}(\mathbf{y})
$$

Term sparsity: primal moment relaxations

Let G^{\prime} be a chordal extension of G with maximal cliques $\left(C_{i}\right)$

$$
C_{i} \longmapsto \mathbf{M}_{C_{i}}(\mathbf{y})
$$

In the moment relaxation,

$$
\mathbf{M}_{r}(\mathbf{y}) \succcurlyeq 0 \longrightarrow \mathbf{M}_{C_{i}}(\mathbf{y}) \succcurlyeq 0
$$

Term sparsity: primal moment relaxations

Let G^{\prime} be a chordal extension of G with maximal cliques $\left(C_{i}\right)$

$$
C_{i} \longmapsto \mathbf{M}_{C_{i}}(\mathbf{y})
$$

In the moment relaxation,

$$
\mathbf{M}_{r}(\mathbf{y}) \succcurlyeq 0 \longrightarrow \mathbf{M}_{C_{i}}(\mathbf{y}) \succcurlyeq 0
$$

Similarly for the localizing matrices $\mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}\right)$

Term sparsity: primal moment relaxations

Let G^{\prime} be a chordal extension of G with maximal cliques $\left(C_{i}\right)$

$$
C_{i} \longmapsto \mathbf{M}_{C_{i}}(\mathbf{y})
$$

In the moment relaxation,

$$
\mathbf{M}_{r}(\mathbf{y}) \succcurlyeq 0 \longrightarrow \mathbf{M}_{C_{i}}(\mathbf{y}) \succcurlyeq 0
$$

Similarly for the localizing matrices $\mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}\right)$
棠 Each constraint $G_{j} \rightsquigarrow G_{j}^{(s)} \rightsquigarrow$ cliques $C_{j, i}^{(s)}$

Term sparsity: primal moment relaxations

Let $C_{j, i}^{(s)}$ be the maximal cliques of $G_{j}^{(s)}$. For each $s \geq 1$

$$
\begin{array}{ll}
f_{\mathrm{ts}}^{\mathrm{ts}^{\prime, s}}=\inf & \sum_{\alpha} f_{\alpha} y_{\alpha} \\
\text { s.t. } & \mathbf{M}_{\mathrm{C}_{0, i}^{(s)}}(\mathbf{y}) \succcurlyeq 0 \\
& \mathbf{M}_{\mathrm{C}_{j, i}^{(s)}}\left(g_{j} \mathbf{y}\right) \succcurlyeq 0 \\
& y_{0}=1
\end{array}
$$

学 dual yields the TSSOS hierarchy

A two-level hierarchy of lower bounds

$f_{n} n^{10} \leq$
\wedge
$f_{\mathrm{ts}}^{r_{\text {min }}+1,1} \leq$

\wedge

$$
f_{\mathrm{ts}}^{r, 1} \leq
$$

\wedge
 \vdots

Different choices of chordal extensions

Different choices of chordal extensions

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order s, the sequence $\left(f_{\mathrm{ts}}^{r, s}\right)_{r \geq r_{\text {min }}}$ is monotonically nondecreasing.

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order s, the sequence $\left(f_{\mathrm{ts}}^{r, s}\right)_{r \geq r_{\text {min }}}$ is monotonically nondecreasing.

Fixing a relaxation order r, the sequence $\left(f_{t s}^{r, s}\right)_{s \geq 1} \uparrow f^{r}$ in finitely many steps if the maximal chordal extension is used.

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order s, the sequence $\left(f_{\mathrm{ts}}^{r, s}\right)_{r \geq r_{\text {min }}}$ is monotonically nondecreasing.

Fixing a relaxation order r, the sequence $\left(f_{\mathrm{ts}}^{r, s}\right)_{s \geq 1} \uparrow f^{r}$ in finitely many steps if the maximal chordal extension is used.
$\ddot{\theta}$ The block structures converge to the one determined by the sign symmetries if the maximal chordal extension is used.

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order s, the sequence $\left(f_{\text {ts }}^{r, s}\right)_{r \geq r_{\text {min }}}$ is monotonically nondecreasing.

当 Fixing a relaxation order r, the sequence $\left(f_{t s}^{r, s}\right)_{s \geq 1} \uparrow f^{r}$ in finitely many steps if the maximal chordal extension is used.

总 The block structures converge to the one determined by the sign symmetries if the maximal chordal extension is used.
$f=1+x_{1}^{2} x_{2}^{4}+x_{1}^{4} x_{2}^{2}+x_{1}^{4} x_{2}^{4}-x_{1} x_{2}^{2}-3 x_{1}^{2} x_{2}^{2}$
Newton polytope $\rightsquigarrow \mathscr{B}=\left(\begin{array}{lllll}1 & x_{1} x_{2} & x_{1} x_{2}^{2} & x_{1}^{2} x_{2} & x_{1}^{2} x_{2}^{2}\end{array}\right)$

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order s, the sequence $\left(f_{\text {ts }}^{r, s}\right)_{r \geq r_{\text {min }}}$ is monotonically nondecreasing.

当 Fixing a relaxation order r, the sequence $\left(f_{t s}^{r, s}\right)_{s \geq 1} \uparrow f^{r}$ in finitely many steps if the maximal chordal extension is used.
\quad The block structures converge to the one determined by the sign symmetries if the maximal chordal extension is used.
$f=1+x_{1}^{2} x_{2}^{4}+x_{1}^{4} x_{2}^{2}+x_{1}^{4} x_{2}^{4}-x_{1} x_{2}^{2}-3 x_{1}^{2} x_{2}^{2}$
Newton polytope $\rightsquigarrow \mathscr{B}=\left(\begin{array}{lllll}1 & x_{1} x_{2} & x_{1} x_{2}^{2} & x_{1}^{2} x_{2} & x_{1}^{2} x_{2}^{2}\end{array}\right)$
$x_{2} \mapsto-x_{2}$
$\left.\begin{array}{lcccc}\text { Sign-symmetries blocks } & (1 & x_{1} x_{2}^{2} & \left.x_{1}^{2} x_{2}^{2}\right) & \left(x_{1} x_{2}\right.\end{array} x_{1}^{2} x_{2}\right)$

A second key message

TSSOS preserves the block structure related to sign-symmetries

Combining correlative \& term sparsity

1 Partition the variables w.r.t. the maximal cliques of the csp graph

Combining correlative \& term sparsity

1 Partition the variables w.r.t. the maximal cliques of the csp graph
2 For each subsystem involving variables from one maximal clique, apply TSSOS

Combining correlative \& term sparsity

1 Partition the variables w.r.t. the maximal cliques of the csp graph
2 For each subsystem involving variables from one maximal clique, apply TSSOS
" a two-level CS-TSSOS hierarchy of lower bounds for $f_{\text {min }}$

Application to optimal power-flow

Optimal Powerflow $n \simeq 10^{3}$ [Josz et al. '18]

$$
\left\{\begin{aligned}
\inf _{V_{i}, S_{s}^{g}, S_{i j}} & \sum_{s \in G}\left(\mathbf{c}_{2 s}\left(\Re\left(S_{s}^{g}\right)\right)^{2}+\mathbf{c}_{1 s} \Re\left(S_{s}^{g}\right)+\mathbf{c}_{0 s}\right) \\
\text { s.t. } & \angle V_{\text {ref }}=0, \\
& \mathbf{S}_{s}^{g l} \leq S_{s}^{g} \leq \mathbf{S}_{s}^{g u} \forall s \in G, \quad \boldsymbol{v}_{i}^{l} \leq\left|V_{i}\right| \leq \boldsymbol{v}_{i}^{u} \forall i \in N \\
& \sum_{s \in G_{i}} S_{s}^{g}-\mathbf{S}_{i}^{d}-\mathbf{Y}_{i}^{s}\left|V_{i}\right|^{2}=\sum_{(i, j) \in E_{i} \cup E_{i}^{R}} S_{i j}, \quad \forall i \in N \\
& S_{i j}=\left(\mathbf{Y}_{i j}^{*}-\mathbf{i} \frac{\left.\mathbf{b}_{i j}^{c} \frac{\mid V_{i j}}{2}\right) \frac{\left|V_{i}\right|^{2}}{\left|\mathbf{T}_{i j}\right|^{2}}-\mathbf{Y}_{i j}^{*} V_{i} V_{j}^{*}}{\mathbf{T}_{i j}^{*}}, \quad S_{j i}=\cdots\right. \\
& \left|S_{i j}\right| \leq \mathbf{s}_{i j}^{u}, \boldsymbol{\theta}_{i j}^{\Delta l} \leq \angle\left(V_{i} V_{j}^{*}\right) \leq \boldsymbol{\theta}_{i j}^{\Delta u}, \quad \forall(i, j) \in E
\end{aligned}\right.
$$

