The quest of modeling, certification and efficiency in polynomial optimization

Victor Magron, Chargé de recherche MAC Team, LAAS CNRS

Soutenance pour l'habilitation à diriger les recherches LAAS/Visio 25 Mai 2021

Why optimizing over polynomials?

VERIFICATION/ANALYSIS OF COMPLEX NONLINEAR SYSTEMS

SAFETY of critical parts for **computing** \oplus **physical** devices

Why optimizing over polynomials?

VERIFICATION/ANALYSIS OF COMPLEX NONLINEAR SYSTEMS

SAFETY of critical parts for **computing** \oplus **physical** devices

$f,g \in \mathbb{R}[\mathbf{x}]$ MODEL POLYNOMIAL **OPTIMIZATION**

STATIC **Optimization** $f = \text{sum of squares } \sigma \implies \inf f \ge 0$

STATIC Optimization $f,g \in \mathbb{R}[\mathbf{x}]$ $f = \text{sum of squares } \sigma \implies \inf f \ge 0$

Semialgebraic constraints $\mathbf{X} = {\mathbf{x} : g(\mathbf{x}) \ge 0}$ $f = \sigma_0 + \sigma_1 g \implies f \ge 0 \text{ on } \mathbf{X}$

STATIC Optimization $f,g \in \mathbb{R}[\mathbf{x}]$ $f = \text{sum of squares } \sigma \implies \inf f \ge 0$

Semialgebraic constraints $\mathbf{X} = {\mathbf{x} : g(\mathbf{x}) \ge 0}$ $f = \sigma_0 + \sigma_1 g \implies f \ge 0 \text{ on } \mathbf{X}$

DYNAMICAL **Optimization** Optimal control [Henrion Lasserre Prieur Trelat '08] Regions of attraction [Henrion Korda '14]

STATIC Optimization $f,g \in \mathbb{R}[\mathbf{x}]$ $f = \text{sum of squares } \sigma \implies \inf f \ge 0$

Semialgebraic constraints $\mathbf{X} = {\mathbf{x} : g(\mathbf{x}) \ge 0}$ $f = \sigma_0 + \sigma_1 g \implies f \ge 0 \text{ on } \mathbf{X}$

DYNAMICAL **Optimization** Optimal control [Henrion Lasserre Prieur Trelat '08] Regions of attraction [Henrion Korda '14]

NONCOMMUTATIVE **Optimization** $(x_1x_2 \neq x_2x_1)$ Minimal eigenvalue/trace \forall Useful in quantum information (Bell inequalities) [Navascués Pironio Acín '08]

The quest of modeling: the hierarchy

NP-hard NON CONVEX Problem $f_{\min} = \inf f(\mathbf{x})$

The quest of modeling: the hierarchy

NP-hard NON CONVEX Problem $f_{\min} = \inf f(\mathbf{x})$

[Lasserre '01] HIERARCHY of **CONVEX PROBLEMS** $\uparrow f_{min}$

Based on representation of positive polynomials [Putinar '93]

The quest of certification (past)

Kepler's conjecture (1611): the max density of sphere packings is $\pi/\sqrt{18}$

Flyspeck : Formalizing the proof of Kepler [Hales et al. '94] Certification of thousands of "tight" nonlinear inequalities [Hales et al. '17]

The quest of efficiency (past)

Exploiting sparsity
 few terms [Reznick '78]
 few correlations
 [Lasserre, Waki et al. '06]

Optimal Powerflow $n \simeq 10^3$ [Josz et al. '18]

Victor Magron

Contributions in polynomial optimization

Introduction

The quest of modeling

The quest of certification

The quest of efficiency

Research projects in polynomial optimization

CHARACTERIZE A VALUE

CHARACTERIZE A SET

$$f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) = \inf_{\mu \in \mathscr{M}_{+}(\mathbf{X})} \int_{\mathbf{X}} f \, d\mu \qquad ?$$

$$\int_{0}^{1} \int_{0}^{1} \int_{0}$$

4 papers with Henrion Polynomial map $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$

4 papers with Henrion

Polynomial map $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$

Semialgebraic state set constraints \mathbf{X} = either a box or a ball Discrete-time $\mathbf{x}_{t+1} = f(\mathbf{x}_t), \quad \mathbf{x}_t \in \mathbf{X}, \quad t \in \mathbb{N}$

4 papers with Henrion

Polynomial map $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$

Semialgebraic state set constraints \mathbf{X} = either a box or a ball Discrete-time $\mathbf{x}_{t+1} = f(\mathbf{x}_t), \quad \mathbf{x}_t \in \mathbf{X}, \quad t \in \mathbb{N}$

REACHABLE SET

Semialgebraic initial states X_0 All admissible trajectories X^{∞}

ATTRACTORS

Support of invariant measure $\mu(\mathbf{A}) = \mu(f^{-1}(\mathbf{A})) = f_{\#}\mu(\mathbf{A})$ $\forall \text{ Borel set } \mathbf{A} \in \mathcal{B}(\mathbf{X})$

Reachable set X^{∞}

 $\mu_0 \in \mathscr{M}_+(\mathbf{X}_0), \quad \mu_1 = f_{\#} \mu_0 \quad \dots \quad \mu_t = f_{\#} \mu_{t-1}$

Reachable set X^{∞}

 $\mu_0 \in \mathscr{M}_+(\mathbf{X}_0), \quad \mu_1 = f_{\#} \mu_0 \quad \dots \quad \mu_t = f_{\#} \mu_{t-1}$

Average $v_t = \sum_{i \leq t} \mu_i$

Reachable set X^{∞}

 $\mu_0 \in \mathscr{M}_+(\mathbf{X}_0), \quad \mu_1 = f_{\#} \mu_0 \quad \dots \quad \mu_t = f_{\#} \mu_{t-1}$

Average $v_t = \sum_{i \leqslant t} \mu_i$

The occupation measures μ_t , ν_t , μ_0 satisfy **Liouville's Equation**:

 $\mu_t + \nu_t = f_{\#} \nu_t + \mu_0 \leftarrow \text{linear in } \mu_t, \nu_t, \mu_0$

Reachable set X^{∞}

 $\mu_0 \in \mathscr{M}_+(\mathbf{X}_0), \quad \mu_1 = f_{\#} \mu_0 \quad \dots \quad \mu_t = f_{\#} \mu_{t-1}$

Average $\nu_t = \sum_{i \leqslant t} \mu_i$

The occupation measures μ_t , ν_t , μ_0 satisfy **Liouville's Equation**:

