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Basic opinion dynamics

Opinions xi(t) ∈ R for population of individuals i ∈ I = {1, . . . ,N}

ẋi =

N
∑

j=1

aij(xj − xi )

Opinions evolve through interactions between agents

aij = 1 if j influences i ; aij = 0 otherwise

interactions described by the graph with adjacency matrix A

Additional notation:

- degree di =
∑

j aij

- Laplacian L = diag(d)− A
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Opinion dynamics and consensus

If there is one node that can be reached
from all other nodes
=⇒ convergence to consensus of opinions

xi(t) → α ∈ R as t→+∞ for all i ∈ I
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Issue: Societies do not exhibit consensus!
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Models for disagreement: some potential causes

Prejudices
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Antagonistic interactions
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Bounded confidence

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

Discretized interactions
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In this talk we focus on the last two =⇒ non-smooth systems
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Solutions

Let I ⊂ R be an interval of the form (0,T ).

A continuously differentiable function x : I → RN is a classical
solution if it satisfies ẋ = f (x) for all t ∈ I

An absolutely continuous function x : I → RN is a Carathéodory
solution if it satisfies ẋ = f (x) for almost all t ∈ I or, equivalently, if
it is a solution of the integral equation

x(t) = x0 +

∫ t

0
f (x(s))ds

An absolutely continuous function x : I → RN is a Krasowskii solution
of ẋ = f (x) if, for almost every t ∈ I , it satisfies

ẋ(t) ∈ Kf (x(t))

where

Kf (x) =
⋂

δ>0

co({f (y) : y such that ‖x − y‖ < δ})

4 / 19



Discrete interactions



Quantized opinions as discrete behaviors

Quantizer q : R → Z defined as q(s) = ⌊s + 1
2⌋

ẋi =
∑

j∈I
aij

(

q(xj)− xi
)

(Q)

Motivation: limited verbalization [Urbig’03], discrete actions [Martins’08]
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Quantized opinions as discrete behaviors

Quantizer q : R → Z defined as q(s) = ⌊s + 1
2⌋

ẋi =
∑

j∈I
aij

(

q(xj)− xi
)

(Q)

Motivation: limited verbalization [Urbig’03], discrete actions [Martins’08]

Comparison with quantized consensus dynamics:

ẋi =
∑

j∈I
aij

(

q(xj)− q(xi)
) [Ceragioli,DePersis&F.’11]

[Wei,Yi,Sandberg&Johansson’16]

ẋi =
∑

j∈I
aij q(xj − xi) [Dimarogonas&Johansson’10]

these two dynamics approximately converge to consensus
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Carathéodory solutions: good and bad news

Solutions to (Q)

From every initial condition there exists a complete Carathéodory solution
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Carathéodory solutions: good and bad news

Solutions to (Q)

From every initial condition there exists a complete Carathéodory solution

Pathological attractors

It exists x∗ such that x(t) → x∗ but x∗ is not equilibrium ?!

Example: (0, 0.49, 0.51, 1) → (0, 12 ,
1
2 , 1) on path graph

More generally: (0, 12 ,
1
2 ,

3
2 ,

3
2 , . . . ,

N−2
2 ) is attractive non-equilibrium
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Examples: far from consensus

Lack of consensus is actually very common:
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Directed Erdős graph
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Krasowskii solutions

Asymptotical distance from consensus

Assume

x(t) is Krasowskii solution to (Q)

the graph has symmetric adjacency matrix A

M =

{

x ∈ RN : inf
α∈R

‖x − α1‖ ≤ ||A||
λ2

√
N

2

}

λ2 is smallest positive eigenvalue of L

then, dist(x(t),M) → 0 as t → +∞

Proof sketch:

quantization error x − q(x) is bounded

Lyapunov function V (x) = 1
2 ||x − xave1||2 with xave :=

1
N

N
∑

i=1
xi
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Krasowskii solutions

Asymptotical distance from consensus

Assume

x(t) is Krasowskii solution to (Q)

the graph has symmetric adjacency matrix A

M =

{

x ∈ RN : inf
α∈R

‖x − α1‖ ≤ ||A||
λ2

√
N

2

}

λ2 is smallest positive eigenvalue of L

then, dist(x(t),M) → 0 as t → +∞

Proof sketch:

quantization error x − q(x) is bounded

Lyapunov function V (x) = 1
2 ||x − xave1||2 with xave :=

1
N

N
∑

i=1
xi

Note: M is tight on path graphs: ∃x∗ such that 1√
N
‖x∗ − x∗ave1‖ = Θ(N2)
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Special graphs

Convergence

Krasowskii solutions to (Q) converge to integer consensus x∗ = k1 if

the graph is complete; or

the graph is complete bipartite
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Conclusions on discrete behaviors

1 This was the simplest possible model. . .

2 Quantized behaviors can explain disagreement

3 Preferred notion of solutions is Krasowskii (= Filippov in this case)

Open problems:

Does the dynamics converge?

Necessary and sufficient conditions for consensus (which topologies?)

Are there closed solutions?

