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Prevalent Network Control Applications

Multi-agent Systems with Limited

Information [TCNS 16, Automatica 16]

Control of Groups of Neurons

[ACC 14, TCNS 16]

Coordination of

Underactuated Vehicles

[Automatica 15, TAC 16]
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Prevalent Network Control Applications

Multi-agent Systems with Limited

Information [TCNS 16, Automatica 16]

Control of Groups of Neurons

[ACC 14, TCNS 16]

Coordination of

Underactuated Vehicles

[Automatica 15, TAC 16]

Key Features:

! Nonlinearities

! Fast time scales / events

! Limited information
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Motivation and Approach

Common features in applications:
! Variables changing continuously (e.g., physical quantities) and

discretely (e.g., logic variables, resetting timers).
! Abrupt changes in the dynamics (changes in the environment,

control decisions, communication events, or failures).
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Motivation and Approach

Common features in applications:
! Variables changing continuously (e.g., physical quantities) and

discretely (e.g., logic variables, resetting timers).
! Abrupt changes in the dynamics (changes in the environment,

control decisions, communication events, or failures).

Driving Question:

How can we systematically design such systems with provable
robustness to uncertainties arising in real-world environments?

Approach:
! Capture continuous and discrete behavior using

dynamical modeling.

! Analysis of stability and control design using control
theoretical tools.

! Numerical (and sometimes experimental) validation.
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Recent Contributions to Hybrid Systems Theory
! Autonomous Hybrid Systems

! Notion of Solution
! Lyapunov Theory and Invariance
! Robustness to Small Perturbations

! Nonautonomus Hybrid Systems
! Notion of Solution
! Control Lyapunov Functions
! I/O Stability
! Interconnections
! Small gain Theorems

! Hybrid Control Design
! Minimum-norm Control
! Passivity-based Control
! Backstepping
! Tracking Control

! Numerical Simulation
! Simulation theory
! Simulation toolbox

Ricardo Sanfelice - University of California, Santa Cruz



Outline
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! Motivation, Approach, and Recent Contributions

! Prevalent Network Control Applications

Ricardo Sanfelice - University of California, Santa Cruz



Outline
1. Introduction

! Motivation, Approach, and Recent Contributions

! Prevalent Network Control Applications

2. Hybrid Systems Tools for Control of Networks

! Hybrid Inclusion Models

! Lyapunov Stability Tools

! Robustness Tools

! Applications to Network Estimation and Synchronization

Ricardo Sanfelice - University of California, Santa Cruz



Outline
1. Introduction

! Motivation, Approach, and Recent Contributions

! Prevalent Network Control Applications

2. Hybrid Systems Tools for Control of Networks

! Hybrid Inclusion Models

! Lyapunov Stability Tools

! Robustness Tools

! Applications to Network Estimation and Synchronization

3. Conclusion

Ricardo Sanfelice - University of California, Santa Cruz



Outline
1. Introduction

! Motivation, Approach, and Recent Contributions

! Prevalent Network Control Applications

2. Hybrid Systems Tools for Control of Networks

! Hybrid Inclusion Models

! Lyapunov Stability Tools

! Robustness Tools

! Applications to Network Estimation and Synchronization

3. Conclusion

Ricardo Sanfelice - University of California, Santa Cruz



Related Work

A (rather incomplete) list of related contributions:

! Differential equations with multistable elements
[Witsenhausen - TAC 66]

! Differential automata [Tavernini - NA 87]

! Hybrid automata [Branicky et al. - TAC 98]
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[Lygeros et al. - TAC 01]
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Related Work

A (rather incomplete) list of related contributions:

! Differential equations with multistable elements
[Witsenhausen - TAC 66]

! Differential automata [Tavernini - NA 87]

! Hybrid automata [Branicky et al. - TAC 98]

[van der Schaft and Schumacher 00]

[Lygeros et al. - TAC 01]

! Impulsive differential equations [Bainov and Simeonov 89]

[Chellaboina et al. - NA 03]

! Measure-driven differential equations [Moreau 88]

[Silva and Vinter - J. Math. Anal. Appl. 96]

! Systems with unilateral constraints [Brogliato 96]

!
...
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Modeling Hybrid Systems

Hybrid systems are given by hybrid inclusions

H

⎧
⎨

⎩

ẋ = f(x, u) (x, u) ∈ C
x+ = g(x, u) (x, u) ∈ D
y = h(x, u)

where x is the state, u the input, y the output

! C is the flow set

! f is the flow map

! D is the jump set

! g is the jump map

and h is the output map.
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Modeling Hybrid Systems

Hybrid systems are given by hybrid inclusions

H

⎧
⎨

⎩

ẋ ∈ f(x, u) (x, u) ∈ C
x+ ∈ g(x, u) (x, u) ∈ D
y = h(x, u)

where x is the state, u the input, y the output

! C is the flow set

! f is the flow map

! D is the jump set

! g is the jump map

and h is the output map.

Solutions are functions parameterized by hybrid time (t, j):
! Flows parameterized by t ∈ R≥0 := [0,+∞)
! Jumps parameterized by j ∈ N≥0 := {0, 1, 2, . . .}

Then, solutions to H are given by pairs (x, u) defined on

([0, t1]× {0})
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Modeling Hybrid Systems

Hybrid systems are given by hybrid inclusions

H

⎧
⎨

⎩

ẋ ∈ f(x, u) (x, u) ∈ C
x+ ∈ g(x, u) (x, u) ∈ D
y = h(x, u)

where x is the state, u the input, y the output

! C is the flow set

! f is the flow map

! D is the jump set

! g is the jump map

and h is the output map.

Solutions are functions parameterized by hybrid time (t, j):
! Flows parameterized by t ∈ R≥0 := [0,+∞)
! Jumps parameterized by j ∈ N≥0 := {0, 1, 2, . . .}

Then, solutions to H are given by pairs (x, u) defined on

([0, t1]× {0}) ∪ ([t1, t2]× {1})
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Modeling Hybrid Systems

Hybrid systems are given by hybrid inclusions

H

⎧
⎨

⎩

ẋ ∈ f(x, u) (x, u) ∈ C
x+ ∈ g(x, u) (x, u) ∈ D
y = h(x, u)

where x is the state, u the input, y the output

! C is the flow set

! f is the flow map

! D is the jump set

! g is the jump map

and h is the output map.