 $\mu_t + \nu_t = f_{\#} \nu_t + \mu_0 \leftarrow \text{linear in } \mu_t, \nu_t, \mu_0$

 \overleftarrow{V} The uniform measure on X^{∞} satisfies Liouville and is the (unique) solution of an LP over measures [Magron Henrion et al. '19]

Reachable set X^{∞}

 $\mu_0 \in \mathscr{M}_+(\mathbf{X}_0), \quad \mu_1 = f_{\#} \mu_0 \quad \dots \quad \mu_t = f_{\#} \mu_{t-1}$

Average $\nu_t = \sum_{i \leq t} \mu_i$ The occupation measures μ_t, ν_t, μ_0 satisfy Liouville's Equation:

 $\mu_t + \nu_t = f_{\#} \nu_t + \mu_0 \leftarrow \text{linear in } \mu_t, \nu_t, \mu_0$

 \overleftarrow{V} The uniform measure on X^{∞} satisfies Liouville and is the (unique) solution of an LP over measures [Magron Henrion et al. '19]

INVARIANT MEASURES → Similar story [Magron Forets Henrion '19]

Reachable set X^{∞}

 $\mu_0 \in \mathscr{M}_+(\mathbf{X}_0), \quad \mu_1 = f_{\#} \mu_0 \quad \dots \quad \mu_t = f_{\#} \mu_{t-1}$

Average $\nu_t = \sum_{i \leq t} \mu_i$ The occupation measures μ_t, ν_t, μ_0 satisfy Liouville's Equation:

 $\mu_t + \nu_t = f_{\#} \nu_t + \mu_0 \leftarrow \text{linear in } \mu_t, \nu_t, \mu_0$

 \overleftarrow{V} The uniform measure on X^{∞} satisfies Liouville and is the (unique) solution of an LP over measures [Magron Henrion et al. '19]

INVARIANT MEASURES → Similar story [Magron Forets Henrion '19]

 \overrightarrow{V} In both cases, the support of all measures is **bounded** to ensure that the LP has an **optimal solution**

V Zero duality gap follows from [Barvinok '02]

Vertice with the second second

Vertice the moment-SOS hierarchy to relax the LP into a hierarchy of SDP

REACHABLE SET for FitzHugh-Nagumo Neuron model

ATTRACTOR of Arneodo-Coullet

V They arise from entanglement: Werner witnesses [Werner '89], polynomial Bell inequalities [Pozsgay et al. '17]

 $\mathbb{T} = \mathsf{T}\langle \underline{x} \rangle$

V They arise from entanglement: Werner witnesses [Werner '89], polynomial Bell inequalities [Pozsgay et al. '17]

 $\mathbb{T} = \mathsf{T}\langle \underline{x} \rangle$

Symmetric noncommutative variables $\underline{x} = (x_1, \dots, x_n)$ & sums of product traces T = pure trace polynomials

$$f = x_1 x_2 x_1^2 - \operatorname{tr}(x_2) \operatorname{tr}(x_1 x_2) \operatorname{tr}(x_1^2 x_2) x_2 x_1 \in \mathbb{T}$$

with $x_1x_2 \neq x_2x_1$, involution $(x_1x_2)^* = x_2x_1$

V They arise from entanglement: Werner witnesses [Werner '89], polynomial Bell inequalities [Pozsgay et al. '17]

 $\mathbb{T} = \mathsf{T}\langle \underline{x} \rangle$

Symmetric noncommutative variables $\underline{x} = (x_1, ..., x_n)$ & sums of product traces T = pure trace polynomials

$$f = x_1 x_2 x_1^2 - \operatorname{tr}(x_2) \operatorname{tr}(x_1 x_2) \operatorname{tr}(x_1^2 x_2) x_2 x_1 \in \mathbb{T}$$

with $x_1x_2 \neq x_2x_1$, involution $(x_1x_2)^* = x_2x_1$

$$\operatorname{tr}(f) = \operatorname{tr}(x_1^3 x_2) - \operatorname{tr}(x_2) \operatorname{tr}(x_1 x_2)^2 \operatorname{tr}(x_1^2 x_2) \in \mathsf{T}$$

V They arise from entanglement: Werner witnesses [Werner '89], polynomial Bell inequalities [Pozsgay et al. '17]

$$\mathbb{T} = \mathsf{T}\langle \underline{x} \rangle$$

Symmetric noncommutative variables $\underline{x} = (x_1, ..., x_n)$ & sums of product traces T = pure trace polynomials

$$f = x_1 x_2 x_1^2 - \operatorname{tr}(x_2) \operatorname{tr}(x_1 x_2) \operatorname{tr}(x_1^2 x_2) x_2 x_1 \in \mathbb{T}$$

with $x_1x_2 \neq x_2x_1$, involution $(x_1x_2)^* = x_2x_1$

$$\operatorname{tr}(f) = \operatorname{tr}(x_1^3 x_2) - \operatorname{tr}(x_2) \operatorname{tr}(x_1 x_2)^2 \operatorname{tr}(x_1^2 x_2) \in \mathsf{T}$$

sums of hermitian squares $(f^{\star}f)$

V They arise from entanglement: Werner witnesses [Werner '89], polynomial Bell inequalities [Pozsgay et al. '17]

$$\mathbb{T} = \mathsf{T}\langle \underline{x} \rangle$$

Symmetric noncommutative variables $\underline{x} = (x_1, ..., x_n)$ & sums of product traces T = pure trace polynomials

$$f = x_1 x_2 x_1^2 - \operatorname{tr}(x_2) \operatorname{tr}(x_1 x_2) \operatorname{tr}(x_1^2 x_2) x_2 x_1 \in \mathbb{T}$$

with $x_1x_2 \neq x_2x_1$, involution $(x_1x_2)^* = x_2x_1$

$$tr(f) = tr(x_1^3x_2) - tr(x_2) tr(x_1x_2)^2 tr(x_1^2x_2) \in T$$

sums of hermitian squares (f^*f) $S \subset \text{Sym }\mathbb{T}$ X_j operators from finite von Neumann algebra Constraints $\{\underline{X} = (X_1, \dots, X_n) : \underline{g}(\underline{X}) \succeq 0, \forall \underline{g} \in S\}$

Victor Magron
\overleftrightarrow Restrict the set of constraints to operators from "nice" von Neumann algebra of type II_1

 \dot{V} Restrict the set of constraints to operators from "nice" von Neumann algebra of type II₁

 \implies One can minimize pure trace polynomials on such sets!

 \overleftrightarrow Restrict the set of constraints to operators from "nice" von Neumann algebra of type II_1

 \implies One can minimize pure trace polynomials on such sets!