Application to optimal power-flow

$\mathrm{mb}=$ the maximal size of blocks
$m=$ number of constraints

n	m	CS $(r=2)$			CS+TS $(r=2, s=1)$		
		mb	time (s)	gap	mb	time (s)	gap
114	315	66	5.59	0.39%	31	2.01	0.73%
348	1809	253	-	-	34	278	0.05%
766	3322	153	585	0.68%	44	33.9	0.77%
1112	4613	496	-	-	31	410	0.25%
4356	18257	378	-	-	27	934	0.51%
6698	29283	1326	-	-	76	1886	0.47%

Application to networked systems stability

Duffing oscillator Hamiltonian $V=\sum_{i=1}^{N} a_{i}\left(\frac{x_{i}^{2}}{2}-\frac{x_{i}^{4}}{4}\right)+\frac{1}{8} \sum_{i, k=1}^{N} b_{i k}\left(x_{i}-x_{k}\right)^{4}$
On which domain $V>0$? $\quad f=V-\sum_{i=1}^{N} \underbrace{\lambda_{i}}_{>0} x_{i}^{2}\left(g-x_{i}^{2}\right) \geqslant 0$

$$
\Longrightarrow V>0 \text { when } x_{i}^{2}<g
$$

Application to networked systems stability

Duffing oscillator Hamiltonian $V=\sum_{i=1}^{N} a_{i}\left(\frac{x_{i}^{2}}{2}-\frac{x_{i}^{4}}{4}\right)+\frac{1}{8} \sum_{i, k=1}^{N} b_{i k}\left(x_{i}-x_{k}\right)^{4}$
On which domain $V>0$? $\quad f=V-\sum_{i=1}^{N} \underbrace{\lambda_{i}}_{>0} x_{i}^{2}\left(g-x_{i}^{2}\right) \geqslant 0$

学 tsp graph G

Application to networked systems stability

Duffing oscillator Hamiltonian $V=\sum_{i=1}^{N} a_{i}\left(\frac{x_{i}^{2}}{2}-\frac{x_{i}^{4}}{4}\right)+\frac{1}{8} \sum_{i, k=1}^{N} b_{i k}\left(x_{i}-x_{k}\right)^{4}$
On which domain $V>0$? $\quad f=V-\sum_{i=1}^{N} \underbrace{\lambda_{i}}_{>0} x_{i}^{2}\left(g-x_{i}^{2}\right) \geqslant 0$

$\rightsquigarrow \frac{N(N+1)}{2}+6\binom{N}{2}+N$ "unknown" entries in $Q_{G}=80$ for $N=5$

Proof that $f \geqslant 0$ for $N=50$ in ~ 1 second!

The Moment-SOS Hierarchy for POP

Correlative sparsity

Term sparsity

Symmetries

Primer on group representations

Let G be a finite group
1 A representation of G is a finite-dim vector space V with a homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$, where $\mathrm{GL}(V)$ is the set of all invertible transformations of V

Primer on group representations

Let G be a finite group
1 A representation of G is a finite-dim vector space V with a homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$, where $\mathrm{GL}(V)$ is the set of all invertible transformations of V
$2 \operatorname{dim}(V)$ is the degree of (V, ρ)

Primer on group representations

Let G be a finite group
1 A representation of G is a finite-dim vector space V with a homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$, where $\mathrm{GL}(V)$ is the set of all invertible transformations of V
$2 \operatorname{dim}(V)$ is the degree of (V, ρ)
$3(V, \rho)$ isomorphic to $\left(V^{\prime}, \rho^{\prime}\right)$ if there is an isomorphism $\theta: V \rightarrow V^{\prime}$ s.t.

$$
\rho^{\prime}(g)=\theta \rho(g) \theta^{-1}, \forall g \in G
$$

Primer on group representations

Let G be a finite group
1 A representation of G is a finite-dim vector space V with a homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$, where $\mathrm{GL}(V)$ is the set of all invertible transformations of V
$2 \operatorname{dim}(V)$ is the degree of (V, ρ)
$3(V, \rho)$ isomorphic to $\left(V^{\prime}, \rho^{\prime}\right)$ if there is an isomorphism $\theta: V \rightarrow V^{\prime}$ s.t.

$$
\rho^{\prime}(g)=\theta \rho(g) \theta^{-1}, \forall g \in G
$$

4 A basis of V gives a matrix representation of G, we identify G with a group $\mathbf{M}(G)$ of invertible matrices

Primer on group representations

V is a G-module if
$11 \cdot v=v$ and $g_{1} \cdot\left(g_{2} \cdot v\right)=\left(g_{1} g_{2}\right) \cdot v$

Primer on group representations

V is a G-module if
$11 \cdot v=v$ and $g_{1} \cdot\left(g_{2} \cdot v\right)=\left(g_{1} g_{2}\right) \cdot v$
2 $g \cdot\left(v_{1}+v_{2}\right)=g \cdot v_{1}+g \cdot v_{2}$ and $g \cdot(\lambda v)=\lambda g \cdot v$

Primer on group representations

V is a G-module if
$11 \cdot v=v$ and $g_{1} \cdot\left(g_{2} \cdot v\right)=\left(g_{1} g_{2}\right) \cdot v$
2 $g \cdot\left(v_{1}+v_{2}\right)=g \cdot v_{1}+g \cdot v_{2}$ and $g \cdot(\lambda v)=\lambda g \cdot v$
$\rho: G \rightarrow \mathrm{GL}(V)$ with $\rho(g)=v \mapsto g \cdot v$ is a representation

Primer on group representations

V is a G-module if
$11 \cdot v=v$ and $g_{1} \cdot\left(g_{2} \cdot v\right)=\left(g_{1} g_{2}\right) \cdot v$
$2 g \cdot\left(v_{1}+v_{2}\right)=g \cdot v_{1}+g \cdot v_{2}$ and $g \cdot(\lambda v)=\lambda g \cdot v$
$\rho: G \rightarrow \mathrm{GL}(V)$ with $\rho(g)=v \mapsto g \cdot v$ is a representation
$1 W \subseteq V$ is a G-submodule if $g \cdot w \in W$ for all $w \in W$ and $g \in G$
2. If V does not contain a non-trivial submodule then V is irreducible

Primer on group representations

V is a G-module if
$11 \cdot v=v$ and $g_{1} \cdot\left(g_{2} \cdot v\right)=\left(g_{1} g_{2}\right) \cdot v$
$2 g \cdot\left(v_{1}+v_{2}\right)=g \cdot v_{1}+g \cdot v_{2}$ and $g \cdot(\lambda v)=\lambda g \cdot v$
$\rho: G \rightarrow \mathrm{GL}(V)$ with $\rho(g)=v \mapsto g \cdot v$ is a representation
п $W \subseteq V$ is a G-submodule if $g \cdot w \in W$ for all $w \in W$ and $g \in G$
】 If V does not contain a non-trivial submodule then V is irreducible

Example: $G=S_{2}$ acting on the 2-dim vector space $V=\mathbb{R} e_{1} \oplus \mathbb{R} e_{2}$ by permuting e_{1} and e_{2}. Then V is reducible.

Primer on group representations

V is a G-module if
$11 \cdot v=v$ and $g_{1} \cdot\left(g_{2} \cdot v\right)=\left(g_{1} g_{2}\right) \cdot v$
$2 g \cdot\left(v_{1}+v_{2}\right)=g \cdot v_{1}+g \cdot v_{2}$ and $g \cdot(\lambda v)=\lambda g \cdot v$
$\rho: G \rightarrow \mathrm{GL}(V)$ with $\rho(g)=v \mapsto g \cdot v$ is a representation
п $W \subseteq V$ is a G-submodule if $g \cdot w \in W$ for all $w \in W$ and $g \in G$
2. If V does not contain a non-trivial submodule then V is irreducible

Example: $G=S_{2}$ acting on the 2-dim vector space $V=\mathbb{R} e_{1} \oplus \mathbb{R} e_{2}$ by permuting e_{1} and e_{2}. Then V is reducible.
$W=\mathbb{R}\left(e_{1}+e_{2}\right)$ is an S_{2}-submodule

Primer on group representations

Let $\mathbb{K}=\mathbb{R}$ or \mathbb{C} and G a finite group.