Solutions are functions parameterized by hybrid time (t, j):
! Flows parameterized by t ∈ R≥0 := [0,+∞)
! Jumps parameterized by j ∈ N≥0 := {0, 1, 2, . . .}

Then, solutions to H are given by pairs (x, u) defined on

([0, t1]× {0}) ∪ ([t1, t2]× {1}) ∪ . . . ([tj , tj+1]× {j}) ∪ . . .
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Modeling Hybrid Systems

Hybrid systems are given by hybrid inclusions

H

⎧
⎨

⎩

ẋ ∈ f(x, u) (x, u) ∈ C
x+ ∈ g(x, u) (x, u) ∈ D
y = h(x, u)

where x is the state, u the input, y the output

! C is the flow set

! f is the flow map

! D is the jump set

! g is the jump map

and h is the output map.

Solutions are functions parameterized by hybrid time (t, j):
! Flows parameterized by t ∈ R≥0 := [0,+∞)
! Jumps parameterized by j ∈ N≥0 := {0, 1, 2, . . .}

Then, solutions to H are given by pairs (x, u) defined on

([0, t1]× {0}) ∪ ([t1, t2]× {1}) ∪ . . . ([tj , tj+1]× {j}) ∪ . . .

The state x can have logic, memory, and timer components.
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Modeling Hybrid Systems

C D

Rn (or any open set)1

×
ẋ ∈ f(x, u)

g(x, u)∋
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Modeling Hybrid Systems

C D

Rn (or any open set)1

×
ẋ ∈ f(x, u)

g(x, u)∋

0

1

2

3

4

t1 t2 t3 = t4

j

t

x(0, 0)
x(t, j)

domx
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General Network Control Setting

! Γ = (V , E,G) directed graph

! V := {1, 2, . . . , N} set of nodes

! E ⊂ V × V set of edges

! Ji = {k : (i, k) ∈ E} neighbors to agent i

! G = {gik} is the adjacency
matrix, where gik = 1 if
(i, k) ∈ E and 0 otherwise

! dini and douti are the indegree
and outdegree of agent i
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Estimation Over a Network
Let the dynamics of the i-th node of the network be

żi = Aizi, yi = Mizi
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Estimation Over a Network
Let the dynamics of the i-th node of the network be

żi = Aizi, yi = Mizi

Goal

Design of an observer for zi that runs at each of the other agents
and measures yi at communication event times {tℓ}∞ℓ=1 satisfying

T1 ≤ tℓ+1 − tℓ ≤ T2
where

! T1 defines the fastest communication rate

! T2 represents the Maximum Allowable Transfer Time (MATI)

Ricardo Sanfelice - University of California, Santa Cruz



Estimation Over a Network
Let the dynamics of the i-th node of the network be

żi = Aizi, yi = Mizi

Goal

Design of an observer for zi that runs at each of the other agents
and measures yi at communication event times {tℓ}∞ℓ=1 satisfying

T1 ≤ tℓ+1 − tℓ ≤ T2
where

! T1 defines the fastest communication rate

! T2 represents the Maximum Allowable Transfer Time (MATI)

Proposed Observer: ẑk stores the estimate of zi

˙̂zk(t) = Aiẑk(t) when t /∈ {tℓ}
∞
ℓ=1

ẑ+k = ẑk(t) + Lk(yi(t)−Miẑk(t)) when t ∈ {tℓ}
∞
ℓ=1

where Lk is a matrix (gain) to be designed.
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Estimation Over a Network
Let the dynamics of the i-th node of the network be

żi = Aizi, yi = Mizi

Goal

Design of an observer for zi that runs at each of the other agents
and measures yi at communication event times {tℓ}∞ℓ=1 satisfying

T1 ≤ tℓ+1 − tℓ ≤ T2
where

! T1 defines the fastest communication rate

! T2 represents the Maximum Allowable Transfer Time (MATI)

Proposed Observer: ẑk stores the estimate of zi

˙̂zk(t) = Aiẑk(t) when t /∈ {tℓ}
∞
ℓ=1

ẑ+k = ẑk(t) + Lk(yi(t)−Miẑk(t)) when t ∈ {tℓ}
∞
ℓ=1

where Lk is a matrix (gain) to be designed.

Globally exponentially stabilize the set, denoted Aobs,
collecting all points such that

zi = ẑk ∀k ∈ V

that is, render the zero estimation error set GES
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Estimation Over a Network – Modeling

Time-varying and (potentially) stochastic system can be
modeled as an autonomous hybrid inclusion
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Time-varying and (potentially) stochastic system can be
modeled as an autonomous hybrid inclusion

Idea: To capture all possible event sequences {tℓ}∞ℓ=1 while
removing dependency on time and stochastic dynamics, define

! τ as a timer that, when expires, generates the communication
events from the i-th agent to the k-th agent
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Time-varying and (potentially) stochastic system can be
modeled as an autonomous hybrid inclusion

Idea: To capture all possible event sequences {tℓ}∞ℓ=1 while
removing dependency on time and stochastic dynamics, define

! τ as a timer that, when expires, generates the communication
events from the i-th agent to the k-th agent

with dynamics

{
τ̇ = −1 τ ∈ [0, T2]
τ+ ∈ [T1, T2] τ = 0
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Estimation Over a Network – Modeling

Time-varying and (potentially) stochastic system can be
modeled as an autonomous hybrid inclusion

Idea: To capture all possible event sequences {tℓ}∞ℓ=1 while
removing dependency on time and stochastic dynamics, define

! τ as a timer that, when expires, generates the communication
events from the i-th agent to the k-th agent

with dynamics
{

τ̇ = −1 τ ∈ [0, T2]
τ+ ∈ [T1, T2] τ = 0

t
0 0.2 0.4 0.6 0.8 1 1.2

τ

0.05

0.1

0.15

0.2

0.25

0.3
T2

T1
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Estimation Over a Network – Modeling

Time-varying and (potentially) stochastic system can be
modeled as an autonomous hybrid inclusion

Idea: To capture all possible event sequences {tℓ}∞ℓ=1 while
removing dependency on time and stochastic dynamics, define

