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The POP hammer
NP-hard NON CONVEX Problem f.,, = inf f(x)

(Primal) - (Dual)
inf /fdﬂ '&J sup b

with p proba = infinite-dim < with f—b>0
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Attracted a lot of attention in optimization, applied mathematics,
quantum computing, engineering, theoretical computer science

' Emerging applications: quantum information theory, deep
learning & power systems
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Tons of applications: roundoff error bounds, entanglement,
optimal power-flow, analysis of dynamical systems
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Koopman operators

Koopman operators for nonlinear dynamical system x* = f(x)
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Koopman operators

Koopman operators for nonlinear dynamical system x* = f(x)

Represented by an oo-dim linear operator
V" truncate its spectrum = finite-dim linear programming

Applications to model predictive control

A Koopman MPC

P
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Christoffel-Darboux kernels

Old tool well-known in approximation theory & orthogonal polynomials
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Christoffel-Darboux kernels
Old tool well-known in approximation theory & orthogonal polynomials

Outlier detection Interpolation Recovery

V" Defined easily from the input data

The
Christoffel-Darboux
Kernel for Data Analysis

eanpemarg awar, iosand ravwers
i s
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Zoom: robustness of NN [PhD Chen '19-22]

[SIAM News March '21]

“Yet DL has an Achilles’ heel. Current implementations can be highly
unstable, meaning that a certain small perturbation to the input of a
trained neural network can cause substantial change in its output. This
phenomenon is both a nuisance and a major concern for the safety and
robustness of DL-based systems in critical applications—like
healthcare—where reliable computations are essential”
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Zoom: robustness of NN [PhD Chen '19-22]
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ReLU (left) & its “semialgebraicity” (right)

u = max{x,0} ulu—x)=0,u>x,u>0
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Zoom: robustness of NN [PhD Chen '19-22]

V" “Direct” certification of a classifier with 1 hidden layer

max (C" — Ck9)z

X,z

.. [z=ReLUAX+Db)
T Ux—xoll <€
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Collaborations & output

[ Polynomial optimization for ML ]

== TU Chemnitz formal verif
POP ANITI CREATE project Descartes
MAC control = UCSB Koopman
DISCO chair of Travé-Massuyes b= CTU Prague control
UT3 Pauwels = CWI ideal sparsity

®  Kyushu University RNN
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Collaborations & output

[ Polynomial optimization for ML ]

== TU Chemnitz formal verif
POP ANITI CREATE project Descartes
MAC control = UCSB Koopman
DISCO chair of Travé-Massuyes b= CTU Prague control
UT3 Pauwels = CWI ideal sparsity

®  Kyushu University RNN

Julia packages github:InterRelax and github: TSSOS
~ 40 publications including 3 books, 2 NeurlPS, 20 journals
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