Theorem [Maschke]

If V is a finite-dim \mathbb{K}-vector space and a G-module then V is a direct sum of irreducible G-modules W_{i}

$$
V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}
$$

Primer on group representations

Let $\mathbb{K}=\mathbb{R}$ or \mathbb{C} and G a finite group.

Theorem [Maschke]

If V is a finite-dim \mathbb{K}-vector space and a G-module then V is a direct sum of irreducible G-modules W_{i}

$$
V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}
$$

ϕ is a G-homomorphism if $\phi(g \cdot v)=\phi(v)$ for all $g \in G, v \in V$.

Primer on group representations

Let $\mathbb{K}=\mathbb{R}$ or \mathbb{C} and G a finite group.

Theorem [Maschke]

If V is a finite-dim \mathbb{K}-vector space and a G-module then V is a direct sum of irreducible G-modules W_{i}

$$
V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}
$$

ϕ is a G-homomorphism if $\phi(g \cdot v)=\phi(v)$ for all $g \in G, v \in V$.

Theorem [Schur's lemma]

Let V, W be two irreducible G-modules. Then a G homomorphism $\phi: V \rightarrow W$ is either zero or an isomorphism.

Primer on group representations

Let $\mathbb{K}=\mathbb{R}$ or \mathbb{C} and G a finite group.

Theorem [Maschke]

If V is a finite-dim \mathbb{K}-vector space and a G-module then V is a direct sum of irreducible G-modules W_{i}

$$
V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}
$$

ϕ is a G-homomorphism if $\phi(g \cdot v)=\phi(v)$ for all $g \in G, v \in V$.

Theorem [Schur's lemma]

Let V, W be two irreducible G-modules. Then a G homomorphism $\phi: V \rightarrow W$ is either zero or an isomorphism.棠 A G-homomorphism from V to V is equivalent to multiplication by a scalar.

Primer on group representations

Corollary

Let $V=m_{1} W_{1} \oplus \cdots \oplus m_{k} W_{k}$ be a complete decomposition of the representation V with $\operatorname{dim} W_{i}=d_{i}$. Then there is a basis of V such that the matrices of $\mathbf{M}(G)$ are of the form

$$
\mathbf{M}(g)=\bigoplus_{l=1}^{k} \bigoplus_{j=1}^{m_{i}} \mathbf{M}^{(l)}(g)
$$

where each $\mathbf{M}^{(l)}(G)$ represents W_{l}

Primer on group representations

Corollary

Let $V=m_{1} W_{1} \oplus \cdots \oplus m_{k} W_{k}$ be a complete decomposition of the representation V with $\operatorname{dim} W_{i}=d_{i}$. Then there is a basis of V such that the matrices of $\mathbf{M}(G)$ are of the form

$$
\mathbf{M}(g)=\bigoplus_{l=1}^{k} \bigoplus_{j=1}^{m_{i}} \mathbf{M}^{(l)}(g)
$$

where each $\mathbf{M}^{(l)}(G)$ represents W_{l}

Such a basis is called a symmetry adapted basis

Primer on group representations

Let $\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{K})$ and $\mathbf{Q} \in \mathbb{K}^{n \times n}$ with $\rho(g) \mathbf{Q}=\mathbf{Q} \rho(g)$ for all $g \in G$

Primer on group representations

Let $\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{K})$ and $\mathbf{Q} \in \mathbb{K}^{n \times n}$ with $\rho(g) \mathbf{Q}=\mathbf{Q} \rho(g)$ for all $g \in G$

Assume that $\rho=m_{1} \rho_{1} \oplus \cdots \oplus m_{k} \rho_{k}$ with $d_{i}=\operatorname{dim} \rho_{i}$

Primer on group representations

Let $\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{K})$ and $\mathbf{Q} \in \mathbb{K}^{n \times n}$ with $\rho(g) \mathbf{Q}=\mathbf{Q} \rho(g)$ for all $g \in G$

Assume that $\rho=m_{1} \rho_{1} \oplus \cdots \oplus m_{k} \rho_{k}$ with $d_{i}=\operatorname{dim} \rho_{i}$
Use a symmetric adapted basis of \mathbb{K}^{n} to block-diag Q
$\Longrightarrow \mathbf{N}=\mathbf{T}^{-1} \mathbf{Q T}$ and

$$
\left(\begin{array}{ccc}
\mathbf{N}_{1} & & 0 \\
& \ddots & \\
0 & & \mathbf{N}_{k}
\end{array}\right) \quad \mathbf{N}_{i}=\left(\begin{array}{ccc}
\mathbf{B}_{i} & & 0 \\
& \ddots & \\
0 & & \mathbf{B}_{i}
\end{array}\right)
$$

Each column of T is an element of a symmetry adapted basis
${ }^{-\quad} \mathbf{B}_{i}$ has size m_{i}

A first key message

Whenever we have a linear group action on a vector space then

A NICE BASIS MAKES MATRICES SIMPLER

Symmetries in SDPs

$\operatorname{Sym}_{n}(\mathbb{K})$: Hermitian matrices

$$
\begin{aligned}
& \inf _{\mathbf{Q}}\langle\mathbf{C}, \mathbf{Q}\rangle \\
& \text { s.t. } \\
& \quad\left\langle\mathbf{A}_{i}, \mathbf{Q}\right\rangle=f_{i} \\
& \quad \mathbf{Q} \succcurlyeq 0, \mathbf{Q} \in \operatorname{Sym}_{n}(\mathbb{K})
\end{aligned}
$$

Symmetries in SDPs

$\operatorname{Sym}_{n}(\mathbb{K})$: Hermitian matrices

$$
\begin{aligned}
& \inf _{\mathbf{Q}}\langle\mathbf{C}, \mathbf{Q}\rangle \\
& \text { s.t. } \\
& \quad\left\langle\mathbf{A}_{i}, \mathbf{Q}\right\rangle=f_{i} \\
& \quad \mathbf{Q} \succcurlyeq 0, \mathbf{Q} \in \operatorname{Sym}_{n}(\mathbb{K})
\end{aligned}
$$

Let us pick a representation $\left(\mathbb{K}^{n}, \rho\right)$ of G and an orthonormal basis for \mathbb{K}^{n} w.r.t. a G-invariant inner product $\ddot{\nabla}$ The corresponding matrices are unitary: $\rho(g) \rho(g)^{\star}=\mathrm{ld}$

Symmetries in SDPs

$\operatorname{Sym}_{n}(\mathbb{K})$: Hermitian matrices

$$
\begin{aligned}
& \inf _{\mathbf{Q}}\langle\mathbf{C}, \mathbf{Q}\rangle \\
& \text { s.t. } \\
& \quad\left\langle\mathbf{A}_{i}, \mathbf{Q}\right\rangle=f_{i} \\
& \quad \mathbf{Q} \succcurlyeq 0, \mathbf{Q} \in \operatorname{Sym}_{n}(\mathbb{K})
\end{aligned}
$$

Let us pick a representation $\left(\mathbb{K}^{n}, \rho\right)$ of G and an orthonormal basis for \mathbb{K}^{n} w.r.t. a G-invariant inner product $\ddot{\nabla}$ The corresponding matrices are unitary: $\rho(g) \rho(g)^{\star}=\mathrm{ld}$当 $\operatorname{Sym}_{n}(\mathbb{K})$ is a G-module via

$$
\mathbf{Q}^{g}:=\rho(g) \mathbf{Q} \rho(g)^{\star}
$$

Symmetries in SDPs

$\operatorname{Sym}_{n}(\mathbb{K})$: Hermitian matrices

$$
\begin{aligned}
& \inf _{\mathbf{Q}}\langle\mathbf{C}, \mathbf{Q}\rangle \\
& \text { s.t. }\left\langle\mathbf{A}_{i}, \mathbf{Q}\right\rangle=f_{i} \\
& \quad \mathbf{Q} \succcurlyeq 0, \mathbf{Q} \in \operatorname{Sym}_{n}(\mathbb{K})
\end{aligned}
$$

Let us pick a representation $\left(\mathbb{K}^{n}, \rho\right)$ of G and an orthonormal basis for \mathbb{K}^{n} w.r.t. a G-invariant inner product部 The corresponding matrices are unitary: $\rho(g) \rho(g)^{\star}=\mathrm{ld}$棠 $\mathrm{Sym}_{n}(\mathbb{K})$ is a G-module via

$$
\mathbf{Q}^{g}:=\rho(g) \mathbf{Q} \rho(g)^{\star}
$$

The above SDP is G-invariant if $\langle\mathbf{C}, \mathbf{Q}\rangle=\left\langle\mathbf{C}, \mathbf{Q}^{g}\right\rangle$ and $\left\langle\mathbf{A}_{i}, \mathbf{Q}^{g}\right\rangle=f_{i}$