! τ as a timer that, when expires, generates the communication
events from the i-th agent to the k-th agent

! e = zi − ẑk as the estimation error used for analysis
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Estimation Over a Network – Modeling

Time-varying and (potentially) stochastic system can be
modeled as an autonomous hybrid inclusion

Idea: To capture all possible event sequences {tℓ}∞ℓ=1 while
removing dependency on time and stochastic dynamics, define

! τ as a timer that, when expires, generates the communication
events from the i-th agent to the k-th agent

! e = zi − ẑk as the estimation error used for analysis

Then, with x = (e, τ), we have

Hik
obs

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ė = Aie
τ̇ = −1

}
=: f(x) (e, τ) ∈ C

e+ = (I − LkMi)e
τ+ ∈ [T1, T2]

}
=: g(x) (e, τ) ∈ D

with the flow set and the jump set defined as

C = R
n × [0, T2], D = {(e, τ) : τ = 0}
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Synchronization Over a Network
Let the dynamics of each node of the network be

żi = Azi +Bui
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Synchronization Over a Network
Let the dynamics of each node of the network be

żi = Azi +Bui

Goal

Design a feedback controller assigning ui to drive the solutions
to synchronization using information received only at
communication event times.
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Synchronization Over a Network
Let the dynamics of each node of the network be

żi = Azi +Bui

Goal

Design a feedback controller assigning ui to drive the solutions
to synchronization using information received only at
communication event times. Namely, ensure

! lim
t→∞

|zi(t)− zk(t)| = 0 for each i, k ∈ V

! and Lyapunov stability of the set of points z such that

zi = zk ∀i, k ∈ V
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Synchronization Over a Network
Let the dynamics of each node of the network be

żi = Azi +Bui

Goal

Design a feedback controller assigning ui to drive the solutions
to synchronization using information received only at
communication event times. Namely, ensure

! lim
t→∞

|zi(t)− zk(t)| = 0 for each i, k ∈ V

! and Lyapunov stability of the set of points z such that

zi = zk ∀i, k ∈ V

Proposed Controller: Controller with state ηi assigns ui = ηi⎧
⎪⎨

⎪⎩

η̇i(t) = 0 when t ∈ {tℓ}∞ℓ=1

η+i =
Ki

dini

∑

k∈Ji

(zi(t)− zk(t)) when t /∈ {tℓ}∞ℓ=1

where Ji = {k : (i, k) ∈ E} collects i-agent neighbors and dini is its in-degree.
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Synchronization Over a Network
Let the dynamics of each node of the network be

żi = Azi +Bui

Goal

Design a feedback controller assigning ui to drive the solutions
to synchronization using information received only at
communication event times. Namely, ensure

! lim
t→∞

|zi(t)− zk(t)| = 0 for each i, k ∈ V

! and Lyapunov stability of the set of points z such that

zi = zk ∀i, k ∈ V

Proposed Controller: Controller with state ηi assigns ui = ηi⎧
⎪⎨

⎪⎩

η̇i(t) = 0 when t ∈ {tℓ}∞ℓ=1

η+i =
Ki

dini

∑

k∈Ji

(zi(t)− zk(t)) when t /∈ {tℓ}∞ℓ=1

where Ji = {k : (i, k) ∈ E} collects i-agent neighbors and dini is its in-degree.

Globally exponentially stabilize the set, denoted Async,
collecting all points such that

zi = zk

that is, render the “diagonal in z” set GES
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General Control Problem
Given a set A and a hybrid system H to be controlled

H

⎧
⎨

⎩

ẋ ∈ f(x, u) (x, u) ∈ C
x+ ∈ g(x, u) (x, u) ∈ D
y = h(x, u)

design a feedback law so that A is asymptotically stable, that is
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General Control Problem
Given a set A and a hybrid system H to be controlled

H

⎧
⎨

⎩

ẋ ∈ f(x, u) (x, u) ∈ C
x+ ∈ g(x, u) (x, u) ∈ D
y = h(x, u)

design a feedback law so that A is asymptotically stable, that is
! solutions starting close to A stay close (stability)

A

C D

Rn
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General Control Problem
Given a set A and a hybrid system H to be controlled
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General Control Problem
Given a set A and a hybrid system H to be controlled
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⎨
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ẋ ∈ f(x, u) (x, u) ∈ C
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General Control Problem
Given a set A and a hybrid system H to be controlled

H

⎧
⎨

⎩

ẋ ∈ f(x, u) (x, u) ∈ C
x+ ∈ g(x, u) (x, u) ∈ D
y = h(x, u)

design a feedback law so that A is asymptotically stable, that is
! solutions starting close to A stay close (stability)

A
δ

ε

C D

Rn

×

Ricardo Sanfelice - University of California, Santa Cruz



General Control Problem
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⎧
⎨

⎩

ẋ ∈ f(x, u) (x, u) ∈ C
x+ ∈ g(x, u) (x, u) ∈ D
y = h(x, u)

design a feedback law so that A is asymptotically stable, that is
! solutions starting close to A stay close (stability)
! bounded solutions; complete ones approach A (attractivity)
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General Control Problem
Given a set A and a hybrid system H to be controlled

H

⎧
⎨

⎩

ẋ ∈ f(x, u) (x, u) ∈ C
x+ ∈ g(x, u) (x, u) ∈ D
y = h(x, u)

design a feedback law so that A is asymptotically stable, that is

! solutions starting close to A stay close (stability)

! bounded solutions; complete ones approach A (attractivity)

The feedback law could be output feedback: use y instead of x

! static: u = κ(x)

! dynamic: u is a function of x and other controller states

resulting in a hybrid closed-loop system H (without inputs)

H

{
ẋ ∈ f(x) x ∈ C
x+ ∈ g(x) x ∈ D
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Lyapunov Stability Theorem

Theorem (Lyapunov Theorem)

Given a hybrid system H with state x (and no inputs)

ẋ ∈ f(x) x ∈ C
x+ ∈ g(x) x ∈ D

a closed set A ⊂ Rn is asymptotically stable if there exists
V : Rn → R such that

! V is continuous and positive definite with respect to A

! V is continuously differentiable on an open set containing C

! V̇ = ⟨∇V (x), f ′⟩ ≤ 0 ∀x ∈ C, f ′ ∈ f(x)
∆V = V (g′)− V (x) ≤ 0 ∀x ∈ D, g′ ∈ g(x)

