Polynomial optimization methods for machine learning

Victor Magron, CNRS LAAS
Chair of Polynomial optimization for Machine Learning

Spot ANITI Days, 12 November 2022

Context: what and who?

Context: what and who?

\rightsquigarrow use polynomial optimization (POP) for machine learning

Context: what and who?

\rightsquigarrow use polynomial optimization (POP) for machine learning

Tong
Chen

Milan
Korda

Jean-Bernard
Lasserre

Alexey
Lazarev

Victor
Magron

Edouard Pauwels

Context: what and who?

\rightsquigarrow use polynomial optimization (POP) for machine learning

Tong
Chen 2019

Milan
Korda
Jean-Bernard
Lasserre

Alexey
Lazarev

Victor
Magron

Edouard Pauwels

Context: what and who?

\rightsquigarrow use polynomial optimization (POP) for machine learning

Tong
Chen 2019

Milan
Korda
Lasserre

The POP hammer

NP-hard NON CONVEX Problem $f_{\text {min }}=\inf f(\mathbf{x})$

Theory (Primal)

(Dual)
inf $\int f d \mu$
with $~$

$$
\text { with } f-b \geqslant 0
$$

The POP hammer

NP-hard NON CONVEX Problem $f_{\text {min }}=\inf f(\mathbf{x})$

Practice

$$
\begin{aligned}
\text { (Primal Relaxation) } & \text { (Dual Strengthening) } \\
\text { moments } \int \mathbf{x}^{\alpha} d \mu & f-b=\text { sum of squares } \\
\text { finite number } \Rightarrow \text { finite-dim } & \Leftarrow \text { fixed degree }
\end{aligned}
$$

[Lasserre '01] Hierarchy of CONVEX Problems $\uparrow f_{\text {min }}$ Based on representation of positive polynomials [Putinar '93]

The POP hammer

NP-hard NON CONVEX Problem $f_{\text {min }}=\inf f(\mathbf{x})$

Practice

(Primal Relaxation)
moments $\int \mathbf{x}^{\alpha} d \mu$

(Dual Strengthening)
$f-b=$ sum of squares
finite number \Rightarrow finite-dim $\quad \Leftarrow$ fixed degree
[Lasserre '01] Hierarchy of CONVEX Problems $\uparrow f_{\text {min }}$ Based on representation of positive polynomials [Putinar '93]
Attracted a lot of attention in optimization, applied mathematics, quantum computing, engineering, theoretical computer science

The POP hammer

NP-hard NON CONVEX Problem $f_{\text {min }}=\inf f(\mathbf{x})$

Practice

$$
\begin{aligned}
\text { (Primal Relaxation) } & \begin{array}{l}
\text { (Dual Strengthe } \\
\text { moments } \int \mathbf{x}^{\alpha} d \mu
\end{array} \\
\text { finite number } \Rightarrow \text { finite-dim } & \Leftarrow \text { fixed degree }
\end{aligned}
$$

[Lasserre '01] Hierarchy of CONVEX Problems $\uparrow f_{\text {min }}$

 Based on representation of positive polynomials [Putinar '93]Attracted a lot of attention in optimization, applied mathematics, quantum computing, engineering, theoretical computer science

Emerging applications: quantum information theory, deep learning \& power systems

Sparse hierarchies

Structure exploitation POP $\inf f(\mathbf{x})$ with "SPARSE" f

Sparse hierarchies

Structure exploitation POP $\inf f(\mathbf{x})$ with "SPARSE" f
Correlative sparsity: few variable products in f

Sparse hierarchies

Structure exploitation POP $\inf f(\mathbf{x})$ with "SPARSE" f
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$
(1)-2-3

Sparse hierarchies

Structure exploitation POP $\inf f(\mathbf{x})$ with "SPARSE" f
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Sparse hierarchies

Structure exploitation POP $\inf f(\mathbf{x})$ with "SPARSE" f
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$
(1)-2

$$
-3
$$

Term sparsity: few terms in f

Sparse hierarchies

Structure exploitation POP $\inf f(\mathbf{x})$ with "SPARSE" f
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$
(1)-2-3

Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$

Sparse hierarchies

Structure exploitation POP $\inf f(\mathbf{x})$ with "SParse" f
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$

Performance

(1-2-3---99-100

Accuracy

Sparse hierarchies

Structure exploitation POP $\inf f(\mathbf{x})$ with "SPARSE" f
Correlative sparsity: few variable products in f
$\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$

Performance

vS

$$
1-2-3
$$

$99-100$

Accuracy

Tons of applications: roundoff error bounds, entanglement, optimal power-flow, analysis of dynamical systems

Koopman operators

Koopman operators for nonlinear dynamical system $\mathbf{x}^{+}=f(\mathbf{x})$

Koopman operators

Koopman operators for nonlinear dynamical system $\mathbf{x}^{+}=f(\mathbf{x})$
Represented by an ∞-dim linear operator

Koopman operators

Koopman operators for nonlinear dynamical system $\mathbf{x}^{+}=f(\mathbf{x})$
Represented by an ∞-dim linear operator ' truncate its spectrum \Longrightarrow finite-dim linear programming

Koopman operators

Koopman operators for nonlinear dynamical system $\mathbf{x}^{+}=f(\mathbf{x})$
Represented by an ∞-dim linear operator " truncate its spectrum \Longrightarrow finite-dim linear programming

Applications to model predictive control

Christoffel-Darboux kernels

Old tool well-known in approximation theory \& orthogonal polynomials

Christoffel-Darboux kernels

Old tool well-known in approximation theory \& orthogonal polynomials

Outlier detection

Recovery

Christoffel-Darboux kernels

Old tool well-known in approximation theory \& orthogonal polynomials

Outlier detection

Recovery

Defined easily from the input data

Christoffel-Darboux kernels

Old tool well-known in approximation theory \& orthogonal polynomials

棠 Defined easily from the input data

Chair activities

Robustness Certification of neural networks

Chair activities

Robustness certification of neural networks ". sparse polynomial optimization

Stability Analysis of RECURRENT NETWORKS $\because{ }^{\circ}$ - copositive programming/integral constraints, Koopman

Chair activities

Robustness certification of neural networks 'ٌ̈' sparse polynomial optimization

Stability analysis of RECURRENT NETWORKS " \because - copositive programming/integral constraints, Koopman

Training/CLASSIFICATION
${ }^{\circ} \mathrm{C}$ - Christoffel-Darboux kernels

Chair activities

Robustness CERTIFICATION OF NEURAL NETWORKS ＇$⿱ ⺌ 冖 口$＇sparse polynomial optimization

Stability analysis of RECURRENT NETWORKS $\overbrace{\mathrm{P}}$－copositive programming／integral constraints，Koopman

Training／CLASSIFICATION ${ }^{\circ} \mathrm{C}$－Christoffel－Darboux kernels

Chair activities

Robustness CERTIFICATION OF NEURAL NETWORKS ' \because ' sparse polynomial optimization

Stability analysis of RECURRENT NETWORKS " \because - copositive programming/integral constraints, Koopman

Training/CLASSIFICATION "̈- Christoffel-Darboux kernels

Zoom: robustness of NN [PhD Chen '19-22]

[SIAM News March '21]
"Yet DL has an Achilles' heel. Current implementations can be highly unstable, meaning that a certain small perturbation to the input of a trained neural network can cause substantial change in its output. This phenomenon is both a nuisance and a major concern for the safety and robustness of DL-based systems in critical applications-like healthcare-where reliable computations are essential"

Zoom: robustness of NN [PhD Chen '19-22]

$$
\mathbf{z}_{i}=\mathbf{A}_{i} \operatorname{ReLU}\left(\mathbf{z}_{i-1}\right)+\mathbf{b}_{i}
$$

ReLU (left) \& its "semialgebraicity" (right)

$u=\max \{x, 0\}$

Zoom: robustness of NN [PhD Chen '19-22]