Symmetries in SDPs

$$
\begin{aligned}
& \inf _{\mathbf{Q}}\langle\mathbf{C}, \mathbf{Q}\rangle \\
& \text { s.t. }\left\langle\mathbf{A}_{i}, \mathbf{Q}\right\rangle=f_{i} \\
& \quad \mathbf{Q}=\mathbf{Q}^{g}, \forall g \in G \\
& \mathbf{Q} \succcurlyeq 0, \mathbf{Q} \in \operatorname{Sym}_{n}(\mathbb{K})
\end{aligned}
$$

Symmetries in SDPs

$$
\begin{aligned}
& \inf _{\mathbf{Q}}\langle\mathbf{C}, \mathbf{Q}\rangle \\
& \text { s.t. }\left\langle\mathbf{A}_{i}, \mathbf{Q}\right\rangle=f_{i} \\
& \quad \mathbf{Q}=\mathbf{Q}^{g}, \forall g \in G \\
& \mathbf{Q} \succcurlyeq 0, \mathbf{Q} \in \operatorname{Sym}_{n}(\mathbb{K})
\end{aligned}
$$

Theorem

The optimal value of the SDP is the same as the "dense" one if it is G-invariant.

Symmetries in SDPs

$$
\begin{aligned}
& \inf _{\mathbf{Q}}\langle\mathbf{C}, \mathbf{Q}\rangle \\
& \text { s.t. }\left\langle\mathbf{A}_{i}, \mathbf{Q}\right\rangle=f_{i} \\
& \quad \mathbf{Q}=\mathbf{Q}^{g}, \forall g \in G \\
& \mathbf{Q} \succcurlyeq 0, \mathbf{Q} \in \operatorname{Sym}_{n}(\mathbb{K})
\end{aligned}
$$

Theorem

The optimal value of the SDP is the same as the "dense" one if it is G-invariant.

Proof

Take a feasible \mathbf{Q} and $g \in G$.
Since the feasible region is convex $\mathrm{Q}_{G}:=\frac{1}{|G|} \sum_{g \in G} \mathbf{Q}^{g}$ is feasible for the "dense" SDP and $\langle\mathbf{C}, \mathbf{Q}\rangle=\left\langle\mathbf{C}, \mathbf{Q}_{G}\right\rangle$.

Symmetries in SDPs

One can restrict to invariant matrices (i.e., the commutator)

Symmetries in SDPs

One can restrict to invariant matrices (i.e., the commutator)
By Schur's lemma, we can find a basis that block-diag the matrices

Symmetries in SDPs

- One can restrict to invariant matrices (i.e., the commutator)

By Schur's lemma, we can find a basis that block-diag the matrices
Let $\mathbb{K}^{n}=W_{1}^{1} \oplus \cdots \oplus W_{m_{1}}^{1} \oplus \cdots \oplus W_{m_{k}}^{k}$ be an orthogonal decomposition into irreducibles, and choose an orthonormal basis $\left\{e_{l 1}^{j}, \ldots, e_{l d_{j}}^{j}\right\}$ for each W_{l}^{j}
orthonormal symmetry adapted basis T

Symmetries in SDPs

One can restrict to invariant matrices (i.e., the commutator)
By Schur's lemma, we can find a basis that block-diag the matrices
Let $\mathbb{K}^{n}=W_{1}^{1} \oplus \cdots \oplus W_{m_{1}}^{1} \oplus \cdots \oplus W_{m_{k}}^{k}$ be an orthogonal decomposition into irreducibles, and choose an orthonormal basis $\left\{e_{l 1}^{j}, \ldots, e_{l d_{j}}^{j}\right\}$ for each W_{l}^{j}
orthonormal symmetry adapted basis T

$$
\begin{aligned}
& \inf _{\mathbf{Q}_{l}} \sum_{l=1}^{k} d_{l}\left\langle\mathbf{C}_{l}, \mathbf{Q}_{l}\right\rangle \\
& \text { s.t. } \\
& \quad\left\langle\mathbf{A}_{i}, \mathbf{Q}\right\rangle=f_{i}, \quad \mathbf{T}^{-1} \mathbf{Q} \mathbf{T}=\operatorname{diag}\left(\mathbf{Q}_{1}, \ldots, \mathbf{Q}_{k}\right) \\
& \quad \mathbf{Q}_{l} \succcurlyeq 0, \mathbf{Q}_{l} \in \operatorname{Sym}_{m_{l}}(\mathbb{K})
\end{aligned}
$$

Symmetries in SDPs: an example

$$
\mathbf{C}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \mathbf{Q}=\left(\begin{array}{lll}
a & b & b \\
b & c_{1} & d \\
b & d & c_{2}
\end{array}\right)
$$

Symmetries in SDPs: an example

$$
\mathbf{C}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \mathbf{Q}=\left(\begin{array}{ccc}
a & b & b \\
b & c_{1} & d \\
b & d & c_{2}
\end{array}\right)
$$

C, Q invariant under S_{2} permuting both the last 2 rows and columns

Symmetries in SDPs: an example

$$
\mathbf{C}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \mathbf{Q}=\left(\begin{array}{ccc}
a & b & b \\
b & c_{1} & d \\
b & d & c_{2}
\end{array}\right)
$$

C, Q invariant under S_{2} permuting both the last 2 rows and columns
$\ddot{\nabla}$ one can restrict to the fixed point subspace with $c_{1}=c_{2}=c$

Symmetries in SDPs: an example

$$
\mathbf{C}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \mathbf{Q}=\left(\begin{array}{lll}
a & b & b \\
b & c_{1} & d \\
b & d & c_{2}
\end{array}\right)
$$

C, Q invariant under S_{2} permuting both the last 2 rows and columns
$\ddot{\nabla}$ one can restrict to the fixed point subspace with $c_{1}=c_{2}=c$
$\because S_{2}$ has 2 irreducible representations of dimension
$d_{1}=d_{2}=1$, with multiplicities $m_{1}=2, m_{2}=1$

Symmetries in SDPs: an example

$$
\mathbf{C}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \mathbf{Q}=\left(\begin{array}{lll}
a & b & b \\
b & c_{1} & d \\
b & d & c_{2}
\end{array}\right)
$$

C, Q invariant under S_{2} permuting both the last 2 rows and columns
$\ddot{\nabla}$ one can restrict to the fixed point subspace with $c_{1}=c_{2}=c$
${ }^{\circ}-S_{2}$ has 2 irreducible representations of dimension $d_{1}=d_{2}=1$, with multiplicities $m_{1}=2, m_{2}=1$

$$
\mathbf{T}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \alpha & \alpha \\
0 & \alpha & -\alpha
\end{array}\right) \quad \alpha=\frac{1}{\sqrt{2}}
$$

Symmetries in SDPs: an example

$$
\mathbf{C}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \mathbf{Q}=\left(\begin{array}{lll}
a & b & b \\
b & c_{1} & d \\
b & d & c_{2}
\end{array}\right)
$$

C, Q invariant under S_{2} permuting both the last 2 rows and columns
$\ddot{\nabla}$ one can restrict to the fixed point subspace with $c_{1}=c_{2}=c$

- S_{2} has 2 irreducible representations of dimension $d_{1}=d_{2}=1$, with multiplicities $m_{1}=2, m_{2}=1$

$$
\begin{gathered}
\mathbf{T}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \alpha & \alpha \\
0 & \alpha & -\alpha
\end{array}\right) \quad \alpha=\frac{1}{\sqrt{2}} \\
\mathbf{T}^{-1} \mathbf{C T}=\left(\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right) \quad C_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad C_{2}=1
\end{gathered}
$$

Symmetries in SDPs: an example

$$
\mathbf{C}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \mathbf{Q}=\left(\begin{array}{lll}
a & b & b \\
b & c_{1} & d \\
b & d & c_{2}
\end{array}\right)
$$

C, Q invariant under S_{2} permuting both the last 2 rows and columns
${ }^{-}$one can restrict to the fixed point subspace with $c_{1}=c_{2}=c$
㿠 S_{2} has 2 irreducible representations of dimension $d_{1}=d_{2}=1$, with multiplicities $m_{1}=2, m_{2}=1$

$$
\begin{gathered}
\mathbf{T}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \alpha & \alpha \\
0 & \alpha & -\alpha
\end{array}\right) \quad \alpha=\frac{1}{\sqrt{2}} \\
\mathbf{T}^{-1} \mathbf{C T}=\left(\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right) \quad C_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad C_{2}=1 \\
\mathbf{T}^{-1} \mathbf{Q} \mathbf{T}=\left(\begin{array}{cc}
\mathbf{Q}_{1} & 0 \\
0 & \mathbf{Q}_{2}
\end{array}\right) \quad \mathbf{Q}_{1}=\left(\begin{array}{cc}
a & \sqrt{2} b \\
\sqrt{2} b & c+d
\end{array}\right) \quad \mathbf{Q}_{2}=c-d \\
\text { Exploiting sparsity \& symmetries in polynomial optimization }
\end{gathered}
$$

