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Why optimizing over polynomials?
VERIFICATION/ANALYSIS OF COMPLEX NONLINEAR SYSTEMS . . .

SAFETY of critical parts for computing
⊕

physical devices

Cars
x

Control Software/Hardware

xi xj

Smart
Grids

Quantum
Systems

. . . CAST AS OPTIMIZATION PROBLEM SOLVE OFFLINE

Input: linear semidefinite polynomial
Output: value + numerical/symbolic/formal certificate
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The quest of modeling: applications

STATIC Optimization f , g ∈ R[x]
f = sum of squares σ =⇒ inf f > 0

Semialgebraic constraints X = {x : g(x) > 0}
f = σ0 + σ1g =⇒ f > 0 on X

DYNAMICAL Optimization
Optimal control
[Henrion Lasserre Prieur Trelat ’08]

Regions of attraction
[Henrion Korda ’14]

NONCOMMUTATIVE Optimization (x1x2 6= x2x1)
Minimal eigenvalue/trace

Useful in quantum information (Bell inequalities)
[Navascués Pironio Acín ’08]
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The quest of modeling: the hierarchy

NP-hard NON CONVEX Problem fmin = inf f (x)

Theory

(Primal) (Dual)

inf
∫

f dµ sup b

with µ proba ⇒ INFINITE LP ⇐ with f − b > 0

[Lasserre ’01] HIERARCHY of CONVEX PROBLEMS ↑ fmin

Based on representation of positive polynomials [Putinar ’93]

Numerical
Solvers

degree d
n vars

=⇒ Approximate Certificate

=⇒ (n+d
n ) SDP VARIABLES

Victor Magron 3 / 43



The quest of modeling: the hierarchy

NP-hard NON CONVEX Problem fmin = inf f (x)

Practice

(Primal Relaxation) (Dual Strengthening)

moments
∫

xα dµ f − b = sum of squares

finite number ⇒ SDP ⇐ fixed degree

[Lasserre ’01] HIERARCHY of CONVEX PROBLEMS ↑ fmin

Based on representation of positive polynomials [Putinar ’93]

Numerical
Solvers

degree d
n vars

=⇒ Approximate Certificate

=⇒ (n+d
n ) SDP VARIABLES
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The quest of certification (past)

Kepler’s conjecture (1611): the max
density of sphere packings is π/

√
18

Flyspeck : Formalizing the proof of
Kepler [Hales et al. ’94]
Certification of thousands of “tight” non-
linear inequalities [Hales et al. ’17]

MODEL

POLYNOMIAL
OPTIMIZATION

CERTIF
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The quest of efficiency (past)

Exploiting sparsity
few terms [Reznick ’78]
few correlations
[Lasserre, Waki et al. ’06]

Optimal Powerflow n ' 103

[Josz et al. ’18]

MODEL

POLYNOMIAL
OPTIMIZATION

CERTIF

LARGE
SCALE
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Contributions in polynomial optimization

51 papers =
23 journals
14 conf. proceedings
14 preprints

MODEL

DYNAMICAL
SYSTEMS

TRACE
POLYNOMIALS

POLYNOMIAL
OPTIMIZATION

CERTIF

ROBUST
SDP

EXACT
SOS

LARGE
SCALE

COMPUTER
ARITHMETIC

NETWORKED
SYSTEMS
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Introduction

The quest of modeling

The quest of certification

The quest of efficiency

Research projects in polynomial optimization



The quest of modeling: dynamical systems

CHARACTERIZE A VALUE

fmin = inf
x∈X

f (x) = inf
µ∈M+(X)

∫
X

f dµ

Dirac measure at a
minimizer

CHARACTERIZE A SET

?