 $\bigvee S[N] = S \cup \{N - x_j^2\}$: add "ball" constraints to ensure convergence

 \overleftrightarrow Restrict the set of constraints to operators from "nice" von Neumann algebra of type II_1

 \implies One can minimize pure trace polynomials on such sets!

 $\bigvee S[N] = S \cup \{N - x_j^2\}$: add "ball" constraints to ensure convergence \implies Pure trace variant of Helton-McCullough representation

Theorem [Klep Magron Volcic '21]

Let $S \subset \text{Sym } \mathbb{T}$ and $f \in T$. There is a hierarchy of SDP lower bounds converging to f_{\min} on the II₁-von Neumann semialgebraic set associated to S[N].

Introduction

The quest of modeling

The quest of certification

The quest of efficiency

Research projects in polynomial optimization

MOTZKIN POLYNOMIAL

$$f = \frac{1}{27} + x_1^2 x_2^4 + x_1^4 x_2^2 - x_1^2 x_2^2$$

 $f \ge 0$ but $f \notin \Sigma =$ SOS

MOTZKIN POLYNOMIAL

$$f = \frac{1}{27} + x_1^2 x_2^4 + x_1^4 x_2^2 - x_1^2 x_2^2$$

$$f \ge 0$$
 but $f \notin \Sigma =$ SOS

$$f_{\min} = \min_{x_i \in \mathbb{R}} f(x_1, x_2) = 0$$
 for $|x_i| = \frac{\sqrt{3}}{3}$

Moment-SOS hierarchy [Henrion-Lasserre '05]

order 3 = "
$$-\infty$$
" unbounded SDP $\implies f \notin \Sigma$

MOTZKIN POLYNOMIAL

$$f = \frac{1}{27} + x_1^2 x_2^4 + x_1^4 x_2^2 - x_1^2 x_2^2$$

$$f \ge 0$$
 but $f \notin \Sigma =$ SOS

$$f_{\min} = \min_{x_i \in \mathbb{R}} f(x_1, x_2) = 0$$
 for $|x_i| = \frac{\sqrt{3}}{3}$

Moment-SOS hierarchy [Henrion-Lasserre '05]

order 3 = "
$$-\infty$$
" unbounded SDP $\implies f \notin \Sigma$

order $4 = "-\infty"$

MOTZKIN POLYNOMIAL

$$f = \frac{1}{27} + x_1^2 x_2^4 + x_1^4 x_2^2 - x_1^2 x_2^2$$

$$f \ge 0$$
 but $f \notin \Sigma =$ SOS

$$f_{\min} = \min_{x_i \in \mathbb{R}} f(x_1, x_2) = 0$$
 for $|x_i| = \frac{\sqrt{3}}{3}$

Moment-SOS hierarchy [Henrion-Lasserre '05]

order 3 = "
$$-\infty$$
" unbounded SDP $\implies f \notin \Sigma$

order
$$4 = -\infty$$
"

order 5 $\simeq -0.4$

MOTZKIN POLYNOMIAL

$$f = \frac{1}{27} + x_1^2 x_2^4 + x_1^4 x_2^2 - x_1^2 x_2^2$$

$$f \ge 0$$
 but $f \notin \Sigma =$ SOS

$$f_{\min} = \min_{x_i \in \mathbb{R}} f(x_1, x_2) = 0 \text{ for } |x_i| = \frac{\sqrt{3}}{3}$$

Moment-SOS hierarchy [Henrion-Lasserre '05]

order 3 = "
$$-\infty$$
" unbounded SDP $\implies f \notin \Sigma$

order
$$4 = -\infty$$

order 5
$$\simeq -0.4$$

order 8 $\simeq -10^{-8} \oplus$ extraction of optimizers **Paradox** ?!

MOTZKIN POLYNOMIAL

$$f = \frac{1}{27} + x_1^2 x_2^4 + x_1^4 x_2^2 - x_1^2 x_2^2$$

$$f \ge 0$$
 but $f \notin \Sigma =$ SOS

$$f_{\min} = \min_{x_i \in \mathbb{R}} f(x_1, x_2) = 0 \text{ for } |x_i| = \frac{\sqrt{3}}{3}$$

Moment-SOS hierarchy [Henrion-Lasserre '05]

order 3 = "
$$-\infty$$
" unbounded SDP $\implies f \notin \Sigma$

order
$$4 = -\infty$$

order 5
$$\simeq -0.4$$

order 8 $\simeq -10^{-8} \oplus$ extraction of optimizers **Paradox** ?!

Similar paradox in quantum information [Navascués et al. '13] Victor Magron

$$\eta$$
 perturbation of the SDP constraints $\implies ilde{f} = f + \eta \sum_{eta} \mathbf{x}^{2eta}$

 η perturbation of the SDP constraints $\implies \tilde{f} = f + \eta \sum_{eta} \mathbf{x}^{2eta}$

[Lasserre Magron '19] Inaccurate SDP Relaxations	
(Primal Relaxation)	(Dual Strengthening)
$\inf_{y} \sum_{\alpha} \tilde{f}_{\alpha} y_{\alpha}$	sup b
s.t. $\mathbf{M}_d(\mathbf{y}) \succcurlyeq 0$	$\tilde{f} - b = \sigma$
$y_0 = 1$	$\sigma \in \Sigma_d$

 η perturbation of the SDP constraints $\implies \tilde{f} = f + \eta \sum_{eta} \mathbf{x}^{2eta}$

[Lasserre Magron '19] Inaccurate SDP Relaxations	
(Primal Relaxation)	(Dual Strengthening)
$\inf_{y} \sum_{\alpha} \tilde{f}_{\alpha} y_{\alpha}$	sup b
s.t. $\mathbf{M}_d(\mathbf{y}) \succcurlyeq 0$	$\tilde{f} - b = \sigma$
$y_0 = 1$	$\sigma \in \Sigma_d$

 $\widetilde{\mathscr{V}}$... of the **robust** problem $\max_{\tilde{f}\in \mathbf{B}_{\infty}(f,\eta)}\min_{\mathbf{x}} \tilde{f}(\mathbf{x})$

Theorem [Lasserre 06]

For fixed *n*, any $f \ge 0$ can be approximated arbitrarily closely by SOS polynomials.

Theorem [Lasserre 06]

For fixed *n*, any $f \ge 0$ can be approximated arbitrarily closely by SOS polynomials.