Symmetries in POPs

We come back to our initial POP:

$$
\begin{array}{ll}
\inf & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in \mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}
\end{array}
$$

Symmetries in POPs

We come back to our initial POP:

$$
\begin{array}{cl}
\inf & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in \mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}
\end{array}
$$

Finite group G and representation $\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$
$f^{g}(\mathbf{x}):=f\left(\rho(g)^{-1} \mathbf{x}\right)$

Symmetries in POPs

We come back to our initial POP:

$$
\begin{array}{cl}
\inf & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in \mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}
\end{array}
$$

Finite group G and representation $\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$
$f^{g}(\mathbf{x}):=f\left(\rho(g)^{-1} \mathbf{x}\right)$

- POP is G-invariant if $f^{g}=f$ and $g j^{g}=g_{j}$

Symmetries in POPs

We come back to our initial POP:

$$
\begin{array}{ll}
\inf & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in \mathbf{X}=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{j}(\mathbf{x}) \geqslant 0\right\}
\end{array}
$$

Finite group G and representation $\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{R})$
$f^{g}(\mathbf{x}):=f\left(\rho(g)^{-1} \mathbf{x}\right)$

- POP is G-invariant if $f^{g}=f$ and $g_{j}{ }^{g}=g_{j}$

The Reynolds Operator $\mathcal{R}_{G}: \mathbb{R}[\mathbf{x}] \rightarrow \mathbb{R}[\mathbf{x}]^{G}$ is

$$
\mathcal{R}_{G}(f):=\frac{1}{|G|} \sum_{g \in G} f^{g}
$$

Symmetries in POPs: a first hierarchy

Dense vs Symmetric adapted hierarchy

$$
\begin{aligned}
& \text { (Dense) } \\
& \inf \sum_{\alpha} f_{\alpha} y_{\alpha} \\
& \text { s.t. } \quad \mathbf{M}_{r}(\mathbf{y}) \succcurlyeq 0 \\
& \mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}\right) \succcurlyeq 0 \\
& y_{0}=1 \\
& =\quad \inf \quad \sum_{\alpha} f_{\alpha} y_{\alpha}^{G} \\
& \text { s.t. } \quad \mathbf{M}_{r}\left(\mathbf{y}^{G}\right) \succcurlyeq 0 \\
& \mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}^{G}\right) \succcurlyeq 0 \\
& y_{0}^{G}=1
\end{aligned}
$$

y_{α}^{G} is the pseudo-moment variable corresponding to the polynomial $\mathcal{R}_{G}\left(\mathbf{x}^{\alpha}\right)$

Symmetries in POPs: a first hierarchy

$G=C_{4}$ the cyclic group

Symmetries in POPs: a first hierarchy

$G=C_{4}$ the cyclic group
Space of C_{4}-invariant polynomials of $\mathrm{deg} \leqslant 2$:

$$
\begin{array}{r}
b_{0}=1 \quad b_{1}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad b_{2}=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
b_{3}=\frac{1}{4}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}\right) \quad b_{4}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right)
\end{array}
$$

Symmetries in POPs: a first hierarchy

$G=C_{4}$ the cyclic group
Space of C_{4}-invariant polynomials of $\mathrm{deg} \leqslant 2$:

$$
\begin{array}{r}
b_{0}=1 \quad b_{1}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad b_{2}=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
b_{3}=\frac{1}{4}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}\right) \quad b_{4}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right)
\end{array}
$$

$\mathcal{R}_{G}\left(x_{1}\right)=b_{1} \rightarrow y_{1}^{G}$

Symmetries in POPs: a first hierarchy

$G=C_{4}$ the cyclic group

Space of C_{4}-invariant polynomials of deg $\leqslant 2$:

$$
\begin{array}{r}
b_{0}=1 \quad b_{1}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad b_{2}=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
b_{3}=\frac{1}{4}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}\right) \quad b_{4}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right)
\end{array}
$$

$\mathcal{R}_{G}\left(x_{1}\right)=b_{1} \rightarrow y_{1}^{G} \quad \ldots \quad \mathcal{R}_{G}\left(x_{4}\right)=b_{1} \rightarrow y_{1}^{G}$

Symmetries in POPs: a first hierarchy

$G=C_{4}$ the cyclic group

Space of C_{4}-invariant polynomials of $\mathrm{deg} \leqslant 2$:

$$
\begin{array}{r}
b_{0}=1 \quad b_{1}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad b_{2}=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
b_{3}=\frac{1}{4}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}\right) \quad b_{4}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right)
\end{array}
$$

$\mathcal{R}_{G}\left(x_{1}\right)=b_{1} \rightarrow y_{1}^{G} \quad \ldots \quad \mathcal{R}_{G}\left(x_{4}\right)=b_{1} \rightarrow y_{1}^{G}$
$\mathcal{R}_{G}\left(x_{i}^{2}\right)=b_{2} \rightarrow y_{2}^{G}$

Symmetries in POPs: a first hierarchy

$G=C_{4}$ the cyclic group

Space of C_{4}-invariant polynomials of deg $\leqslant 2$:

$$
\begin{array}{r}
b_{0}=1 \quad b_{1}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad b_{2}=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
b_{3}=\frac{1}{4}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}\right) \quad b_{4}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right)
\end{array}
$$

$\mathcal{R}_{G}\left(x_{1}\right)=b_{1} \rightarrow y_{1}^{G} \quad \ldots \quad \mathcal{R}_{G}\left(x_{4}\right)=b_{1} \rightarrow y_{1}^{G}$
$\mathcal{R}_{G}\left(x_{i}^{2}\right)=b_{2} \rightarrow y_{2}^{G} \mathcal{R}_{G}\left(x_{1} x_{2}\right)=b_{3} \rightarrow y_{3}^{G}$

Symmetries in POPs: a first hierarchy

$G=C_{4}$ the cyclic group

Space of C_{4}-invariant polynomials of deg $\leqslant 2$:

$$
\begin{array}{r}
b_{0}=1 \quad b_{1}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad b_{2}=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
b_{3}=\frac{1}{4}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}\right) \quad b_{4}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right)
\end{array}
$$

$\mathcal{R}_{G}\left(x_{1}\right)=b_{1} \rightarrow y_{1}^{G} \quad \ldots \quad \mathcal{R}_{G}\left(x_{4}\right)=b_{1} \rightarrow y_{1}^{G}$
$\mathcal{R}_{G}\left(x_{i}^{2}\right)=b_{2} \rightarrow y_{2}^{G} \mathcal{R}_{G}\left(x_{1} x_{2}\right)=b_{3} \rightarrow y_{3}^{G} \mathcal{R}_{G}\left(x_{1} x_{3}\right)=b_{4} \rightarrow y_{4}^{G}$

Symmetries in POPs: a first hierarchy

The symmetry-adapted moment matrix looks like this:

$$
\mathbf{M}_{1}(\mathbf{y})=\left(\begin{array}{lllll}
1 & y_{1} & y_{1} & y_{1} & y_{1} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{3} \\
y_{1} & y_{3} & y_{2} & y_{3} & y_{4} \\
y_{1} & y_{4} & y_{3} & y_{2} & y_{3} \\
y_{1} & y_{3} & y_{4} & y_{3} & y_{2}
\end{array}\right)
$$

Symmetries in POPs: a first hierarchy

The symmetry-adapted moment matrix looks like this:

$$
\mathbf{M}_{1}(\mathbf{y})=\left(\begin{array}{lllll}
1 & y_{1} & y_{1} & y_{1} & y_{1} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{3} \\
y_{1} & y_{3} & y_{2} & y_{3} & y_{4} \\
y_{1} & y_{4} & y_{3} & y_{2} & y_{3} \\
y_{1} & y_{3} & y_{4} & y_{3} & y_{2}
\end{array}\right)
$$

棠 4 variables instead of 15

Symmetries in POPs: a first hierarchy

The symmetry-adapted moment matrix looks like this:
$\mathbf{M}_{1}(\mathbf{y})=\left(\begin{array}{lllll}1 & y_{1} & y_{1} & y_{1} & y_{1} \\ y_{1} & y_{2} & y_{3} & y_{4} & y_{3} \\ y_{1} & y_{3} & y_{2} & y_{3} & y_{4} \\ y_{1} & y_{4} & y_{3} & y_{2} & y_{3} \\ y_{1} & y_{3} & y_{4} & y_{3} & y_{2}\end{array}\right)$
学 4 variables instead of 15

One can do even better!