Uniform measure on this set

Victor Magron 7 / 43



The quest of modeling: dynamical systems

4 papers with Henrion
Polynomial map f (x) = ( f1(x), . . . , fn(x))

Semialgebraic state set constraints X = either a box� or a ball
Discrete-time xt+1 = f (xt) , xt ∈ X , t ∈N

REACHABLE SET

Semialgebraic initial states X0
All admissible trajectories X∞

ATTRACTORS

Support of invariant measure
µ(A) = µ( f−1(A)) = f #µ(A)

∀ Borel set A ∈ B(X)

Victor Magron 8 / 43
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The quest of modeling: dynamical systems

REACHABLE SET X∞

µ0 ∈M+(X0), µ1 = f # µ0 . . . µt = f # µt−1

Average νt = ∑i6t µi
The occupation measures µt, νt, µ0 satisfy Liouville’s Equation:

µt + νt = f # νt + µ0 ← linear in µt, νt, µ0

The uniform measure on X∞ satisfies Liouville and is the (unique)
solution of an LP over measures [Magron Henrion et al. ’19]

INVARIANT MEASURES → Similar story [Magron Forets Henrion ’19]

In both cases, the support of all measures is bounded to ensure
that the LP has an optimal solution

Zero duality gap follows from [Barvinok ’02]

Victor Magron 9 / 43
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The quest of modeling: dynamical systems

Use the moment-SOS hierarchy to relax the LP into a
hierarchy of SDP

REACHABLE SET for FitzHugh-Nagumo Neuron model

ATTRACTOR of Arneodo-Coullet

Victor Magron 10 / 43
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The quest of modeling: trace polynomials

They arise from entanglement: Werner witnesses [Werner ’89],
polynomial Bell inequalities [Pozsgay et al. ’17]

T = T〈x〉

Symmetric noncommutative variables x = (x1, . . . , xn)

& sums of product traces T = pure trace polynomials

f = x1x2x2
1 − tr(x2) tr(x1x2) tr(x2

1x2)x2x1 ∈ T

with x1x2 6= x2x1, involution (x1x2)
? = x2x1

tr( f ) = tr(x3
1x2)− tr(x2) tr(x1x2)

2 tr(x2
1x2) ∈ T

sums of hermitian squares ( f ? f )
S ⊂ Sym T Xj operators from finite von Neumann algebra
Constraints {X = (X1, . . . , Xn) : g(X) < 0 , ∀g ∈ S}
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The quest of modeling: trace polynomials

Restrict the set of constraints to operators from “nice” von
Neumann algebra of type II1

=⇒ One can minimize pure trace polynomials on such sets!

S[N] = S∪ {N− x2
j }: add “ball” constraints to ensure convergence

=⇒ Pure trace variant of Helton-McCullough representation

Theorem [Klep Magron Volcic ’21]

Let S ⊂ Sym T and f ∈ T. There is a hierarchy of SDP lower bounds
converging to fmin on the II1-von Neumann semialgebraic set associ-
ated to S[N].

Victor Magron 12 / 43
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The quest of certification: two-player games

MOTZKIN POLYNOMIAL

f =
1
27

+ x2
1x4

2 + x4
1x2

2 − x2
1x2

2

f > 0 but f /∈ Σ = SOS

f

Σ

fmin = min
xi∈R

f (x1, x2) = 0 for |xi| =
√

3
3

Moment-SOS hierarchy [Henrion-Lasserre ’05]

order 3 = “−∞” unbounded SDP =⇒ f /∈ Σ

order 4 = “−∞”

order 5 ' −0.4

order 8 ' −10−8⊕ extraction of optimizers Paradox ?!

Similar paradox in quantum information [Navascués et al. ’13]

Victor Magron 13 / 43
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The quest of certification: two-player games

η perturbation of the SDP constraints =⇒ f̃ = f + η ∑
β

x2β

[Lasserre Magron ’19] Inaccurate SDP Relaxations . . .