Theorem [Lasserre 06]

For fixed *n*, any $f \ge 0$ can be approximated arbitrarily closely by SOS polynomials.

max - min ROBUST OPTIMIZATION

Player 1 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow \mathbf{SDP}$ leads

Player 2 (optimizer) picks an SOS ~-> User follows

max - min ROBUST OPTIMIZATION

Player 1 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow \mathbf{SDP}$ leads

Player 2 (optimizer) picks an SOS ~-> User follows

Convex SDP relaxations $\implies max - min = min - max$

max - min ROBUST OPTIMIZATION

Player 1 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow \mathbf{SDP}$ leads

Player 2 (optimizer) picks an SOS ~-> User follows

Convex SDP relaxations $\implies max - min = min - max$

min - max ROBUST OPTIMIZATION

Player 1 (robust optimizer) picks an SOS \rightsquigarrow User leads Player 2 (solver) picks $\tilde{f} \in \mathbf{B}_{\infty}(f) \rightsquigarrow$ SDP follows

Victor Magron

APPROXIMATE SOLUTIONS

$$\begin{aligned} x_1^2 - 2x_1x_2 + x_2^2 &\simeq (1.00001x_1 - 0.99998x_2)^2 \\ x_1^2 - 2x_1x_2 + x_2^2 &\neq 1.0000200001x_1^2 - 1.9999799996x_1x_2 + 0.9999600004x_2^2 \end{aligned}$$

$$\simeq \rightarrow = ?$$

Win Two-PLAYER GAME: given $f \in \mathbb{Q}[\mathbf{x}]$ compute $f_i \in \mathbb{Q}[\mathbf{x}]$, $c_i \in \mathbb{Q}^{>0}$ s.t. $f = \sum_i c_i f_i^2$

sum of squares of *f*?

Win Two-PLAYER GAME: given $f \in \mathbb{Q}[\mathbf{x}]$ compute $f_i \in \mathbb{Q}[\mathbf{x}], c_i \in \mathbb{Q}^{>0}$ s.t. $f = \sum_i c_i f_i^2$

Win Two-PLAYER GAME: given $f \in \mathbb{Q}[\mathbf{x}]$ compute $f_i \in \mathbb{Q}[\mathbf{x}], c_i \in \mathbb{Q}^{>0}$ s.t. $f = \sum_i c_i f_i^2$

PERTURBATION: approximate SOS $f(\mathbf{x}) - \varepsilon \sum_{\alpha} \mathbf{x}^{2\alpha} = \tilde{\sigma} + u$ 4 papers [Magron Safey El Din Schweighofer '17-21] Software library: RealCertify

Victor Magron

[Chevillard et. al 11]

$$f \in \mathbb{Q}[X]$$
, deg $f = d = 2k$, $f > 0$

[Chevillard et. al 11]

$$f \in \mathbb{Q}[X]$$
, deg $f = d = 2k$, $f > 0$

PERTURB: find $\varepsilon \in \mathbb{Q}$ s.t.

$$f_{\varepsilon} = f - \varepsilon \sum_{i=0}^{k} x^{2i} > 0$$

[Chevillard et. al 11]

$$f \in \mathbb{Q}[X]$$
, deg $f = d = 2k$, $f > 0$

PERTURB: find $\varepsilon \in \mathbb{Q}$ s.t.

$$f_{\varepsilon} = f - \varepsilon \sum_{i=0}^{k} x^{2i} > 0$$

V SDP Approximation

$$f - \varepsilon \sum_{i=0}^{k} x^{2i} = \tilde{\sigma} + u$$

[Chevillard et. al 11]

$$f \in \mathbb{Q}[X]$$
, deg $f = d = 2k$, $f > 0$

PERTURB: find $\varepsilon \in \mathbb{Q}$ s.t.

$$f_{\varepsilon} = f - \varepsilon \sum_{i=0}^{k} x^{2i} > 0$$

V SDP Approximation

$$f - \varepsilon \sum_{i=0}^{k} x^{2i} = \tilde{\sigma} + u$$

$$\overrightarrow{V} \textbf{ABSORB} \text{ small enough } u_i \\ \implies \varepsilon \sum_{i=0}^k x^{2i} + u \text{ SOS}$$

Y Analysis weapons: quantifier elimination, root isolation [Cauchy 1832]

 $n = 1 \rightarrow polynomial in d$, linear in $\tau = input bit size$

Y Analysis weapons: quantifier elimination, root isolation [Cauchy 1832]

 $n=1 \rightarrow polynomial in d$, linear in $\tau = polynomial in d$

n > 1 $\rightarrow \tau^2 d^{d^{O(n)}}$, one stair higher than critical points [Grigoriev Vorobjov '88, Basu Pollack Roy '98]

Y Analysis weapons: quantifier elimination, root isolation [Cauchy 1832]

 $n=1 \rightarrow polynomial in d$, linear in $\tau = polynomial in d$

n > 1 $\rightarrow \tau^2 d^{d^{\mathcal{O}(n)}}$, one stair higher than critical points [Grigoriev Vorobjov '88, Basu Pollack Roy '98]

Similar algorithms for nonnegative circuits [Magron Wang '20], arithmetic-geometric-exponentials [Magron de Wolff Seidler '19]

Y Analysis weapons: quantifier elimination, root isolation [Cauchy 1832]

 $n=1 \rightarrow polynomial in d$, linear in $\tau = polynomial in d$

n > 1 $\rightarrow \tau^2 d^{d^{\mathcal{O}(n)}}$, one stair higher than critical points [Grigoriev Vorobjov '88, Basu Pollack Roy '98]

Similar algorithms for nonnegative circuits [Magron Wang '20], arithmetic-geometric-exponentials [Magron de Wolff Seidler '19]

 \overleftarrow{V} Extension to non SOS polynomials, $\mathbb{C}[\mathbf{x}]$ [PhD Hieu '19-22]

Introduction

The quest of modeling

The quest of certification

The quest of efficiency

Research projects in polynomial optimization

The quest of efficiency: correlative sparsity

The quest of efficiency: correlative sparsity

The quest of efficiency: correlative sparsity

Theorem [Griewank Toint '84]

Chordal graph G with maximal cliques I_1 , I_2

 $Q_G \geq 0$ with nonzero entries at edges of G

 $\implies Q_G = P_{I_1}{}^T Q_1 P_{I_1} + P_{I_2}{}^T Q_2 P_{I_2}$ with $Q_k \succeq 0$ indexed by I_k

The quest of efficiency: correlative sparsity

Theorem [Griewank Toint '84]