" ${ }^{\circ}$ " Direct" certification of a classifier with 1 hidden layer

$$
\begin{array}{ll}
\max _{\mathbf{x}, \mathbf{z}} & \left(\mathbf{C}^{i,:}-\mathbf{C}^{k,:}\right) \mathbf{z} \\
\text { s.t. } & \left\{\begin{array}{l}
\mathbf{z}=\operatorname{ReLU}(\mathbf{A} \mathbf{x}+\mathbf{b}) \\
\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq \epsilon
\end{array}\right.
\end{array}
$$

Zoom: robustness of NN [PhD Chen '19-22]

\ddot{P}^{-}"Direct" certification of a classifier with 1 hidden layer

$$
\begin{array}{ll}
\max _{\mathbf{x}, \mathbf{z}} & \left(\mathbf{C}^{i,:}-\mathbf{C}^{k,:}\right) \mathbf{z} \\
\text { s.t. } & \left\{\begin{array}{l}
\mathbf{z}=\operatorname{ReLU}(\mathbf{A} \mathbf{x}+\mathbf{b}) \\
\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq \epsilon
\end{array}\right.
\end{array}
$$

" Monotone equilibrium networks [Winston Kolter '20]

$$
\mathbf{z}=\operatorname{ReLU}(\mathbf{A} \mathbf{x}+\mathbf{b}) \rightarrow \mathbf{z}=\operatorname{ReLU}(\mathbf{W} \mathbf{z}+\mathbf{A} \mathbf{x}+\mathbf{b})
$$

Zoom: robustness of NN [PhD Chen '19-22]

"̈' "Direct" certification of a classifier with 1 hidden layer

$$
\begin{array}{ll}
\max _{\mathbf{x}, \mathbf{z}} & \left(\mathbf{C}^{i,:}-\mathbf{C}^{k,:}\right) \mathbf{z} \\
\text { s.t. } & \left\{\begin{array}{l}
\mathbf{z}=\operatorname{ReLU}(\mathbf{A} \mathbf{x}+\mathbf{b}) \\
\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq \epsilon
\end{array}\right.
\end{array}
$$

$\ddot{\varphi}$ - Monotone equilibrium networks [Winston Kolter '20]

$$
\mathbf{z}=\operatorname{ReLU}(\mathbf{A} \mathbf{x}+\mathbf{b}) \rightarrow \mathbf{z}=\operatorname{ReLU}(\mathbf{W} \mathbf{z}+\mathbf{A} \mathbf{x}+\mathbf{b})
$$

"̈. "Indirect" with Lipschitz constant/ellipsoid approximation

Zoom: robustness of NN [PhD Chen '19-22]

"̈' "Direct" certification of a classifier with 1 hidden layer

$$
\begin{array}{ll}
\max _{\mathbf{x}, \mathbf{z}} & \left(\mathbf{C}^{i,:}-\mathbf{C}^{k,:}\right) \mathbf{z} \\
\text { s.t. } & \left\{\begin{array}{l}
\mathbf{z}=\operatorname{ReLU}(\mathbf{A} \mathbf{x}+\mathbf{b}) \\
\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq \epsilon
\end{array}\right.
\end{array}
$$

$\ddot{\varphi}$ Monotone equilibrium networks [Winston Kolter '20]

$$
\mathbf{z}=\operatorname{ReLU}(\mathbf{A} \mathbf{x}+\mathbf{b}) \rightarrow \mathbf{z}=\operatorname{ReLU}(\mathbf{W} \mathbf{z}+\mathbf{A} \mathbf{x}+\mathbf{b})
$$

曾 "Indirect" with Lipschitz constant/ellipsoid approximation

- Go between 1ST \& 2ND stair in SPARSE hierarchy

Collaborations \& output

Collaborations \& output

Julia packages github:InterRelax and github:TSSOS

Collaborations \& output

Julia packages github:InterRelax and github:TSSOS
~ 40 publications including 3 books, 2 NeurIPS, 20 journals