(Primal Relaxation) (Dual Strengthening)

inf
y ∑

α

f̃α yα sup b

s.t. Md(y) < 0 f̃ − b = σ

y0 = 1 σ ∈ Σd

. . . of the robust problem max f̃∈B∞( f ,η) minx f̃ (x)

Victor Magron 14 / 43
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. . . of the robust problem max f̃∈B∞( f ,η) minx f̃ (x)

Victor Magron 14 / 43



The quest of certification: two-player games

Theorem [Lasserre 06]

For fixed n, any f > 0 can be approximated arbitrarily closely by SOS
polynomials.

Σ

f

f̃ = f + η ∑
|β|6d

x2β Σ
f̃

At fixed η, when d↗, f̃ ∈ Σ!

f + 10−7 ∑
|β|64

x2β ∈ Σ

Paradox Explanation
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The quest of certification: two-player games

max−min ROBUST OPTIMIZATION

Player 1 (solver) picks f̃ ∈ B∞( f ) SDP leads

Player 2 (optimizer) picks an SOS User follows

Convex SDP relaxations =⇒ max−min = min−max

min−max ROBUST OPTIMIZATION

Player 1 (robust optimizer) picks an SOS User leads

Player 2 (solver) picks f̃ ∈ B∞( f ) SDP follows
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The quest of certification: exact SOS

APPROXIMATE SOLUTIONS

sum of squares of x2
1 − 2x1x2 + x2

2? (1.00001x1 − 0.99998x2)
2!

x2
1 − 2x1x2 + x2

2 ' (1.00001x1 − 0.99998x2)
2

x2
1 − 2x1x2 + x2

2 6= 1.0000200001x2
1 − 1.9999799996x1x2 + 0.9999600004x2

2

' → = ?

Victor Magron 17 / 43



The quest of certification: exact SOS

Win TWO-PLAYER GAME: given f ∈ Q[x] compute fi ∈ Q[x], ci ∈ Q>0

s.t. f = ∑i ci fi
2

Σ
f

sum of squares of f ? ' Output!

Error Compensation

' → =

PERTURBATION: approximate SOS f (x) - ε ∑α x2α = σ̃ + u

4 papers [Magron Safey El Din Schweighofer ’17-21]
Software library: RealCertify

Victor Magron 18 / 43



The quest of certification: exact SOS

Win TWO-PLAYER GAME: given f ∈ Q[x] compute fi ∈ Q[x], ci ∈ Q>0

s.t. f = ∑i ci fi
2

Σ
f

Hybrid Symbolic/Numeric Algorithms

sum of squares of f − ε? ' Output!

Error Compensation

' → =

PERTURBATION: approximate SOS f (x) - ε ∑α x2α = σ̃ + u

4 papers [Magron Safey El Din Schweighofer ’17-21]
Software library: RealCertify

Victor Magron 18 / 43



The quest of certification: exact SOS

Win TWO-PLAYER GAME: given f ∈ Q[x] compute fi ∈ Q[x], ci ∈ Q>0

s.t. f = ∑i ci fi
2

Σ
f

Hybrid Symbolic/Numeric Algorithms

sum of squares of f − ε? ' Output!

Error Compensation

' → =

PERTURBATION: approximate SOS f (x) - ε ∑α x2α = σ̃ + u

4 papers [Magron Safey El Din Schweighofer ’17-21]
Software library: RealCertify

Victor Magron 18 / 43



The quest of certification: exact SOS

[Chevillard et. al 11]

f ∈ Q[X], deg f = d = 2k, f > 0

PERTURB: find ε ∈ Q s.t.

fε = f − ε
k

∑
i=0

x2i > 0

SDP Approximation

f − ε
k

∑
i=0

x2i = σ̃ + u

ABSORB small enough ui
=⇒ ε ∑k

i=0 x2i + u SOS

x

f

f = 1 + x + x2 + x3 + x4
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The quest of certification: complexity

Analysis weapons: quantifier elimination, root isolation [Cauchy
1832]

n = 1 → polynomial in d, linear in τ = input bit size

n > 1 → τ2ddO (n)
, one stair higher than critical points [Grigoriev

Vorobjov ’88, Basu Pollack Roy ’98]