Are there non-Caratheodory non-constant solutions with
non-negligible basin of attraction?
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Bounded confidence



Bounded confidence

Model: Confidence threshold R > 0

ẋi =
∑

j :|xi−xj |<R

(xj − xi ) (BC)

[Hegselmann&Krause’02] [Blondel,Hendricks&Tsitsiklis’10]
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Bounded confidence

Model: Confidence threshold R > 0

ẋi =
∑

j :|xi−xj |<R

(xj − xi ) (BC)

[Hegselmann&Krause’02] [Blondel,Hendricks&Tsitsiklis’10]
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Discontinuous right-hand side

Formation of clusters where
individuals agree
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Existence of solutions

Solutions to (BC)

From almost every initial condition there exists a complete unique
Carathéodory solution
From every initial condition there exists a complete Krasowskii solution

Carathéodory solutions ( Krasowskii solutions

Example: N = 3, R = 1

x(0) ∈ {x : |x1 − x2| < 1, x3 − x2 = 1}

ẋ ∈







α





x2 − x1
1 + x1 − x2

−1



+ (1− α)





x2 − x1
x1 − x2

0



 : α ∈ [0, 1]







which can be normal to the discontinuity surface
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Equilibria and convergence

Convergence of (BC)

1. The set of Krasowskii equilibria is

E = {x ∈ RI : for every (i , j) either xi = xj or |xi − xj | ≥ R}

2. If x(·) is Krasowskii solution, then
a) xave(t) = xave(0)
b) x(t) → x∗ ∈ E as t → +∞

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

13 / 19



Equilibria and convergence

Convergence of (BC)

1. The set of Krasowskii equilibria is

E = {x ∈ RI : for every (i , j) either xi = xj or |xi − xj | ≥ R}

2. If x(·) is Krasowskii solution, then
a) xave(t) = xave(0)
b) x(t) → x∗ ∈ E as t → +∞

Proof sketch:

Average preservation

Order preservation

Contractivity and boundedness

Lyapunov function V (x) = 1
2x

⊤x

Invariance Principle [Ceragioli’00] 0 5 10 15 20 25 30 35
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Properties of the equilibria

Set E is not strongly invariant and is not stable
Example: Take N = 2 and R = 1 and the solution

x(t) = ( 12 + 1
2e

−2t , 12 − 1
2e

−2t)
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Properties of the equilibria

Set E is not strongly invariant and is not stable
Example: Take N = 2 and R = 1 and the solution

x(t) = ( 12 + 1
2e

−2t , 12 − 1
2e

−2t)

Definition: Equilibrium x ∈ E is robust if no perturbation consisting in
adding one agent causes two of the former clusters to coalesce in the
resulting evolution

Let x ∈ E and consider two clusters in x , denoted by
A and B , having values xA and xB and cardinalities
nA ≤ nB

Robustness (R=1)

For the equilibrium x ∈ E to be robust it is

sufficient that |xB − xA| > 2 for every A,B

necessary that |xB − xA| > 1 + nA
nB

for every A,B
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Bounded confidence: Hybrid systems



Hybrid Laplacian dynamics

Potential edges (i , j) have status of variables aij ∈ {0, 1}: then x = (y , a)











ẏi =
∑

j∈I\{i}
aij(yj − yi ) for all i ∈ I

ȧij = 0 for all (i , j) ∈ I × I
(Flow)











y+i = yi for all i ∈ I
a+hk = 1− ahk

a+ij = aij for all (i , j) 6= (h, k)

(y , a) ∈ Dhk (Jump)

Jump set: D =
⋃

hk Dhk

Flow set: C = X \D
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Jump set

Bounded confidence with hysteresis regularization:

Don
hk :={ahk = 0} ∩ {(yh − yk)

2 ≤ R2 − ε}
Doff
hk :={ahk = 1} ∩ {(yh − yk)

2 ≥ R2 + ε}
Dhk :=Doff

hk ∪ Don
hk

where R and ε are positive scalars and ε is (much) smaller that R

Remarks:

Close approximation of the previous non-smooth model

Well-posed and chattering-free dynamics
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Convergence

Let Ẽ = {(y , a) : aij(yi − yj) = 0 for all (i , j)}

Convergence of hybrid dynamics

If x(·) is hybrid solution then

x(t) has a finite number of jumps

x(t) → x∗ ∈ Ẽ as t → +∞
x∗ = (y∗, a∗) is such that y∗i = y∗j if a∗ij = 1

Proof sketch:

Boundedness

Lyapunov function V (x) = 1
2y

⊤y

Invariance Principle [Goebel,Sanfelice&Teel’12]

17 / 19



Convergence

Let Ẽ = {(y , a) : aij(yi − yj) = 0 for all (i , j)}

Convergence of hybrid dynamics

If x(·) is hybrid solution then

x(t) has a finite number of jumps

x(t) → x∗ ∈ Ẽ as t → +∞
x∗ = (y∗, a∗) is such that y∗i = y∗j if a∗ij = 1

Proof sketch:

Boundedness

Lyapunov function V (x) = 1
2y

⊤y

Invariance Principle [Goebel,Sanfelice&Teel’12]

The set Ẽ is not invariant and not stable:
take (a, y) such that aij = 0 and yi − yj = R2 − ε

17 / 19



Conclusion



General conclusion

Summary

1. Opinion dynamics naturally lead to discontinuous systems

2. Generalized solutions are an important tool for their analysis

3. The hybrid framework can also be useful

4. Pathologies abound (mainly, convergence without stability)
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General conclusion

Summary

1. Opinion dynamics naturally lead to discontinuous systems

2. Generalized solutions are an important tool for their analysis

3. The hybrid framework can also be useful

4. Pathologies abound (mainly, convergence without stability)

Outlook

a. Can we ensure both convergence and stability?

b. Can we control these discontinuous/hybrid models?

c. What is the meaning for social sciences?
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