! V̇ = ⟨∇V (x), f ′⟩ < 0 ∀x ∈ C \A, f ′ ∈ f(x)
∆V = V (g′)− V (x) < 0 ∀x ∈ D \A, g′ ∈ g(x)
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Lyapunov Stability Theorem

Theorem (Lyapunov Theorem)

Given a hybrid system H with state x (and no inputs)

ẋ ∈ f(x) x ∈ C
x+ ∈ g(x) x ∈ D

a closed set A ⊂ Rn is asymptotically stable if there exists
V : Rn → R such that

! V is continuous and positive definite with respect to A

! V is continuously differentiable on an open set containing C

! V̇ = ⟨∇V (x), f ′⟩ ≤ 0 ∀x ∈ C, f ′ ∈ f(x)
∆V = V (g′)− V (x) ≤ 0 ∀x ∈ D, g′ ∈ g(x)

! V̇ = ⟨∇V (x), f ′⟩ < 0 ∀x ∈ C \A, f ′ ∈ f(x)
∆V = V (g′)− V (x) < 0 ∀x ∈ D \A, g′ ∈ g(x)

0
t

j

V ◦ x(t, j)
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Lyapunov Stability Theorem

Theorem (Lyapunov Theorem)

Given a hybrid system H with state x (and no inputs)

ẋ ∈ f(x) x ∈ C
x+ ∈ g(x) x ∈ D

a closed set A ⊂ Rn is asymptotically stable if there exists
V : Rn → R such that

! V is continuous and positive definite with respect to A

! V is continuously differentiable on an open set containing C

! V̇ = ⟨∇V (x), f ′⟩ ≤ 0 ∀x ∈ C, f ′ ∈ f(x)
∆V = V (g′)− V (x) ≤ 0 ∀x ∈ D, g′ ∈ g(x)

! V̇ = ⟨∇V (x), f ′⟩ < 0 ∀x ∈ C \A, f ′ ∈ f(x)
∆V = V (g′)− V (x) < 0 ∀x ∈ D \A, g′ ∈ g(x)
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V ◦ x(t, j)
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Lyapunov Stability Theorem

Theorem (Lyapunov Theorem)

Given a hybrid system H with state x (and no inputs)

ẋ ∈ f(x) x ∈ C
x+ ∈ g(x) x ∈ D

a closed set A ⊂ Rn is asymptotically stable if there exists
V : Rn → R such that

! V is continuous and positive definite with respect to A

! V is continuously differentiable on an open set containing C

! V̇ = ⟨∇V (x), f ′⟩ ≤ 0 ∀x ∈ C, f ′ ∈ f(x)
∆V = V (g′)− V (x) ≤ 0 ∀x ∈ D, g′ ∈ g(x)

! V̇ = ⟨∇V (x), f ′⟩ < 0 ∀x ∈ C \A, f ′ ∈ f(x)
∆V = V (g′)− V (x) < 0 ∀x ∈ D \A, g′ ∈ g(x)
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Lyapunov Stability Theorem

Theorem (Lyapunov Theorem)

Given a hybrid system H with state x (and no inputs)

ẋ ∈ f(x) x ∈ C
x+ ∈ g(x) x ∈ D

a closed set A ⊂ Rn is asymptotically stable if there exists
V : Rn → R such that

! V is continuous and positive definite with respect to A

! V is continuously differentiable on an open set containing C

! V̇ = ⟨∇V (x), f ′⟩ ≤ 0 ∀x ∈ C, f ′ ∈ f(x)
∆V = V (g′)− V (x) ≤ 0 ∀x ∈ D, g′ ∈ g(x)

! V̇ = ⟨∇V (x), f ′⟩ < 0 ∀x ∈ C \A, f ′ ∈ f(x)
∆V = V (g′)− V (x) < 0 ∀x ∈ D \A, g′ ∈ g(x)
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Lyapunov Stability Theorem

Theorem (Lyapunov Theorem)

Given a hybrid system H with state x (and no inputs)

ẋ ∈ f(x) x ∈ C
x+ ∈ g(x) x ∈ D

a closed set A ⊂ Rn is asymptotically stable if there exists
V : Rn → R such that

! V is continuous and positive definite with respect to A

! V is continuously differentiable on an open set containing C

! V̇ = ⟨∇V (x), f ′⟩ ≤ 0 ∀x ∈ C, f ′ ∈ f(x)
∆V = V (g′)− V (x) ≤ 0 ∀x ∈ D, g′ ∈ g(x)

! V̇ = ⟨∇V (x), f ′⟩ < 0 ∀x ∈ C \A, f ′ ∈ f(x)
∆V = V (g′)− V (x) < 0 ∀x ∈ D \A, g′ ∈ g(x)
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Lyapunov Stability Theorem

Theorem (Lyapunov Theorem)

Given a hybrid system H with state x (and no inputs)

ẋ ∈ f(x) x ∈ C
x+ ∈ g(x) x ∈ D

a closed set A ⊂ Rn is asymptotically stable if there exists
V : Rn → R such that

! V is continuous and positive definite with respect to A

! V is continuously differentiable on an open set containing C

! V̇ = ⟨∇V (x), f ′⟩ ≤ 0 ∀x ∈ C, f ′ ∈ f(x)
∆V = V (g′)− V (x) ≤ 0 ∀x ∈ D, g′ ∈ g(x)

! V̇ = ⟨∇V (x), f ′⟩ < 0 ∀x ∈ C \A, f ′ ∈ f(x)
∆V = V (g′)− V (x) < 0 ∀x ∈ D \A, g′ ∈ g(x)
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t1 t2 t3 = t4 t

j

V ◦ x(t, j)
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Lyapunov Theorem Relaxed Flows

Corollary

Given a hybrid system H with state x (and no inputs)

ẋ ∈ f(x) x ∈ C
x+ ∈ g(x) x ∈ D

a closed set A ⊂ Rn is asymptotically stable if there exists
V : Rn → R such that