Chordal graph G with maximal cliques I_1 , I_2

 $Q_G \geq 0$ with nonzero entries at edges of G

 $\implies Q_G = P_{I_1}{}^T Q_1 P_{I_1} + P_{I_2}{}^T Q_2 P_{I_2}$ with $Q_k \succeq 0$ indexed by I_k

Sparse $f = f_1 + f_2$ where f_k involves **only** variables in I_k

The quest of efficiency: correlative sparsity

Theorem [Griewank Toint '84]

Chordal graph G with maximal cliques I_1 , I_2

 $Q_G \geq 0$ with nonzero entries at edges of G

 $\implies Q_G = P_{I_1}{}^T Q_1 P_{I_1} + P_{I_2}{}^T Q_2 P_{I_2}$ with $Q_k \succeq 0$ indexed by I_k

Sparse $f = f_1 + f_2$ where f_k involves **only** variables in I_k

Theorem: Sparse Putinar's representation [Lasserre '06]

f > 0 on $\{\mathbf{x} : g_j(\mathbf{x}) \ge 0\}$ chordal graph *G* with cliques $I_k \implies$ ball constraints for each $\mathbf{x}(I_k)$

$$\begin{bmatrix} f = \sigma_{01} + \sigma_{02} + \sum_{j} \sigma_{j} g_{j} \\ \text{SOS } \sigma_{0k} \text{ "sees" vars in } I_{k} \\ \sigma_{j} \text{ "sees" vars from } g_{j} \end{bmatrix}$$

[Magron Constantinides Donaldson '17]

Exact $f(\mathbf{x}) = x_1 x_2 + x_3 x_4$

[Magron Constantinides Donaldson '17]

Exact $f(\mathbf{x}) = x_1x_2 + x_3x_4$ Floating-point $\hat{f}(\mathbf{x}, \mathbf{e}) = [x_1x_2(1+e_1) + x_3x_4(1+e_2)](1+e_3)$

[Magron Constantinides Donaldson '17]

Exact $f(\mathbf{x}) = x_1 x_2 + x_3 x_4$ Floating-point $\hat{f}(\mathbf{x}, \mathbf{e}) = [x_1 x_2 (1 + e_1) + x_3 x_4 (1 + e_2)](1 + e_3)$ $\mathbf{x} \in \mathbf{X}, \quad |e_i| \leq 2^{-\delta} \quad \delta = 24$ (single) or 53 (double)

[Magron Constantinides Donaldson '17]

Exact $f(\mathbf{x}) = x_1 x_2 + x_3 x_4$ Floating-point $\hat{f}(\mathbf{x}, \mathbf{e}) = [x_1 x_2 (1 + e_1) + x_3 x_4 (1 + e_2)](1 + e_3)$ $\mathbf{x} \in \mathbf{X}, \quad |e_i| \leq 2^{-\delta} \quad \delta = 24$ (single) or 53 (double)

1: Error $f(\mathbf{x}) - \hat{f}(\mathbf{x}, \mathbf{e}) = \ell(\mathbf{x}, \mathbf{e}) + h(\mathbf{x}, \mathbf{e}), \ell$ linear in e

[Magron Constantinides Donaldson '17]

Exact $f(\mathbf{x}) = x_1 x_2 + x_3 x_4$ Floating-point $\hat{f}(\mathbf{x}, \mathbf{e}) = [x_1 x_2 (1 + e_1) + x_3 x_4 (1 + e_2)](1 + e_3)$ $\mathbf{x} \in \mathbf{X}, \quad |e_i| \leq 2^{-\delta} \quad \delta = 24$ (single) or 53 (double)

1: Error
$$f(\mathbf{x}) - \hat{f}(\mathbf{x}, \mathbf{e}) = \ell(\mathbf{x}, \mathbf{e}) + h(\mathbf{x}, \mathbf{e}), \ell$$
 linear in e

2: Bound $h(\mathbf{x}, \mathbf{e})$ with interval arithmetic

[Magron Constantinides Donaldson '17]

Exact $f(\mathbf{x}) = x_1 x_2 + x_3 x_4$ Floating-point $\hat{f}(\mathbf{x}, \mathbf{e}) = [x_1 x_2 (1 + e_1) + x_3 x_4 (1 + e_2)](1 + e_3)$ $\mathbf{x} \in \mathbf{X}, \quad |e_i| \leq 2^{-\delta} \quad \delta = 24$ (single) or 53 (double)

1: Error
$$f(\mathbf{x}) - \hat{f}(\mathbf{x}, \mathbf{e}) = \ell(\mathbf{x}, \mathbf{e}) + h(\mathbf{x}, \mathbf{e}), \ell$$
 linear in e

- 2: Bound $h(\mathbf{x}, \mathbf{e})$ with interval arithmetic
- 3: Bound $\ell(x, e)$ with SPARSE SUMS OF SQUARES

$$\overleftarrow{V}$$
 $I_k \to {\mathbf{x}, e_k} \implies \boxed{m(n+1)^{2d} \text{ instead of } (n+m)^{2d}} \text{ SDP vars}$

$$\begin{split} f &= x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) \\ & \mathbf{x} \in [4.00, 6.36]^6, \quad \mathbf{e} \in [-\epsilon, \epsilon]^{15}, \quad \epsilon = 2^{-53} \end{split}$$

Dense SDP: $\binom{6+15+4}{6+15} = 12650$ variables \rightsquigarrow Out of memory

$$\begin{split} f &= x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) \\ & \mathbf{x} \in [4.00, 6.36]^6, \quad \mathbf{e} \in [-\epsilon, \epsilon]^{15}, \quad \epsilon = 2^{-53} \end{split}$$

Dense SDP: $\binom{6+15+4}{6+15} = 12650$ variables \rightsquigarrow Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1} = 4950 \rightsquigarrow 759\epsilon$

$$\begin{split} f &= x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) \\ & \mathbf{x} \in [4.00, 6.36]^6, \quad \mathbf{e} \in [-\epsilon, \epsilon]^{15}, \quad \epsilon = 2^{-53} \end{split}$$

Dense SDP: $\binom{6+15+4}{6+15} = 12650$ variables \rightsquigarrow Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1} = 4950 \rightsquigarrow 759\epsilon$

Interval arithmetic: 922ϵ (10 × less CPU)

$$\begin{split} f &= x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) \\ & \mathbf{x} \in [4.00, 6.36]^6, \quad \mathbf{e} \in [-\epsilon, \epsilon]^{15}, \quad \epsilon = 2^{-53} \end{split}$$

Dense SDP: $\binom{6+15+4}{6+15}$ = 12650 variables \sim Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1} = 4950 \rightsquigarrow 759\epsilon$