Similar algorithms for nonnegative circuits [Magron Wang ’20],
arithmetic-geometric-exponentials [Magron de Wolff Seidler ’19]

Extension to non SOS polynomials, C[x] [PhD Hieu ’19-22]

Victor Magron 20 / 43
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The quest of efficiency: correlative sparsity

Exploit few links between variables [Lasserre, Waki et al. ’06]
x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

Chordal graph G

6

4

5

1

23

maximal cliques Ik

Average size κ ; κ2d vars

I1 = {1, 4}
I2 = {1, 2, 3, 5}
I3 = {1, 3, 5, 6}
Dense SDP: 210 vars
Sparse SDP: 115 vars
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The quest of efficiency: correlative sparsity

Exploit few links between variables [Lasserre, Waki et al. ’06]
x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

Chordal graph G

6

4

5

1

23

maximal cliques Ik

Average size κ ; κ2d vars

I1 = {1, 4}
I2 = {1, 2, 3, 5}
I3 = {1, 3, 5, 6}
Dense SDP: 210 vars
Sparse SDP: 115 vars

Victor Magron 21 / 43



The quest of efficiency: correlative sparsity

Theorem [Griewank Toint ’84]

Chordal graph G with maximal cliques I1, I2
QG < 0 with nonzero entries at edges of G
=⇒ QG = PI1

TQ1PI1 + PI2
TQ2PI2 with Qk < 0 indexed by Ik

Sparse f = f1 + f2 where fk involves only variables in Ik

Theorem: Sparse Putinar’s representation [Lasserre ’06]

f > 0 on {x : gj(x) > 0}
chordal graph G with cliques Ik =⇒
ball constraints for each x(Ik)

f = σ01 + σ02 + ∑
j

σjgj

SOS σ0k “sees” vars in Ik
σj “sees” vars from gj

Victor Magron 22 / 43
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The quest of efficiency: roundoff errors

[Magron Constantinides Donaldson ’17]

Exact f (x) = x1x2 + x3x4

Floating-point f̂ (x, e) = [x1x2(1 + e1) + x3x4(1 + e2)](1 + e3)

x ∈ X , | ei |6 2−δ δ = 24 (single) or 53 (double)

1: Error f (x)− f̂ (x, e) = `(x, e) + h(x, e), ` linear in e

2: Bound h(x, e) with interval arithmetic

3: Bound `(x, e) with SPARSE SUMS OF SQUARES

Ik → {x, ek} =⇒ m(n + 1)2d instead of (n + m)2d SDP vars

Victor Magron 23 / 43
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The quest of efficiency: roundoff errors

f = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

x ∈ [4.00, 6.36]6 , e ∈ [−ε, ε]15 , ε = 2−53

Dense SDP: (6+15+4
6+15 ) = 12650 variables ; Out of memory

Sparse SDP Real2Float tool: 15(6+1+4
6+1 ) = 4950 ; 759ε

Interval arithmetic: 922ε (10 × less CPU)

Symbolic Taylor FPTaylor tool: 721ε (21 × more CPU)

SMT-based rosa tool: 762ε (19 × more CPU)

Victor Magron 24 / 43
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The quest of efficiency: roundoff errors
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The quest of efficiency: back to the NC world

symmetric noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton-McCullough 02]

f < 0⇔ f ∈ Σ (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f ∈ Σ ; f is a sparse SOS Take f = (x1 + x2 + x3)

2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
representation! Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]
Theorem [Klep Magron Povh ’21]

f � 0 on {x : gj(x) < 0}
chordal graph G with cliques Ik =⇒
ball constraints for each x(Ik)

f = ∑
k,i

s?kiski + ∑
j,i

tji
?gjtji

ski “sees” vars in Ik
tji “sees” vars from gj

Victor Magron 25 / 43



The quest of efficiency: back to the NC world

symmetric noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton-McCullough 02]

f < 0⇔ f ∈ Σ (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f ∈ Σ ; f is a sparse SOS