! V is continuous and positive definite with respect to A

! V is continuously differentiable on an open set containing C

! V̇ = ⟨∇V (x), f ′⟩ ≤ 0 ∀x ∈ C, f ′ ∈ f(x)
∆V = V (g′)− V (x) ≤ 0 ∀x ∈ D, g′ ∈ g(x)
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Lyapunov Theorem Relaxed Flows

Corollary

Given a hybrid system H with state x (and no inputs)

ẋ ∈ f(x) x ∈ C
x+ ∈ g(x) x ∈ D

a closed set A ⊂ Rn is asymptotically stable if there exists
V : Rn → R such that

! V is continuous and positive definite with respect to A

! V is continuously differentiable on an open set containing C

! V̇ = ⟨∇V (x), f ′⟩ ≤ 0 ∀x ∈ C, f ′ ∈ f(x)
∆V = V (g′)− V (x) ≤ 0 ∀x ∈ D, g′ ∈ g(x)

! Every maximal solution has arbitrarily large number of jumps
∆V = V (g′)− V (x) < 0 ∀x ∈ D \A, g′ ∈ g(x)
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Estimation Over a Network – Modeling

Time-varying and (potentially) stochastic system can be
modeled as an autonomous hybrid inclusion

Idea: To capture all possible event sequences {tℓ}∞ℓ=1 while
removing dependency on time and stochastic dynamics, define

! τ ∈ [0, T2] as a timer that, when expires, generates the
communication events from the i-th agent to the j-th agent

! e = zi − ẑk as the estimation error used for analysis
Then, with x = (e, τ), we have

Hik
obs

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ė = Aie
τ̇ = −1

}
=: f(x) (e, τ) ∈ C

e+ = (I − LkMi)e
τ+ ∈ [T1, T2]

}
=: g(x) (e, τ) ∈ D

with the flow set and the jump set defined as

C = R
n × [0, T2], D = {(e, τ) : τ = 0}
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Estimation Over a Network – Stability

Theorem (Global Estimation with Limited Information)

Given two positive scalars T1 and T2 such that T1 < T2, if there
exist P = P⊤ > 0 and a matrix Lk such that

(I − LkMi)
⊤ exp(A⊤

i v)P exp(Aiv)(I − LkMi)− P < 0 (⋆)

for all v ∈ [T1, T2], then the set

Aobs = {(zi, ẑk, τ) : ẑk = zi, τ ∈ [0, T2] }

is globally exponentially stable.
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Estimation Over a Network – Stability

Theorem (Global Estimation with Limited Information)

Given two positive scalars T1 and T2 such that T1 < T2, if there
exist P = P⊤ > 0 and a matrix Lk such that

(I − LkMi)
⊤ exp(A⊤

i v)P exp(Aiv)(I − LkMi)− P < 0 (⋆)

for all v ∈ [T1, T2], then the set

Aobs = {(zi, ẑk, τ) : ẑk = zi, τ ∈ [0, T2] }

is globally exponentially stable.

Construction of V : with x = (zi, ẑk, τ), define

V (x) = e⊤ exp(A⊤
i τ)P exp(Aiτ)e

F. Ferrante, F. Gouaisbaut, S, and S. Tarbouriech ”State Estimation of Linear

Systems in the Presence of Sporadic Measurements.” To appear in Automatica, 2016.
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Estimation Over a Network – Stability

Proposition (LMI version of (⋆))

Let T1 and T2 be two given positive scalars such that T1 < T2. If
there exist P = P⊤ > 0, a matrix J , and a matrix F such that for
every v ∈ [T1, T2]

⎡

⎣
−(F + F⊤) F − JMi exp(A⊤

i v)P
⋆ −P 0
⋆ ⋆ −P

⎤

⎦ < 0

then the matrices P and Lk = F−1J satisfy (⋆).
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Estimation Over a Network – Stability

Proposition (LMI version of (⋆))

Let T1 and T2 be two given positive scalars such that T1 < T2. If
there exist P = P⊤ > 0, a matrix J , and a matrix F such that for
every v ∈ [T1, T2]

⎡

⎣
−(F + F⊤) F − JMi exp(A⊤

i v)P
⋆ −P 0
⋆ ⋆ −P

⎤

⎦ < 0

then the matrices P and Lk = F−1J satisfy (⋆).

To reduce the check to finitely many LMIs, we over approximate
exp(Aiv) by

exp(Aiv) ∈ co{F1, F2, . . . , Fν}

over [T1, T2], and then solve the ν LMIs with appropriate F .
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Proof Sketch.

The proof is based on the use of the following Lyapunov function

V (x) = e⊤ exp(A⊤
i τ)P exp(Aiτ)e

which satisfies recall that Aobs = {(zi, ẑk, τ) : ẑk = zi, τ ∈ [0, T2] }

α1|x|
2
Aobs
≤ V (x) ≤ α2|x|

2
Aobs

∀x ∈ C ∪D ∪ g(D)

The key properties of V are

⟨∇V (x), f(x)⟩ = 0 ∀x ∈ C

and, by (⋆), it follows that for some β > 0

V (g′)− V (x) ≤ −βe⊤e = −β|x|2Aobs
∀x ∈ D, g′ ∈ g(x)

Then, to apply the Lyapunov Theorem with relaxed flows, we note
that, for each solution φ, (t, j) ∈ domφ is such that t ≤ T2(j +1),
which is a persistently jumping property.

Ricardo Sanfelice - University of California, Santa Cruz



Estimation with Optimized MATI
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Estimation with Optimized MATI
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i-th Agent dynamics:

Ai =

[
0.1 1
−1 0.1

]

Mi =
[
1 0

]

k-th Observer gain:

Lk =

[
1

0.173

]

Communication
parameters:

T1 = 0.1, T2 = 2.03

The maximum MATI (T2) from
the discrete-time observer in
[Halimi et al., Springer 13], with in-
tegration in between events, is
T2 = 1.54. Our approach im-
proves the MATI by 32%!
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Estimation Over a Network w/Information Fusion
Let the dynamics of the i-th node of the network be

żi = Aizi, yi = Mizi
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Estimation Over a Network w/Information Fusion
Let the dynamics of the i-th node of the network be

żi = Aizi, yi = Mizi

Goal

Design of an observer for zi that runs at each of the other agents
and measures yi at communication event times {tiℓ}