Interval arithmetic: 922ϵ (10 × less CPU)

Symbolic Taylor FPTaylor tool: 721ϵ (21 × more CPU)

$$\begin{split} f &= x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) \\ & \mathbf{x} \in [4.00, 6.36]^6, \quad \mathbf{e} \in [-\epsilon, \epsilon]^{15}, \quad \epsilon = 2^{-53} \end{split}$$

Dense SDP: $\binom{6+15+4}{6+15}$ = 12650 variables \sim Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1} = 4950 \rightsquigarrow 759\epsilon$

Interval arithmetic: 922ϵ (10 × less CPU)

Symbolic Taylor FPTaylor tool: 721ϵ (21 × more CPU)

SMT-based rosa tool: 762ϵ (19 × more CPU)

Victor Magron

symmetric noncommutative (NC) variables $\underline{x} = (x_1, \ldots, x_n)$

Theorem [Helton-McCullough 02]

 $f \succcurlyeq 0 \Leftrightarrow f \in \Sigma$ (all positive polynomials are sums of squares)

symmetric noncommutative (NC) variables $\underline{x} = (x_1, \dots, x_n)$

Theorem [Helton-McCullough 02]

 $f \succcurlyeq 0 \Leftrightarrow f \in \Sigma$ (all positive polynomials are sums of squares)

BAD NEWS: there is **no** sparse analog! sparse $f \in \Sigma \Rightarrow f$ is a sparse SOS [Klep Magron Povh '21]

symmetric noncommutative (NC) variables $\underline{x} = (x_1, \dots, x_n)$

Theorem [Helton-McCullough 02]

 $f \succcurlyeq 0 \Leftrightarrow f \in \Sigma$ (all positive polynomials are sums of squares)

BAD NEWS: there is **no** sparse analog! sparse $f \in \Sigma \Rightarrow f$ is a sparse SOS [Klep Magron Povh '21] Take $f = (x_1 + x_2 + x_3)^2$

symmetric noncommutative (NC) variables $\underline{x} = (x_1, \dots, x_n)$

Theorem [Helton-McCullough 02]

 $f \succcurlyeq 0 \Leftrightarrow f \in \Sigma$ (all positive polynomials are sums of squares)

BAD NEWS: there is **no** sparse analog! sparse $f \in \Sigma \Rightarrow f$ is a sparse SOS [Klep Magron Povh '21] Take $f = (x_1 + x_2 + x_3)^2$

GOOD NEWS: there is an NC analog of the sparse Putinar's representation!

symmetric noncommutative (NC) variables $\underline{x} = (x_1, \dots, x_n)$

Theorem [Helton-McCullough 02]

 $f \succcurlyeq 0 \Leftrightarrow f \in \Sigma$ (all positive polynomials are sums of squares)

BAD NEWS: there is **no** sparse analog! sparse $f \in \Sigma \Rightarrow f$ is a sparse SOS [Klep Magron Povh '21] Take $f = (x_1 + x_2 + x_3)^2$

GOOD NEWS: there is an NC analog of the sparse Putinar's representation! Based on GNS construction & **amalgamation** [Blackadar '78, Voiculescu '85]

symmetric noncommutative (NC) variables $\underline{x} = (x_1, \dots, x_n)$

Theorem [Helton-McCullough 02]

 $f \succcurlyeq 0 \Leftrightarrow f \in \Sigma$ (all positive polynomials are sums of squares)

BAD NEWS: there is **no** sparse analog! sparse $f \in \Sigma \Rightarrow f$ is a sparse SOS [Klep Magron Povh '21] Take $f = (x_1 + x_2 + x_3)^2$

GOOD NEWS: there is an NC analog of the sparse Putinar's representation! Based on GNS construction & **amalgamation** [Blackadar '78, Voiculescu '85]

Theorem [Klep Magron Povh '21]

 $f \succ 0$ on $\{\underline{x} : \underline{g}_i(\underline{x}) \succeq 0\}$

chordal graph G with cliques $I_k \implies$

ball constraints for each $\mathbf{x}(I_k)$

$$f = \sum_{k,i} s_{ki}^* s_{ki} + \sum_{j,i} t_{ji}^* g_j t_{ji}$$

 s_{ki} "sees" vars in I_k t_{ji} "sees" vars from g_j

I₃₃₂₂ Bell inequality (entanglement in quantum information)

 $f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$

Maximal violation levels \rightarrow **upper bounds** on λ_{\max} of f on $\{(x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i\}$

I₃₃₂₂ Bell inequality (entanglement in quantum information)

 $f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$

I₃₃₂₂ Bell inequality (entanglement in quantum information)

$$f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$$

Maximal violation levels \rightarrow **upper bounds** on λ_{\max} of f on $\{(x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i\}$ $\forall C_k \rightarrow \{x_1, x_2, x_3, y_k\}$

level	sparse
2	0.2550008

dense [Pál-Vértesi 18] 0.2509397

I₃₃₂₂ Bell inequality (entanglement in quantum information)

$$f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$$

level	sparse	dense [Pál-Vértesi 18]
2	0.2550008	0.2509397
3	0.2511592	0.2508756

I₃₃₂₂ Bell inequality (entanglement in quantum information)

$$f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$$

level	sparse	dense [Pál-Vértesi 18]
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3'		0.2508754 (1 day)

I₃₃₂₂ Bell inequality (entanglement in quantum information)

$$f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$$

level	sparse	dense [Pál-Vértesi 18
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3'		0.2508754 (1 day)
4	0.2508917	

I₃₃₂₂ Bell inequality (entanglement in quantum information)

$$f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$$

Maximal violation levels \rightarrow **upper bounds** on λ_{\max} of f on $\{(x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i\}$ $\forall C_k \rightarrow \{x_1, x_2, x_3, y_k\}$

0.2508763

level	sparse	dense [Pál-Vértesi 18]
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3'		0.2508754 (1 day)
4	0.2508917	

5

I₃₃₂₂ Bell inequality (entanglement in quantum information)

$$f = x_1(y_1 + y_2 + y_3) + x_2(y_1 + y_2 - y_3) + x_3(y_1 - y_2) - x_1 - 2y_1 - y_2$$

Maximal violation levels \rightarrow **upper bounds** on λ_{\max} of f on $\{(x, y) : x_i^2 = x_i, y_j^2 = y_j, x_i y_j = y_j x_i\}$ $\forall C_k \rightarrow \{x_1, x_2, x_3, y_k\}$

sparse	dense [Pál-Vértesi 18
0.2550008	0.2509397
0.2511592	0.2508756
	0.25087 <mark>54</mark> (<mark>1 day</mark>)
	sparse 0.2550008 0.2511592

vs

- 4 0.2508917
- 5 0.25087<mark>63</mark>
- 6 0.2508753977180 (1 hour)