Take f = (x1 + x2 + x3)
2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
representation! Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]
Theorem [Klep Magron Povh ’21]

f � 0 on {x : gj(x) < 0}
chordal graph G with cliques Ik =⇒
ball constraints for each x(Ik)

f = ∑
k,i

s?kiski + ∑
j,i

tji
?gjtji

ski “sees” vars in Ik
tji “sees” vars from gj

Victor Magron 25 / 43



The quest of efficiency: back to the NC world

symmetric noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton-McCullough 02]

f < 0⇔ f ∈ Σ (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f ∈ Σ ; f is a sparse SOS Take f = (x1 + x2 + x3)

2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
representation! Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]
Theorem [Klep Magron Povh ’21]

f � 0 on {x : gj(x) < 0}
chordal graph G with cliques Ik =⇒
ball constraints for each x(Ik)

f = ∑
k,i

s?kiski + ∑
j,i

tji
?gjtji

ski “sees” vars in Ik
tji “sees” vars from gj

Victor Magron 25 / 43



The quest of efficiency: back to the NC world

symmetric noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton-McCullough 02]

f < 0⇔ f ∈ Σ (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f ∈ Σ ; f is a sparse SOS Take f = (x1 + x2 + x3)

2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
representation!

Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]
Theorem [Klep Magron Povh ’21]

f � 0 on {x : gj(x) < 0}
chordal graph G with cliques Ik =⇒
ball constraints for each x(Ik)

f = ∑
k,i

s?kiski + ∑
j,i

tji
?gjtji

ski “sees” vars in Ik
tji “sees” vars from gj

Victor Magron 25 / 43



The quest of efficiency: back to the NC world

symmetric noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton-McCullough 02]

f < 0⇔ f ∈ Σ (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f ∈ Σ ; f is a sparse SOS Take f = (x1 + x2 + x3)

2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
representation! Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]

Theorem [Klep Magron Povh ’21]

f � 0 on {x : gj(x) < 0}
chordal graph G with cliques Ik =⇒
ball constraints for each x(Ik)

f = ∑
k,i

s?kiski + ∑
j,i

tji
?gjtji

ski “sees” vars in Ik
tji “sees” vars from gj

Victor Magron 25 / 43



The quest of efficiency: back to the NC world

symmetric noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton-McCullough 02]

f < 0⇔ f ∈ Σ (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f ∈ Σ ; f is a sparse SOS Take f = (x1 + x2 + x3)

2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
representation! Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]
Theorem [Klep Magron Povh ’21]

f � 0 on {x : gj(x) < 0}
chordal graph G with cliques Ik =⇒
ball constraints for each x(Ik)

f = ∑
k,i

s?kiski + ∑
j,i

tji
?gjtji

ski “sees” vars in Ik
tji “sees” vars from gj

Victor Magron 25 / 43



The quest of efficiency: back to the NC world

I3322 Bell inequality (entanglement in quantum information)

f = x1(y1 + y2 + y3) + x2(y1 + y2 − y3) + x3(y1 − y2)− x1 − 2y1 − y2

Maximal violation levels→ upper bounds on λmax of f on
{(x, y) : x2

i = xi, y2
j = yj, xiyj = yjxi}

Ck → {x1, x2, x3, yk}
level sparse dense [Pál-Vértesi 18]
2 0.2550008 0.2509397
3 0.2511592 0.2508756
3’ 0.2508754 (1 day)
4 0.2508917
5 0.2508763
6 0.2508753977180 (1 hour)

PERFORMANCE VS ACCURACY
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The quest of efficiency: term sparsity