∞
ℓ=1 satisfying

T i
1 ≤ tℓ+1 − tℓ ≤ T i

2
where

! T i
1 defines the fastest communication rate

! T i
2 represents the Maximum Allowable Transfer Time (MATI)
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Related Work

Periodic sampling case

! Observer-protocol pair for LTI networked systems (single agent)

[Dacic and Nesic AUT 08]

! Discrete observer for LTI networked systems (common information

arrival times) [Park and Martins CDC 12]

! Continuous observer with discrete information (assume local

observability) [Dorfler ea. JSTSP 13]

! Continuous-time observer for a class of nonlinear systems
(single agent) [Ahmed-Ali ea. SCL 13]

Continuous-discrete observer

! Lipschitz continuous-time systems of small dimensions using
reachable sets (periodic) [Farza ea. TAC 14] [Dinh ea. TAC 15]

! Impulsive systems approach (periodic) [Mazenc ea. SIAM 15]

! Hybrid systems approach (single-agent case) [Ferrante ea. AUT 16]
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Hybrid Distributed Observer
The i-th agent runs the following (local) observer:

˙̂zi = Aẑi + ηi

where ηi is an information fusion state, evolves continuously and
updates impulsively at communication events.
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Hybrid Distributed Observer
The i-th agent runs the following (local) observer:

˙̂zi = Aẑi + ηi

where ηi is an information fusion state, evolves continuously and
updates impulsively at communication events.

η̇i = hiηi τi ∈ [0, T i
2]

η+i = Kiiy
e
i +

∑

k∈Ji

Kiky
e
k+γ

∑

k∈Ji

(ẑi − ẑk) τi = 0

Hybrid Information Fusion

yei = Miẑi − yi, yi = Mizi +mi measurements w/ noise
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Hybrid Distributed Observer
The i-th agent runs the following (local) observer:

˙̂zi = Aẑi + ηi

where ηi is an information fusion state, evolves continuously and
updates impulsively at communication events.

η̇i = hiηi τi ∈ [0, T i
2]

η+i = Kiiy
e
i +

∑

k∈Ji

Kiky
e
k+γ

∑

k∈Ji

(ẑi − ẑk) τi = 0

Hybrid Information Fusion

yei = Miẑi − yi, yi = Mizi +mi measurements w/ noise

Guarantee exponential convergence of ẑi − z to zero for
each i, robustly to general perturbations and potentially with-
out local detectability (at each node).

Goal

Ricardo Sanfelice - University of California, Santa Cruz



Compact Formulation and Error Dynamics

Denote the local estimation error ei = ẑi − z, e = (e1, e2, · · · , eN )
and η = (η1, η2, · · · , ηN ), it follows that

ė = (IN ⊗A)e+ η
η̇ = H(h)η

}
when τi ∈ [0, T i

2] ∀ i ∈ V

while when τi = 0 for some i ∈ V,

e+ = e

η+i = Kiiy
e
i +

∑

k∈V

gikKiky
e
k+γ

∑

k∈V

gik(ẑi − ẑk)

! H(h) = diag(h1, h2, . . . , hN )

! Kii, Kik’s are gains for output errors

! γ ∈ R is a constant gain for consensus
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Compact Formulation and Error Dynamics

Denote the local estimation error ei = ẑi − z, e = (e1, e2, · · · , eN )
and η = (η1, η2, · · · , ηN ), it follows that

ė = (IN ⊗A)e+ η
η̇ = H(h)η

}
when τi ∈ [0, T i

2] ∀ i ∈ V

while when τi = 0 for some i ∈ V,

e+ = e

η+i = Kiiy
e
i +

∑

k∈V

gikKiky
e
k+γ

∑

k∈V

gik(ẑi − ẑk)

Ricardo Sanfelice - University of California, Santa Cruz

Catch: Complex behavior at communication events

! Which τi is zero?

! How many τi’s are zero?

! What is a Lyapunov function candidate?



Compact Formulation and Error Dynamics

Idea: Define the new coordinates

θi = Kiiy
e
i +

∑

k∈Ji

Kiky
e
k+γ

∑

k∈Ji

(ei − ek)− ηi
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Compact Formulation and Error Dynamics

Idea: Define the new coordinates

θi = Kiiy
e
i +

∑

k∈Ji

Kiky
e
k+γ

∑

k∈Ji

(ei − ek)− ηi

Denoting e = (e1, · · · , eN ), θ = (θ1, · · · , θN ), τ = (τ1, · · · , τN )

! θ = ((KgMg) ∗ (IN + G) + γL⊗ In)e− η

! Kg is a N ×N block matrix with the (i, k)-th entry given by
Kik ∈ Rn×p for all i, k ∈ V

! Mg is block diagonal, Mg = diag(M1,M2, . . . ,MN )

! the operation “∗” denotes the Khatri-Rao product, where the
matrix KgMg is treated as a N ×N block matrix

Y. Li, S. Phillips, and S, ”On Distributed Observers for Linear Time-invariant Systems

Under Intermittent Information Constraints”, Proceedings of 10th IFAC Symposium

on Nonlinear Control Systems (NOLCOS), 2016.
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Compact Formulation and Error Dynamics

Idea: Define the new coordinates

θi = Kiiy
e
i +

∑

k∈Ji

Kiky
e
k+γ

∑

k∈Ji

(ei − ek)− ηi

ė = (IN ⊗A+K)
︸ ︷︷ ︸

Aθ

e− θ

θ̇ = KAθe−Kθ

when τ ∈ T , K = KgMg ∗ (IN + G) + γL⊗ In, and

e+i = ei

θ+i = 0

when τi = 0 for some i, T := [0, T 1
2 ]× [0, T 2

2 ]× · · ·× [0, TN
2 ]
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Compact Formulation and Error Dynamics

Ricardo Sanfelice - University of California, Santa Cruz

Interconnection as a Hybrid System

The interconnection H has state χ = (σ, τ), σ = (e, θ), with
data

f(χ) := (Afθσ,−1N ), Afθ =

[
Aθ −InN
KAθ −K

]

for each χ ∈ C = X := R2nN×T ,

g(χ) := {gi(χ) : χ ∈ Di, i ∈ V}

when χ ∈ D =
⋃

i∈V Di, Di = {χ ∈ C : τi = 0},

gi(χ) =

⎡

⎣
e

(θ1, θ2, · · · , θi−1, 0, θi+1, · · · , θN )
(τ1, τ2, · · · , τi−1, [T i

1, T
i
2], τi+1, · · · , τN )