Symmetries in POPs: a second hierarchy

The subset of $\mathbb{R}[\mathbf{x}]$ of degree at most r can be viewed as a real G-module

Symmetries in POPs: a second hierarchy

The subset of $\mathbb{R}[\mathbf{x}]$ of degree at most r can be viewed as a real G-module

$$
\mathbb{R}[\mathbf{x}] \otimes \mathbb{C}=\bigoplus_{l=1}^{k} V_{l}=\bigoplus_{l=1}^{k} \bigoplus_{j \in J_{l}} W_{l j}
$$

with complex irreducible components $W_{l j}$

Symmetries in POPs: a second hierarchy

The subset of $\mathbb{R}[\mathbf{x}]$ of degree at most r can be viewed as a real G-module

$$
\mathbb{R}[\mathbf{x}] \otimes \mathbb{C}=\bigoplus_{l=1}^{k} V_{l}=\bigoplus_{l=1}^{k} \bigoplus_{j \in J_{l}} W_{l j}
$$

with complex irreducible components $W_{l j}$
Pick a basis $\left\{s_{j, u}^{l}\right\}$ of $W_{l j}$ and set $\mathcal{S}^{l}=\left\{s_{j, 1}^{l}: j \in J_{l}\right\}$
$\ddot{\nabla}$ One selects the first basis elements of each $W_{l j}$

Symmetries in POPs: a second hierarchy

Truncation $\mathcal{S}_{r}^{l}=\left\{s_{\alpha}^{l}\right\}$ of \mathcal{S}^{l} with basis elements of deg $\leqslant r$

Symmetries in POPs: a second hierarchy

Truncation $\mathcal{S}_{r}^{l}=\left\{s_{\alpha}^{l}\right\}$ of \mathcal{S}^{l} with basis elements of deg $\leqslant r$
$\mathcal{B}_{2 r}$ a basis of $\mathbb{R}[\mathbf{x}]_{2 r}^{G}$ and y_{b} is the pseudo-moment variable corresponding to $b \in \mathcal{B}_{2 r}$

Symmetries in POPs: a second hierarchy

Truncation $\mathcal{S}_{r}^{l}=\left\{s_{\alpha}^{l}\right\}$ of \mathcal{S}^{l} with basis elements of deg $\leqslant r$
$\mathcal{B}_{2 r}$ a basis of $\mathbb{R}[\mathbf{x}]_{2 r}^{G}$ and y_{b} is the pseudo-moment variable corresponding to $b \in \mathcal{B}_{2 r}$

Theorem [Riener et al. '13]

(Dense)
$\inf \sum_{\alpha} f_{\alpha} y_{\alpha}$
s.t. $\quad \mathbf{M}_{r}(\mathbf{y}) \succcurlyeq 0$
$\mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}\right) \succcurlyeq 0$
$y_{0}=1$

$$
=\quad \inf \quad \sum_{\alpha} f_{\alpha} y_{\alpha}
$$

s.t. $\quad \mathbf{M}_{r}^{G}(\mathbf{y}) \succcurlyeq 0$
$\mathbf{M}_{r-r_{j}}^{G}\left(g_{j} \mathbf{y}\right) \succcurlyeq 0$
$y_{0}=1$

$$
\mathbf{M}_{r}^{G}(\mathbf{y})=\bigoplus_{l=1}^{\sim} \mathbf{M}_{r l}^{G}(\mathbf{y})
$$

Symmetries in POPs: a second hierarchy

Truncation $\mathcal{S}_{r}^{l}=\left\{s_{\alpha}^{l}\right\}$ of \mathcal{S}^{l} with basis elements of deg $\leqslant r$
$\mathcal{B}_{2 r}$ a basis of $\mathbb{R}[\mathbf{x}]_{2 r}^{G}$ and y_{b} is the pseudo-moment variable corresponding to $b \in \mathcal{B}_{2 r}$

Theorem [Riener et al. '13]

(Dense)

$$
\inf \sum_{\alpha} f_{\alpha} y_{\alpha}
$$

$$
=\quad \inf \sum_{\alpha} f_{\alpha} y_{\alpha}
$$

$$
\text { s.t. } \quad \mathbf{M}_{r}(\mathbf{y}) \succcurlyeq 0
$$

$$
\text { s.t. } \quad \mathbf{M}_{r}^{G}(\mathbf{y}) \succcurlyeq 0
$$

$$
\mathbf{M}_{r-r_{j}}\left(g_{j} \mathbf{y}\right) \succcurlyeq 0
$$

$$
\mathbf{M}_{r-r_{j}}^{G}\left(g_{j} \mathbf{y}\right) \succcurlyeq 0
$$

$$
y_{0}=1
$$

$$
y_{0}=1
$$

$$
\mathbf{M}_{r}^{G}(\mathbf{y})=\bigoplus_{l=1}^{n} \mathbf{M}_{r l}^{G}(\mathbf{y}) \quad(u, v) \text { entry of } \mathbf{M}_{r l}^{G}(\mathbf{y})=\mathcal{R}_{G}\left(s_{u}^{l} s_{v}^{l}\right)
$$

Symmetries in POPs: a second hierarchy

$G=C_{4}$ the cyclic group

Symmetries in POPs: a second hierarchy

$G=C_{4}$ the cyclic group
Space of C_{4}-invariant polynomials of deg $\leqslant 2$:

$$
\begin{array}{r}
b_{0}=1 \quad b_{1}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad b_{2}=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
b_{3}=\frac{1}{4}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}\right) \quad b_{4}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right)
\end{array}
$$

Symmetries in POPs: a second hierarchy

$G=C_{4}$ the cyclic group
Space of C_{4}-invariant polynomials of deg $\leqslant 2$:

$$
\begin{array}{r}
b_{0}=1 \quad b_{1}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad b_{2}=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
b_{3}=\frac{1}{4}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}\right) \quad b_{4}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right)
\end{array}
$$

All irreducible representations are 1 -dim with symmetry adapted basis

$$
\left(\begin{array}{cccc}
1 & i & -1 & -i \\
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1
\end{array}\right)
$$

Symmetries in POPs: a second hierarchy

$$
G=C_{4} \text { the cyclic group }
$$

Space of C_{4}-invariant polynomials of deg $\leqslant 2$:

$$
\begin{array}{r}
b_{0}=1 \quad b_{1}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad b_{2}=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
b_{3}=\frac{1}{4}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}\right) \quad b_{4}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right)
\end{array}
$$

All irreducible representations are 1 -dim with symmetry adapted basis

$$
\left(\begin{array}{cccc}
1 & i & -1 & -i \\
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1
\end{array}\right) \rightsquigarrow \frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & -1 & 2 \\
1 & 2 & 1 & 0 \\
1 & 0 & -1 & -2 \\
1 & -2 & 1 & 0
\end{array}\right)
$$

Symmetries in POPs: a second hierarchy

$$
\begin{aligned}
& b_{0}= b_{1}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad b_{2}=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
& b_{3}=\frac{1}{4}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}\right) \quad b_{4}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right) \\
& \mathcal{S}_{1}^{1}=\left\{\frac{1}{2}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\right\} \quad \mathcal{S}_{1}^{2}=\left\{x_{2}-x_{4}\right\} \\
& \mathcal{S}_{1}^{3}=\left\{\frac{1}{2}\left(-x_{1}+x_{2}-x_{3}+x_{4}\right)\right\} \quad \mathcal{S}_{1}^{4}=\left\{x_{1}-x_{3}\right\}
\end{aligned}
$$

Symmetries in POPs: a second hierarchy

$$
\begin{aligned}
& b_{0}=1 \quad b_{1}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad b_{2}=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
& \quad b_{3}=\frac{1}{4}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}\right) \quad b_{4}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right) \\
& \mathcal{S}_{1}^{1}=\left\{\frac{1}{2}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\right\} \quad \mathcal{S}_{1}^{2}=\left\{x_{2}-x_{4}\right\} \\
& \mathcal{S}_{1}^{3}=\left\{\frac{1}{2}\left(-x_{1}+x_{2}-x_{3}+x_{4}\right)\right\} \quad \mathcal{S}_{1}^{4}=\left\{x_{1}-x_{3}\right\} \\
& \mathcal{R}_{G}\left(\frac{1}{2}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\right)=2 b_{1} \rightarrow 2 y_{1}
\end{aligned}
$$

