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The POP hammer

NP-hard NON CONVEX Problem fmin = inf f (x)

Theory

(Primal) (Dual)

inf

∫
f dµ sup b

with µ proba ⇒ infinite-dim ⇐ with f − b ⩾ 0

[Lasserre ’01] Hierarchy of CONVEX Problems ↑ fmin

Based on representation of positive polynomials [Putinar ’93]

Attracted a lot of attention in optimization, applied mathematics,
quantum computing, engineering, theoretical computer science

Emerging applications: quantum information theory, deep
learning & power systems
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Sparse hierarchies
Structure exploitation POP inf f (x) with “sparse” f

Correlative sparsity: few variable products in f
⇝ f = x1x2 + x2x3 + · · ·+ x99x100 1 2 3 10099
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Term sparsity: few terms in f
⇝ f = x991 x2 + x1x

100
2

Performance vs Accuracy

Tons of applications: roundoff error bounds, entanglement,
optimal power-flow, analysis of dynamical systems
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Koopman operators

Koopman operators for nonlinear dynamical system x+ = f (x)

Represented by an ∞-dim linear operator
truncate its spectrum =⇒ finite-dim linear programming

Applications to model predictive control
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Christoffel-Darboux kernels

Old tool well-known in approximation theory & orthogonal polynomials

Outlier detection Interpolation Recovery

Defined easily from the input data
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Chair activities

Robustness certification of neural networks
sparse polynomial optimization

Output

Hidden

Input

Stability analysis of recurrent networks
copositive programming/integral constraints, Koopman

Training/classification

Christoffel-Darboux kernels
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Zoom: robustness of NN [PhD Chen ’19-22]

[SIAM News March ’21]

“Yet DL has an Achilles’ heel. Current implementations can be highly
unstable, meaning that a certain small perturbation to the input of a
trained neural network can cause substantial change in its output. This
phenomenon is both a nuisance and a major concern for the safety and
robustness of DL-based systems in critical applications—like
healthcare—where reliable computations are essential”
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Zoom: robustness of NN [PhD Chen ’19-22]

x0 ∈ Rp z0 ∈ Rp z1 ∈ Rp1 . . . zm ∈ Rpm zi = AiReLU(zi−1) + bi

ReLU (left) & its “semialgebraicity” (right)
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Zoom: robustness of NN [PhD Chen ’19-22]

“Direct” certification of a classifier with 1 hidden layer

max
x,z

(Ci,: − Ck,:)z

s.t.

{
z = ReLU(Ax+ b)

||x− x0|| ≤ ϵ

Monotone equilibrium networks [Winston Kolter ’20]

z = ReLU(Ax+ b) → z = ReLU(Wz+ Ax+ b)

“Indirect” with Lipschitz constant/ellipsoid approximation

Go between 1st & 2nd stair in sparse hierarchy

Victor Magron Polynomial optimization methods for machine learning 9 / 10



Zoom: robustness of NN [PhD Chen ’19-22]

“Direct” certification of a classifier with 1 hidden layer

max
x,z

(Ci,: − Ck,:)z

s.t.

{
z = ReLU(Ax+ b)

||x− x0|| ≤ ϵ

Monotone equilibrium networks [Winston Kolter ’20]

z = ReLU(Ax+ b) → z = ReLU(Wz+ Ax+ b)

“Indirect” with Lipschitz constant/ellipsoid approximation

Go between 1st & 2nd stair in sparse hierarchy

Victor Magron Polynomial optimization methods for machine learning 9 / 10



Zoom: robustness of NN [PhD Chen ’19-22]

“Direct” certification of a classifier with 1 hidden layer

max
x,z

(Ci,: − Ck,:)z

s.t.

{
z = ReLU(Ax+ b)

||x− x0|| ≤ ϵ

Monotone equilibrium networks [Winston Kolter ’20]

z = ReLU(Ax+ b) → z = ReLU(Wz+ Ax+ b)

“Indirect” with Lipschitz constant/ellipsoid approximation

Go between 1st & 2nd stair in sparse hierarchy

Victor Magron Polynomial optimization methods for machine learning 9 / 10



Zoom: robustness of NN [PhD Chen ’19-22]

“Direct” certification of a classifier with 1 hidden layer

max
x,z

(Ci,: − Ck,:)z

s.t.

{
z = ReLU(Ax+ b)

||x− x0|| ≤ ϵ

Monotone equilibrium networks [Winston Kolter ’20]

z = ReLU(Ax+ b) → z = ReLU(Wz+ Ax+ b)

“Indirect” with Lipschitz constant/ellipsoid approximation

Go between 1st & 2nd stair in sparse hierarchy

Victor Magron Polynomial optimization methods for machine learning 9 / 10



Collaborations & output

Polynomial optimization for ML

POP ANITI
MAC control
DISCO chair of Travé-Massuyès
UT3 Pauwels

TU Chemnitz formal verif
CREATE project Descartes
UCSB Koopman
CTU Prague control
CWI ideal sparsity

Kyushu University RNN

Julia packages github:InterRelax and github:TSSOS

∼ 40 publications including 3 books, 2 NeurIPS, 20 journals
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