⎤

⎦



Sufficient Conditions for GES

! He(A,B) := A⊤B +B⊤A

Ricardo Sanfelice - University of California, Santa Cruz

Global Exponential Stability of Zero Estimation Error

Let 0 < T i
1 ≤ T i

2 be given. Suppose N agents are connected
via a digraph Γ = (V, E ,G). Moreover, suppose there exist
γ ∈ R, δ > 0 and matrices Kg ∈ RnN×p, P ∈ RnN×nN ,
Qi ∈ Rn×N satisfying P = P⊤ > 0, Qi = Q⊤

i > 0 for all
i ∈ V, and

N :=

[
He(Aθ, P ) −P + Ã⊤

θ K
⊤Q̃(ν)

⋆ −δQ̃(ν)− He(K̃, Q̃(ν))

]

<0

∀ν = (ν1, ν2, . . . , νN ) ∈ T
with

Q̃(ν) = diag (exp(δν1)Q1, · · · , exp(δνN )QN ) .

Then, the set A = {0nN}× {0nN}× T is GES for the hybrid
system H.



Lyapunov-based Analysis
Proof sketch: Consider the Lyapunov function candidate

V (x) = e⊤Pe+ θ⊤Q̃(τ)θ ∀x ∈ X

with the data of H. It can be shown that

! ⟨∇V (x), f(x)⟩ ≤ −|λ(N )||x|2A for each x ∈ C,

! V (g′)− V (x) ≤ 0 for each x ∈ D and for each g′ ∈ g(x)

which using a Lyapunov Theorem with relaxed jumps leads us to

|φ(t, j)|A ≤
√

α2
α1

exp
(
− |λ(N )|

2α2
min

{
ϵ, (1 − ϵ)

Tmin
1
2N

}
(t+ j)

)
|φ(0, 0)|A

where ϵ ∈ (0, 1),

α1 = min
{
λ(P ), λ

(
Q̃(0)

)}
, α2 = max

{
λ(P ),λ

(
Q̃(T 2)

)}
,

and T 2 = (T 1
2 , T

2
2 , . . . , T

N
2 ), λ gives the maximum eigenvalue, λ

gives the minimum, and Tmin
1 is the minimum over the T i

1’s
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Estimation without Local Detectability
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Estimation without Local Detectability

10-1-2-1012
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Plant Dynamics:

A =

⎡

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎦

M1 =
[

0 0 1
]

M2 =
[

1 1 0
]

Communication Parameters:

T i
1 = 0.2, T i

2 = 0.4

Without communication,
no agent can estimate x
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Synchronization Over a Network – Modeling

As for the estimation problem, we use a timer

! τ as a timer that, when expires, generates the communication
events between the agents
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Synchronization Over a Network – Modeling

As for the estimation problem, we use a timer

! τ as a timer that, when expires, generates the communication
events between the agents

with dynamics

{
τ̇ = −1 τ ∈ [0, T2]
τ+ ∈ [T1, T2] τ = 0
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Synchronization Over a Network – Modeling

As for the estimation problem, we use a timer

! τ as a timer that, when expires, generates the communication
events between the agents

! and the local average error ei =
1

dini

∑

k∈Ji

(zi − zk)

Ricardo Sanfelice - University of California, Santa Cruz



Synchronization Over a Network – Modeling

As for the estimation problem, we use a timer

! τ as a timer that, when expires, generates the communication
events between the agents

Then, with x = (χ, τ), χ = (χ1,χ2, . . . ,χN ), χi = (ei, ηi), we
have

Hsync :

⎧
⎪⎪⎨

⎪⎪⎩

ẋ =

[
Āfχ
−1

]
=: f(x) x ∈ C = RN(n+p) × [0, T2]

x+ ∈

[
Āgχ

[T1, T2]

]
=: g(x) x ∈ D = RN(n+p) × {0}

where

Āf = IN ⊗Af − (G⊤J −1)⊗Bf Āg = diag (Ag1, Ag2, . . . , AgN )

Af =

[
A B
0 0

]
, Bf =

[
0 B
0 0

]
, Agi =

[
I 0
Ki 0

]
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Synchronization over Networks – Stability

Theorem (Global Synchronization with Intermittent Information)

Given two positive scalars T1 and T2 such that T1 ≤ T2 and the
digraph Γ, then the set

Ãsync = {(χ, τ) : χ = 0, τ ∈ [0, T2] }

is globally exponentially stable when
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Synchronization over Networks – Stability

Theorem (Global Synchronization with Intermittent Information)

Given two positive scalars T1 and T2 such that T1 ≤ T2 and the
digraph Γ, then the set

Ãsync = {(χ, τ) : χ = 0, τ ∈ [0, T2] }

is globally exponentially stable when
! the graph Γ is strongly connected and there exist σ > 0,

P = P⊤ > 0, and, for each i ∈ V, a matrix Ki such that

exp(σv)Ā⊤
g exp(Ā⊤

f v)P exp(Āfv)Āg − P < 0 (⋆⋆)
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Theorem (Global Synchronization with Intermittent Information)

Given two positive scalars T1 and T2 such that T1 ≤ T2 and the
digraph Γ, then the set

Ãsync = {(χ, τ) : χ = 0, τ ∈ [0, T2] }

is globally exponentially stable when
! the graph Γ is strongly connected and there exist σ > 0,

P = P⊤ > 0, and, for each i ∈ V, a matrix Ki such that

exp(σv)Ā⊤
g exp(Ā⊤

f v)P exp(Āfv)Āg − P < 0 (⋆⋆)

! the graph Γ is completely connected and there exist σ > 0,
P = P⊤ > 0, and a matrix K such that

exp(σv)A⊤
g exp(A⊤

f v)P exp(Afv)Ag − P < 0 (⋆ ⋆ ⋆)

for each v ∈ [T1, T2].
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Synchronization over Networks – Stability

Theorem (Global Synchronization with Intermittent Information)

Given two positive scalars T1 and T2 such that T1 ≤ T2 and the
digraph Γ, then the set

Ãsync = {(χ, τ) : χ = 0, τ ∈ [0, T2] }

is globally exponentially stable when
! the graph Γ is strongly connected and there exist σ > 0,

P = P⊤ > 0, and, for each i ∈ V, a matrix Ki such that

exp(σv)Ā⊤
g exp(Ā⊤

f v)P exp(Āfv)Āg − P < 0 (⋆⋆)

! the graph Γ is completely connected and there exist σ > 0,
P = P⊤ > 0, and a matrix K such that

exp(σv)A⊤
g exp(A⊤

f v)P exp(Afv)Ag − P < 0 (⋆ ⋆ ⋆)

for each v ∈ [T1, T2].