ACCURACY

[Postdoc Wang '19-21] ANR Tremplin-ERC

$$f = x_1^2 - 2x_1x_2 + 3x_2^2 - 2x_1^2x_2 + 2x_1^2x_2^2 - 2x_2x_3 + 6x_3^2 + 18x_2^2x_3 - 54x_2x_3^2 + 142x_2^2x_3^2$$
[Reznick '78] $\rightarrow f = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \underbrace{Q}_{\geq 0} \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \\ x_1x_2 \\ x_2x_3 \end{pmatrix}$

 \rightarrow

[Postdoc Wang '19-21] ANR Tremplin-ERC

$$f = x_1^2 - 2x_1x_2 + 3x_2^2 - 2x_1^2x_2 + 2x_1^2x_2^2 - 2x_2x_3 + 6x_3^2 + 18x_2^2x_3 - 54x_2x_3^2 + 142x_2^2x_3^2$$
[Reznick '78] $\rightarrow f = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q$
 $\implies \frac{6 \times 7}{2} = 28$ "unknown" entries in Q
 $\implies \frac{6 \times 7}{2} = 28$ "unknown" entries of Q
 $\xrightarrow{(x_1x_2)} 1 \qquad x_2x_3 \qquad x_3$

[Postdoc Wang '19-21] ANR Tremplin-ERC

$$f = x_1^2 - 2x_1x_2 + 3x_2^2 - 2x_1^2x_2 + 2x_1^2x_2^2 - 2x_2x_3 + 6x_3^2 + 18x_2^2x_3 - 54x_2x_3^2 + 142x_2^2x_3^2$$
[Reznick '78] $\rightarrow f = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q$
 $\Rightarrow \frac{6 \times 7}{2} = 28$ "unknown" entries in Q

$$\Rightarrow \frac{6 \times 7}{2} = 28$$
 "unknown" entries in Q

Form sparsity pattern graph *G* + chordal extension

[Postdoc Wang '19-21] ANR Tremplin-ERC

$$f = x_1^2 - 2x_1x_2 + 3x_2^2 - 2x_1^2x_2 + 2x_1^2x_2^2 - 2x_2x_3 + 6x_3^2 + 18x_2^2x_3 - 54x_2x_3^2 + 142x_2^2x_3^2$$
[Reznick '78] $\rightarrow f = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{i \neq 0} (x_1 \quad x_2 \quad x_3 \quad x_3$

Replace Q by Q_G with nonzero entries at edges of $G \rightarrow 6 + 9 = 15$ "unknown" entries in Q_G

Lyapunov functions from NETWORKED SYSTEMS

$$f = \sum_{i=1}^{N} a_i (x_i^2 + x_i^4) - \sum_{i,k=1}^{N} b_{ik} x_i^2 x_k^2 \quad a_i \in [1,2] \quad b_{ik} \in [\frac{0.5}{N}, \frac{1.5}{N}]$$

 $\rightsquigarrow \binom{N+2}{2}(\binom{N+2}{2}+1)/2 = 231$ "unknown" entries in Q for N = 5

Lyapunov functions from NETWORKED SYSTEMS

$$f = \sum_{i=1}^{N} a_i (x_i^2 + x_i^4) - \sum_{i,k=1}^{N} b_{ik} x_i^2 x_k^2 \quad a_i \in [1,2] \quad b_{ik} \in [\frac{0.5}{N}, \frac{1.5}{N}]$$

 $\sim ({N+2 \choose 2})({N+2 \choose 2}+1)/2 = 231$ "unknown" entries in Q for N = 5

ϔ term sparsity graph G

Lyapunov functions from NETWORKED SYSTEMS

$$f = \sum_{i=1}^{N} a_i (x_i^2 + x_i^4) - \sum_{i,k=1}^{N} b_{ik} x_i^2 x_k^2 \quad a_i \in [1,2] \quad b_{ik} \in [\frac{0.5}{N}, \frac{1.5}{N}]$$

 $\sim ({N+2 \choose 2})({N+2 \choose 2}+1)/2 = 231$ "unknown" entries in Q for N = 5

 $\rightsquigarrow (N+1)^2 = 36$ "unknown" entries in Q_G for N = 5

Proof that $f \ge 0$ for N = 80 in ~ 10 seconds!

Victor Magron

[™] CONVERGENCE GUARANTEES

 \overleftarrow{V} handles NC polynomials, $\mathbb{C}[x]$, joint spectral radii, combo with correlative sparsity \rightarrow 7 papers

 \forall Julia libraries TSSOS & NCTSSOS \rightarrow solve problems with $n = 10^3$!

V choice of the CHORDAL EXTENSION: min / max
Introduction

The quest of modeling

The quest of certification

The quest of efficiency

Research projects in polynomial optimization

Research projects in polynomial optimization

Embed polynomial optimization in academic & industrial frameworks

For each project: I will present

- 1 context + ideas
- 2 zoom on a specific application target

Quantum information & free probabilities

QUANTUM APPLICATIONS

Ground state energy, trace polynomials for Werner witnesses Symmetric & sparse

Quantum information & free probabilities

QUANTUM APPLICATIONS

Ground state energy, trace polynomials for Werner witnesses Symmetric & sparse

RESEARCH DIRECTIONS RELYING ON FREE PROBABILITIES

Minimizer approximation: noncommutative Christoffel-Darboux kernels and the Siciak function [Beckermann et al. '20]

Ground-state energy \Leftrightarrow minimal eigenvalue of an Hamiltonian

$$H = \sum_{\langle i,j \rangle} \left(x_i \, x_j + y_i \, y_j + \, z_i \, z_j \right)$$

spin states (x_i, y_i, z_i) , constraints

Lattices: 1D 2D Kagome

Ground-state energy \Leftrightarrow minimal eigenvalue of an Hamiltonian

$$H = \sum_{\langle i,j \rangle} \left(x_i \, x_j + y_i \, y_j + \, z_i \, z_j \right)$$

Existing \pm efficient techniques: quantum Monte Carlo & variational algorithms \Rightarrow **upper bounds** on minimal energy

Zoom: condensed matter

Dense d = 4, $n = 10^2 \Rightarrow 10^{19}$ variables (solvers handle $\simeq 10^4$)