[Postdoc Wang ’19-21] ANR Tremplin-ERC

f = x2
1 − 2x1x2 + 3x2

2 − 2x2
1x2 + 2x2

1x2
2 − 2x2x3

+ 6x2
3 + 18x2

2x3 − 54x2x2
3 + 142x2

2x2
3

[Reznick ’78]→ f =
(
1 x1 x2 x3 x1x2 x2x3

)
Q︸︷︷︸
<0



1
x1
x2
x3

x1x2
x2x3

 6×7
2 = 28 “unknown” entries in Q

Replace Q by QG with nonzero entries at edges of G
 6 + 9 = 15 “unknown” entries in QG
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The quest of efficiency: term sparsity

Lyapunov functions from NETWORKED SYSTEMS

f =
N

∑
i=1

ai(x2
i + x4

i )−
N

∑
i,k=1

bikx2
i x2

k ai ∈ [1, 2] bik ∈ [
0.5
N

,
1.5
N

]

 (N+2
2 )((N+2

2 ) + 1)/2 = 231 “unknown” entries in Q for N = 5

term sparsity graph G

1

x2
1

x2
2

x2
3

x2
4

x2
5

x1 x2 x5· · ·

x1x2 x1x3 x4x5· · ·

 (N + 1)2 = 36 “unknown” entries in QG for N = 5

Proof that f > 0 for N = 80 in ∼ 10 seconds!
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The quest of efficiency: term sparsity

CONVERGENCE GUARANTEES

handles NC polynomials, C[x], joint spectral radii, combo with
correlative sparsity→ 7 papers

Julia libraries TSSOS & NCTSSOS→ solve problems with n = 103!

choice of the CHORDAL EXTENSION: min / max

Victor Magron 29 / 43



Introduction

The quest of modeling

The quest of certification

The quest of efficiency

Research projects in polynomial optimization



Research projects in polynomial optimization

Embed polynomial opti-
mization in academic &
industrial frameworks

For each project: I will
present

1 context + ideas

2 zoom on a specific
application target

MODEL

DYNAMICAL
SYSTEMS

TRACE
POLYNOMIALS

POLYNOMIAL
OPTIMIZATION

CERTIF

ROBUST
SDP

EXACT
SOS

LARGE
SCALE

COMPUTER
ARITHMETIC

NETWORKED
SYSTEMS

DEEP
LEARNING

ENERGY

QUANTUM
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Quantum information & free probabilities

QUANTUM APPLICATIONS

Ground state energy, trace polynomials for Werner witnesses
symmetric & sparse

RESEARCH DIRECTIONS RELYING ON FREE PROBABILITIES

Minimizer approximation: noncommutative Christoffel-Darboux
kernels and the Siciak function [Beckermann et al. ’20]
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Zoom: condensed matter

Ground-state energy⇔ minimal eigenvalue of an Hamiltonian

H = ∑
〈i,j〉

(
xi xj + yi yj + zi zj

)
spin states (xi, yi, zi), constraints

Lattices: 1D 2D Kagome

Existing ± efficient techniques: quantum Monte Carlo & variational
algorithms⇒ upper bounds on minimal energy
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Zoom: condensed matter

Lower bounds of the energy 1D lattice

Dense d = 4, n = 102 ⇒ 1019 variables (solvers handle ' 104)

Sparse solved within 1 hour on PFCALCUL at LAAS
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Quantum & free probabilities: interaction

MODELING AND EFFICIENCY

MAC Bhardwaj Korda Lasserre
Mai Wang
(ANR/CIMI funding)
IRSAMC, LPT Nechita
IMT Belinschi

ICFO Acín’s group (Inst.
Quantique Occitan funding)

U. Ljubljana Klep Povh
(PHC funding)

Texas A&M Volčič
U. Ben Gourion Vinnikov
U. Krakow Huber

Mini-symposium with I. Klep Computational aspects of
commutative and noncommutative positive polynomials at EUROPEAN

CONGRESS OF MATHEMATICIANS

Victor Magron 34 / 43

https://8ecm.si/minisymposia
https://8ecm.si/minisymposia


Energy networks

OPTIMAL POWER FLOW → large-scale problems with
structured relaxations sparse & constant trace
[PhD Mai ’19-22]