Symmetries in POPs: a second hierarchy

$$
\begin{aligned}
& b_{0}=1 \quad b_{1}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad b_{2}=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
& \quad b_{3}=\frac{1}{4}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}\right) \quad b_{4}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right) \\
& \mathcal{S}_{1}^{1}=\left\{\frac{1}{2}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\right\} \quad \mathcal{S}_{1}^{2}=\left\{x_{2}-x_{4}\right\} \\
& \mathcal{S}_{1}^{3}=\left\{\frac{1}{2}\left(-x_{1}+x_{2}-x_{3}+x_{4}\right)\right\} \quad \mathcal{S}_{1}^{4}=\left\{x_{1}-x_{3}\right\} \\
& \mathcal{R}_{G}\left(\frac{1}{2}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\right)=2 b_{1} \rightarrow 2 y_{1} \\
& \mathcal{R}_{G}\left(x_{2}-x_{4}\right)=\mathcal{R}_{G}\left(\frac{1}{2}\left(-x_{1}+x_{2}-x_{3}+x_{4}\right)\right)=\mathcal{R}_{G}\left(x_{1}-x_{3}\right)=0
\end{aligned}
$$

Symmetries in POPs: a second hierarchy

$$
\begin{aligned}
& b_{0}=1 \quad b_{1}=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \quad b_{2}=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
& \quad b_{3}=\frac{1}{4}\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1}\right) \quad b_{4}=\frac{1}{2}\left(x_{1} x_{3}+x_{2} x_{4}\right) \\
& \mathcal{S}_{1}^{1}=\left\{\frac{1}{2}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\right\} \quad \mathcal{S}_{1}^{2}=\left\{x_{2}-x_{4}\right\} \\
& \mathcal{S}_{1}^{3}=\left\{\frac{1}{2}\left(-x_{1}+x_{2}-x_{3}+x_{4}\right)\right\} \quad \mathcal{S}_{1}^{4}=\left\{x_{1}-x_{3}\right\} \\
& \mathcal{R}_{G}\left(\frac{1}{2}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\right)=2 b_{1} \rightarrow 2 y_{1} \\
& \mathcal{R}_{G}\left(x_{2}-x_{4}\right)=\mathcal{R}_{G}\left(\frac{1}{2}\left(-x_{1}+x_{2}-x_{3}+x_{4}\right)\right)=\mathcal{R}_{G}\left(x_{1}-x_{3}\right)=0 \\
& \mathcal{R}_{G}\left(\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}\right)=b_{2}+2 b_{3}+b_{4} \rightarrow y_{2}+2 y_{3}+y_{4}
\end{aligned}
$$

Symmetries in POPs: a second hierarchy

$$
\mathbf{M}_{1}^{G}(\mathbf{y})=\left(\begin{array}{ccccc}
1 & 2 y_{1} & 0 & 0 & 0 \\
2 y_{1} & y_{2}+2 y_{3}+y_{4} & 0 & 0 & 0 \\
0 & 0 & y_{2}-y_{4} & 0 & 0 \\
0 & 0 & 0 & y_{2}-2 y_{3}+y_{4} & 0 \\
0 & 0 & 0 & 0 & y_{2}-y_{4}
\end{array}\right)
$$

Symmetries in POPs: a second hierarchy

$$
\mathbf{M}_{1}^{G}(\mathbf{y})=\left(\begin{array}{ccccc}
1 & 2 y_{1} & 0 & 0 & 0 \\
2 y_{1} & y_{2}+2 y_{3}+y_{4} & 0 & 0 & 0 \\
0 & 0 & y_{2}-y_{4} & 0 & 0 \\
0 & 0 & 0 & y_{2}-2 y_{3}+y_{4} & 0 \\
0 & 0 & 0 & 0 & y_{2}-y_{4}
\end{array}\right)
$$

- 4 variables instead of $15,2 \times 2$ block +3 elementary blocks instead of 5×5 block

Symmetries in POPs: special case of S_{n}

棠 Irreducible repr. of S_{n} isomorphic to the partitions of n

Symmetries in POPs: special case of S_{n}

棠 Irreducible repr. of S_{n} isomorphic to the partitions of n

Young tableau of $\lambda=(4,3,1,1,1) \vdash 10$
with columns \mathcal{C}_{j}
Classe of equivalent Young tableaux $=\{t\}$

$t=$	1	3	4	6
	5	7	8	
	9			
	2			
	10			

Symmetries in POPs: special case of S_{n}

Ireducible repr. of S_{n} isomorphic to the partitions of n

Young tableau of $\lambda=(4,3,1,1,1) \vdash 10$ with columns \mathcal{C}_{j}
Classe of equivalent Young tableaux $=\{t\}$

	3	4	6
		8	

$\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ with distinct components b_{1}, \ldots, b_{ℓ} ordered \downarrow

Symmetries in POPs: special case of S_{n}

Ireducible repr. of S_{n} isomorphic to the partitions of n

Young tableau of $\lambda=(4,3,1,1,1) \vdash 10$ with columns \mathcal{C}_{j}
Classe of equivalent Young tableaux $=\{t\}$

$\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ with distinct components b_{1}, \ldots, b_{ℓ} ordered \searrow
$\mu_{j}=\left|i: \beta_{i}=b_{j}\right| \Rightarrow \mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right) \vdash n$ is the shape of β

Symmetries in POPs: special case of S_{n}

$\ddot{\forall}$ Irreducible repr. of S_{n} isomorphic to the partitions of n

Young tableau of $\lambda=(4,3,1,1,1) \vdash 10$ with columns \mathcal{C}_{j}
Classe of equivalent Young tableaux $=\{t\}$

$\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ with distinct components b_{1}, \ldots, b_{ℓ} ordered \searrow
$\mu_{j}=\left|i: \beta_{i}=b_{j}\right| \Rightarrow \mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right) \vdash n$ is the shape of β
$(0,0,0),(1,0,0),(2,0,0)$ have shape (3), (2, 1), (2,1)
For each β, take pairs (t, T) where t is λ-tableau and T has shape λ and content μ to build:

$$
\mathbf{x}^{t, T}=\prod_{i, j} x_{\mathcal{C}_{j}}^{b_{T(i, j)}}
$$

Symmetries in POPs: special case of S_{n}

Column stabilizer CStab $_{t}=S_{\mathcal{C}_{1}} \times \cdots \times S_{\mathcal{C}_{v}}$

Symmetries in POPs: special case of S_{n}

Column stabilizer CStab $_{t}=S_{\mathcal{C}_{1}} \times \cdots \times S_{\mathcal{C}_{v}}$
Specht polynomial $\sum_{g \in \mathrm{CStab}_{t}} \operatorname{sgn}(g)\left(\mathbf{x}^{t, T}\right)^{g}$

Symmetries in POPs: special case of S_{n}

Column stabilizer $\mathrm{CStab}_{t}=S_{\mathcal{C}_{1}} \times \cdots \times S_{\mathcal{C}_{v}}$
Specht polynomial $\sum_{g \in \text { CStab }_{t}} \operatorname{sgn}(g)\left(\mathbf{x}^{t, T}\right)^{g} \rightsquigarrow$ generalized Specht polynomial after summing over tableaux equivalent to T

Symmetries in POPs: special case of S_{n}

Column stabilizer $\mathrm{CStab}_{t}=S_{\mathcal{C}_{1}} \times \cdots \times S_{\mathcal{C}_{v}}$
Specht polynomial $\sum_{g \in \mathrm{CStab}_{t}} \operatorname{sgn}(g)\left(\mathbf{x}^{t, T}\right)^{g} \rightsquigarrow$ generalized Specht polynomial after summing over tableaux equivalent to T
Theorem
β with shape $\mu \Longrightarrow$

$$
\mathbb{R}\left\{\mathbf{x}^{\beta}\right\}=\bigoplus_{\lambda \unrhd \mu} \bigoplus_{T} \mathbb{R}\left\{S_{(t, T)}\right\}
$$

t a λ-tableau with \nearrow rows \& columns
T with shape λ and content μ

Symmetries in POPs: special case of S_{n}

Column stabilizer $\mathrm{CStab}_{t}=S_{\mathcal{C}_{1}} \times \cdots \times S_{\mathcal{C}_{v}}$
Specht polynomial $\sum_{g \in \text { CStab }_{t}} \operatorname{sgn}(g)\left(\mathbf{x}^{t, T}\right)^{g} \rightsquigarrow$ generalized Specht polynomial after summing over tableaux equivalent to T

Theorem

β with shape $\mu \Longrightarrow$

$$
\mathbb{R}\left\{\mathbf{x}^{\beta}\right\}=\bigoplus_{\lambda \unrhd \mu} \bigoplus_{T} \mathbb{R}\left\{S_{(t, T)}\right\}
$$

t a λ-tableau with \nearrow rows $\&$ columns
T with shape λ and content μ
$\ddot{\nabla}$ Gives a special block-structure for the moment matrix!