Zoom: condensed matter

Dense d = 4, $n = 10^2 \Rightarrow 10^{19}$ variables (solvers handle $\simeq 10^4$) **Sparse** solved within 1 hour on PFCALCUL at LAAS

Victor Magron

Quantum & free probabilities: interaction

Wini-symposium with I. Klep *Computational aspects of commutative and noncommutative positive polynomials* at EUROPEAN CONGRESS OF MATHEMATICIANS

structured relaxations [PhD Mai '19-22]

OPTIMAL POWER FLOW \rightarrow large-scale problems with 👸 sparse & constant trace

OPTIMAL POWER FLOW \rightarrow large-scale problems with structured relaxations [PhD Mai '19-22]

FINITE IMPULSE RESPONSE FILTERS \rightarrow noise reduction for smart grids **Certification** [PhD Hieu '19-22]

OPTIMAL POWER FLOW \rightarrow large-scale problems with structured relaxations [PhD Mai '19-22]

FINITE IMPULSE RESPONSE FILTERS \rightarrow noise reductionfor smart grids \checkmark Certification [PhD Hieu '19-22]

STABILITY OF LARGE-SCALE POWER SYSTEMS \rightarrow reachability analysis of continuous-time systems `? Sparse [Kundur '07]

OPTIMAL POWER FLOW \rightarrow large-scale problems with structured relaxations [PhD Mai '19-22]

FINITE IMPULSE RESPONSE FILTERS \rightarrow noise reductionfor smart grids \checkmark Certification [PhD Hieu '19-22]

time

TIME DELAY SYSTEMS \rightarrow deteriorate controllers of networked power

Ϋ occupation measures

systems

8

Zoom: optimal power flow

Solving Alternative Current OPF to global optimality \rightarrow benchmarks [PGLIB '18] with up to 25 000 buses!

Solving Alternative Current OPF to global optimality \rightarrow benchmarks [PGLIB '18] with up to 25 000 buses!

COMPLEX vs REAL hierarchy of relaxations? [D'Angelo Putinar '09, Josz et al. '18, Magron Wang '21] $6515_RTE \rightarrow n = 7000$ complex variables (14000 real variables) solved at 0.6% gap within 3 hours on PFCALCUL at LAAS Solving Alternative Current OPF to global optimality \rightarrow benchmarks [PGLIB '18] with up to 25 000 buses!

COMPLEX vs REAL hierarchy of relaxations? [D'Angelo Putinar '09, Josz et al. '18, Magron Wang '21] $6515_RTE \rightarrow n = 7000$ complex variables (14000 real variables) solved at 0.6% gap within 3 hours on PFCALCUL at LAAS

SDP have CONSTANT TRACE PROPERTY

[PhD Mai '19-22]

Solving Alternative Current OPF to global optimality \rightarrow benchmarks [PGLIB '18] with up to 25 000 buses!

SDP have CONSTANT TRACE PROPERTY

 \overrightarrow{V} Replace interior-point solvers by 1st-order methods \Rightarrow handle matrices of size up to 2000 with more than 1.5 million constraints... in 1 hour!

[PhD Mai '19-22]

 $130 + 20j \xleftarrow{3}{3}$

 \rightarrow 130 + 20i

 $65 \pm 10i$

Energy networks: interaction

ROBUSTNESS CERTIFICATION OF NEURAL NETWORKS Sparse [Chen Lasserre Magron Pauwels '20]

ROBUSTNESS CERTIFICATION OF NEURAL NETWORKS

STABILITY ANALYSIS OF RECURRENT NETWORKS Copositive program + integral quadratic constraints [Megretski Rantzer '97] [Ebihara Waki Mai Magron Peaucelle Tarbouriech '20]

Formal proofs [Devadze Streif Magron '21]

Hidden

[SIAM News March '21]

"Yet DL has an Achilles' heel. Current implementations can be highly unstable, meaning that a certain small perturbation to the input of a trained neural network can cause substantial change in its output. This phenomenon is both a nuisance and a major concern for the safety and robustness of DL-based systems in critical applications—like healthcare—where reliable computations are essential"

 \dot{V} "Direct" certification of a classifier with 1 hidden layer

$$\max_{\mathbf{x},\mathbf{z}} \quad (\mathbf{C}^{i,:} - \mathbf{C}^{k,:})\mathbf{z}$$

s.t.
$$\begin{cases} \mathbf{z} = \operatorname{ReLU}(\mathbf{A}\mathbf{x} + \mathbf{b}) \\ ||\mathbf{x} - \mathbf{x}_0|| \le \epsilon \end{cases}$$

V "Direct" certification of a classifier with 1 hidden layer

$$\max_{\mathbf{x},\mathbf{z}} \quad (\mathbf{C}^{i,:} - \mathbf{C}^{k,:})\mathbf{z}$$

s.t.
$$\begin{cases} \mathbf{z} = \operatorname{ReLU}(\mathbf{A}\mathbf{x} + \mathbf{b}) \\ ||\mathbf{x} - \mathbf{x}_0|| \le \epsilon \end{cases}$$

V Monotone equilibrium networks [Winston Kolter '20]

$$z = \text{ReLU}(Ax + b) \rightarrow z = \text{ReLU}(Wz + Ax + b)$$

 \dot{V} "Direct" certification of a classifier with 1 hidden layer

$$\max_{\mathbf{x},\mathbf{z}} \quad (\mathbf{C}^{i,:} - \mathbf{C}^{k,:})\mathbf{z}$$

s.t.
$$\begin{cases} \mathbf{z} = \operatorname{ReLU}(\mathbf{A}\mathbf{x} + \mathbf{b}) \\ ||\mathbf{x} - \mathbf{x}_0|| \le \epsilon \end{cases}$$

V Monotone equilibrium networks [Winston Kolter '20]

$$\mathbf{z} = \operatorname{ReLU}(\mathbf{A}\mathbf{x} + \mathbf{b}) \rightarrow \mathbf{z} = \operatorname{ReLU}(\mathbf{W}\mathbf{z} + \mathbf{A}\mathbf{x} + \mathbf{b})$$

V "Indirect" with Lipschitz constant/ellipsoid approximation

Deep learning: interaction

V powerful & accurate MODELING tool

♥ powerful & accurate MODELING tool

 \overrightarrow{V} CERTIFICATION cost \simeq optimization cost

♥ powerful & accurate MODELING tool

 \overrightarrow{V} CERTIFICATION cost \simeq optimization cost

V EFFICIENCY guaranteed on structured applications

Thanks to all of my collaborators

And thanks for your presence and attention today!