FINITE IMPULSE RESPONSE FILTERS → noise reduction
for smart grids Certification [PhD Hieu ’19-22]

STABILITY OF LARGE-SCALE POWER SYSTEMS → reachability
analysis of continuous-time systems Sparse [Kundur ’07]

TIME DELAY SYSTEMS → deteriorate controllers of networked power
systems occupation measures

Victor Magron 35 / 43
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Zoom: optimal power flow

Solving Alternative Current OPF to global optimality
→ benchmarks [PGLIB ’18] with up to 25 000 buses!

COMPLEX vs REAL hierarchy of relaxations?
[D’Angelo Putinar ’09, Josz et al. ’18, Magron Wang ’21]
6515_RTE → n = 7000 complex variables (14000 real variables)
solved at 0.6% gap within 3 hours on PFCALCUL at LAAS

SDP have CONSTANT TRACE PROPERTY [PhD Mai ’19-22]

Replace interior-point solvers by 1st-order methods
⇒ handle matrices of size up to 2000 with more than 1.5
million constraints. . . in 1 hour!
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Energy networks: interaction

MODELING, CERTIFICATION & EFFICIENCY

MAC Henrion Korda Lasserre
Mai Schlosser Wang
RTE Maeght Panciatici Ruiz
(AMIES/RTE funding)
Sorbonne Safey El Din Hieu
(POEMA funding)

U. Konstanz Schweighofer
(POEMA funding)

Northeastern U. Miller Sz-
naier

Victor Magron 37 / 43



Deep learning

ROBUSTNESS CERTIFICATION OF NEURAL NETWORKS

sparse [Chen Lasserre Magron Pauwels ’20]

Output

Hidden

Input

STABILITY ANALYSIS OF RECURRENT NETWORKS

copositive program + integral quadratic constraints
[Megretski Rantzer ’97]
[Ebihara Waki Mai Magron Peaucelle Tarbouriech ’20]

Formal proofs [Devadze Streif Magron ’21]
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Zoom: robustness of NN [PhD Chen ’19-22]

[SIAM News March ’21]

“Yet DL has an Achilles’ heel. Current implementations can be highly
unstable, meaning that a certain small perturbation to the input of a
trained neural network can cause substantial change in its output.
This phenomenon is both a nuisance and a major concern for the
safety and robustness of DL-based systems in critical
applications—like healthcare—where reliable computations are
essential”

Victor Magron 39 / 43



Zoom: robustness of NN [PhD Chen ’19-22]

x0 ∈ Rp z0 ∈ Rp z1 ∈ Rp1 . . . zm ∈ Rpm zi = AiReLU(zi−1) + bi

ReLU (left) & its “semialgebraicity” (right)

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

u

u = max{x, 0}

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

u
u(u− x) = 0, u ≥ x, u ≥ 0
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Zoom: robustness of NN [PhD Chen ’19-22]

“Direct” certification of a classifier with 1 hidden layer

max
x,z

(Ci,: − Ck,:)z

s.t.

{
z = ReLU(Ax + b)

||x− x0|| ≤ ε

Monotone equilibrium networks [Winston Kolter ’20]

z = ReLU(Ax + b)→ z = ReLU(Wz + Ax + b)

“Indirect” with Lipschitz constant/ellipsoid approximation
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Deep learning: interaction

MODELING, CERTIFICATION & EFFICIENCY

MAC Chen Korda Lasserre Mai
Peaucelle Tarbouriech (ANITI
funding)
UT3 Pauwels

TU Chemnitz Devadze Streif
Kyushu U. Ebihara Waki

Victor Magron 42 / 43



Take-away

Why should you do polynomial optimization?

powerful & accurate MODELING tool

CERTIFICATION cost ' optimization cost

EFFICIENCY guaranteed on structured applications
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Thanks to all of my collaborators

And thanks for your presence and attention today!
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