Symmetries in POPs: special case of S_{3}

$r=2 \Longrightarrow$ moment variables indexed by partitions of $\{1,2,3,4\}$ with at most $n=3$ parts:

$$
\begin{array}{lllllllll}
y_{1} & y_{2} & y_{3} & y_{4} & y_{11} & y_{22} & y_{21} & y_{111} & y_{211}
\end{array}
$$

Symmetries in POPs: special case of S_{3}

$r=2 \Longrightarrow$ moment variables indexed by partitions of $\{1,2,3,4\}$ with at most $n=3$ parts:

$$
\begin{array}{lllllllll}
y_{1} & y_{2} & y_{3} & y_{4} & y_{11} & y_{22} & y_{21} & y_{111} & y_{211}
\end{array}
$$

棠 β should be $(0,0,0) \quad(1,0,0) \quad(2,0,0) \quad(1,1,0)$

Symmetries in POPs: special case of S_{3}

$r=2 \Longrightarrow$ moment variables indexed by partitions of $\{1,2,3,4\}$ with at most $n=3$ parts:

```
llllllllllll
```

棠 β should be $(0,0,0) \quad(1,0,0) \quad(2,0,0) \quad(1,1,0)$ Possible shapes (3) and (2,1) with generalized Specht polynomials

Symmetries in POPs: special case of S_{3}

$r=2 \Longrightarrow$ moment variables indexed by partitions of $\{1,2,3,4\}$ with at most $n=3$ parts:

$\begin{array}{lllllllll}y_{1} & y_{2} & y_{3} & y_{4} & y_{11} & y_{22} & y_{21} & y_{111} & y_{211}\end{array}$

学 β should be $(0,0,0) \quad(1,0,0) \quad(2,0,0) \quad(1,1,0)$
Possible shapes (3) and (2,1) with generalized Specht polynomials

$$
\begin{aligned}
& \left\{\begin{array}{lll}
1 & x_{1}+x_{2}+x_{3} & x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \\
x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}
\end{array}\right\} \\
& \left\{\begin{array}{lll}
x_{3}-x_{2}-x_{1} & x_{3}^{2}-x_{2}^{2}-x_{1}^{2} & -x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}
\end{array}\right\}
\end{aligned}
$$

学 Leads to $4 \times 4+3 \times 3$-block moment matrices instead of 10×10 !

Conclusion

Sparsity exploiting converging hierarchies to minimize polynomials, eigenvalue/trace, joint spectral radius

Conclusion

SPARSITY EXPLOItING CONVERGING HIERARCHIES to minimize polynomials, eigenvalue/trace, joint spectral radius

FASt implementation in Julia: TSSOS, NCTSSOS, SparseJSR

Conclusion

SPARSITY EXPLOItING CONVERGING HIERARCHIES to minimize polynomials, eigenvalue/trace, joint spectral radius

FASt implementation in Julia: TSSOS, NCTSSOS, SparseJSR
Combine correlative \& term sparsity for problems with $n=10^{3}$

Further topics

Convergence rate of SPARSE hierarchies?

Further topics

Convergence rate of SPARSE hierarchies?

学 (smart) solution extraction for term sparse/symmetric POPs

Further topics

Convergence rate of SPARSE hierarchies?
"̈̈ (smart) solution extraction for term sparse/symmetric POPs

Numerical conditioning of sparse/symmetric SDP relaxations?

Further topics

Convergence rate of SPARSE hierarchies?
"̈̈ (smart) solution extraction for term sparse/symmetric POPs

Numerical conditioning of sparse/symmetric SDP relaxations?
" Tons of applications...

Thank you for your attention!

https://homepages.laas.fr/vmagron

GIthub:TSSOS

References

Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM Comp., 1972
Griewank \& Toint. Numerical experiments with partially separable optimization problems. Numerical analysis, 1984

Agler, Helton, McCullough \& Rodman. Positive semidefinite matrices with a given sparsity pattern. Linear algebra \& its applications, 1988
 Blair \& Peyton. An introduction to chordal graphs and clique trees. Graph theory \& sparse matrix computation, 1993

Vandenberghe \& Andersen. Chordal graphs and semidefinite optimization. Foundations \& Trends in Optim., 2015

References

R
Lasserre. Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM Optim., 2006

a
Waki, Kim, Kojima \& Muramatsu. Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM Optim., 2006

速
Magron, Constantinides, \& Donaldson. Certified Roundoff Error Bounds Using Semidefinite Programming. Trans. Math. Softw., 2017 Magron. Interval Enclosures of Upper Bounds of Roundoff Errors Using Semidefinite Programming. Trans. Math. Softw., 2018
 Josz \& Molzahn. Lasserre hierarchy for large scale polynomial optimization in real and complex variables. SIAM Optim., 2018 Weisser, Lasserre \& Toh. Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity. Math. Program., 2018
. Chen, Lasserre, Magron \& Pauwels. A sublevel moment-sos hierarchy for polynomial optimization, arxiv:2101.05167

References

R Chen, Lasserre, Magron \& Pauwels. Semialgebraic Optimization for Bounding Lipschitz Constants of ReLU Networks. NIPS, 2020
Chen, Lasserre, Magron \& Pauwels. Semialgebraic Representation of Monotone Deep Equilibrium Models and Applications to Certification. arxiv:2106.01453
嗇 Mai, Lasserre \& Magron. A sparse version of Reznick's Positivstellensatz. arxiv:2002.05101
 Tacchi, Weisser, Lasserre \& Henrion. Exploiting sparsity for semi-algebraic set volume computation. Foundations of Comp. Math., 2021

Tacchi, Cardozo, Henrion \& Lasserre. Approximating regions of attraction of a sparse polynomial differential system. IFAC, 2020

- Schlosser \& Korda. Sparse moment-sum-of-squares relaxations for nonlinear dynamical systems with guaranteed convergence. arxiv:2012.05572

EZheng \& Fantuzzi. Sum-of-squares chordal decomposition of polynomial matrix inequalities. arxiv:2007.11410

References

E
Klep, Magron \& Povh. Sparse Noncommutative Polynomial Optimization. Math Prog. A, arxiv:1909.00569

NCSOStools
Reznick. Extremal PSD forms with few terms. Duke mathematical journal, 1978

Wang, Magron \& Lasserre. TSSOS: A Moment-SOS hierarchy that exploits term sparsity. SIAM Optim., 2021

Wang, Magron \& Lasserre. Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension. SIAM Optim., 2021

Wang, Magron, Lasserre \& Mai. CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization. arxiv:2005.02828 Magron \& Wang. TSSOS: a Julia library to exploit sparsity for large-scale polynomial optimization, MEGA, 2021

Parrilo \& Jadbabaie. Approximation of the joint spectral radius using sum of squares. Linear Algebra \& its Applications, 2008
E Wang, Maggio \& Magron. SparseJSR: A fast algorithm to compute joint spectral radius via sparse sos decompositions. ACC 2021

References

显
Vreman, Pazzaglia, Wang, Magron \& Maggio. Stability of control systems under extended weakly-hard constraints. arxiv:2101.11312
 Wang \& Magron. Exploiting Sparsity in Complex Polynomial Optimization. JOTA, 2021

Wang \& Magron. Exploiting term sparsity in Noncommutative Polynomial Optimization. Computational Optimization \& Applications, 2022 NCTSSOS

Navascués, Pironio \& Acín. A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New Journal of Physics, 2008

Klep, Magron \& Volčič. Optimization over trace polynomials. Annales Henri Poincaré, 2021Serre. Linear representations of finite groups. Springer, 1977

EGatterman \& Parrilo. Symmetry groups, semidefinite programs, and sums of squares, Journal of Pure and Applied Algebra, 2004
 Riener, Theobald, Andrén \& Lasserre. Exploiting symmetries in SDP-relaxations for polynomial optimization. MathOR, 2013Blekherman \& Riener. Symmetric non-negative forms and sums of squares. Discrete \& Computational Geometry, 2021