Construction of V (for strongly connected case):
with x = (χ, τ) and σ > 0, define

V (x) = exp(στ)χ⊤ exp(Ā⊤
f τ)P exp(Āf τ)χ

S. Phillips, and S. ”Robust Synchronization of Interconnected Linear Systems over

Intermittent Communication Networks”, In Proceedings of the American Control

Conference (ACC), 2016.
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Synchronization Over a Network - Simulation
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Local Distributed Hybrid Controller, ηi
The i-th agent assigns its input to the following local controller
state:

ui = ηi

where the dynamics of ηi is given by a zero-order hybrid protocol
that updates impulsively at communication events.
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Local Distributed Hybrid Controller, ηi
The i-th agent assigns its input to the following local controller
state:

ui = ηi

where the dynamics of ηi is given by a zero-order hybrid protocol
that updates impulsively at communication events.

η̇i = 0 τ ∈ [0, T2]

η+i = −γ
N∑

k=1

gik(xi − xk) τ = 0

where gik are the components of the adjacency matrix.

Controller Algorithm
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where the dynamics of ηi is given by a zero-order hybrid protocol
that updates impulsively at communication events.

η̇i = 0 τ ∈ [0, T2]

η+i = −γ
N∑

k=1

gik(xi − xk) τ = 0

where gik are the components of the adjacency matrix.

Controller Algorithm

Guarantee pointwise exponential stability of the set of points
xi = xk for each i, k with robustness to communication noise.
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Local Distributed Hybrid Controller, ηi
The i-th agent assigns its input to the following local controller
state:

ui = ηi

where the dynamics of ηi is given by a zero-order hybrid protocol
that updates impulsively at communication events.

η̇i = 0 τ ∈ [0, T2]

η+i = −γ
N∑

k=1

gik(xi − xk) τ = 0

where gik are the components of the adjacency matrix.

Controller Algorithm

Guarantee pointwise exponential stability of the set of points
xi = xk for each i, k with robustness to communication noise.

Goal
S. Phillips, Y. Li, and S. ”On Distributed Intermittent Consensus for First-Order Sys-

tems with Robustness.” In Proceedings of 10th IFAC Symposium on Nonlinear Control

Systems (NOLCOS), 2016.
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Partial Pointwise Global Exponential Stability

Ricardo Sanfelice - University of California, Santa Cruz

Definition

Consider a hybrid system H with state x = (p, q) ∈ Rn. The
closed set A ⊂ Rr×Rn−r where r ∈ N and 0 < r ≤ n is par-
tially pointwise globally exponentially stable with respect
to the state component p if

1. A is exponentially attractive

2. every maximal solution φ to H is complete and has a
limit belonging to A

3. for each p∗ ∈ Rr s.t. there exists q ∈ Rn−r satisfying
(p∗, q) ∈ A, it follows that for each ε > 0 there exists
δ > 0 such that every solution φ to H is such that its p
component φp satisfies

|φp(0, 0) − p∗| ≤ δ =⇒ |φp(t, j)− p∗| ≤ ε

for all (t, j) ∈ domφ.
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Stability Results
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Main Results

Let 0 < T1 ≤ T2, and Γ be strongly connected and weight
balanced. If there exists a positive scalar γ and P = P⊤ > 0
such that

A⊤
g e

A⊤
f νPeAfνAg − P < 0

Af =

[
0 I
0 0

]

Ag =

[
I 0
−γL̄ 0

]

for each ν ∈ [T1, T2] where L̄ = diag(λ(L) \ {0}), then

! the hybrid system Hsync has the set Async GES.
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1

N

N∑

i=1

zi(0, 0) + ηi(0, 0)τ(0, 0)



Stability Results

Ricardo Sanfelice - University of California, Santa Cruz

Main Results

Let 0 < T1 ≤ T2, and Γ be strongly connected and weight
balanced. If there exists a positive scalar γ and P = P⊤ > 0
such that

A⊤
g e

A⊤
f νPeAfνAg − P < 0

Af =

[
0 I
0 0

]

Ag =

[
I 0
−γL̄ 0

]

for each ν ∈ [T1, T2] where L̄ = diag(λ(L) \ {0}), then

! the hybrid system Hsync has the set Async GES.

! every solution φ is complete and

lim
t+j→∞

zi(t, j) =
1

N

N∑

i=1

zi(0, 0) + ηi(0, 0)τ(0, 0)

! the set A is partially pointwise globally exponentially
stable with respect to (z, η) for the hybrid system Hsync.



Proof Sketch.

Let x = (χ, τ), χ = (e, η) and ei = zi −
∑N

k=1 zi. The proof is
based off the following Lyapunov function

V (x) = χ⊤T̃ exp(A⊤
f2τ)P exp(Af2τ)T̃

⊤χ

where T̃ = diag(T, T ) and T is an orthonormal diagonalizing
matrix for the Laplacian L.
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Proof Sketch.

Let x = (χ, τ), χ = (e, η) and ei = zi −
∑N

k=1 zi. The proof is
based off the following Lyapunov function

V (x) = χ⊤T̃ exp(A⊤
f2τ)P exp(Af2τ)T̃

⊤χ

where T̃ = diag(T, T ) and T is an orthonormal diagonalizing
matrix for the Laplacian L. Moreover, V satisfies

α1|x|
2
Ãsync

≤ V (x) ≤ α2|x|
2
Ãsync

Then, the key properties of V are

! ⟨∇V (x), f(x)⟩ = 0 for each x ∈ C,

! V (g) − V (x) ≤ −β|x|2
Ãsync

for each x ∈ D.
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Proof Sketch.

Let x = (χ, τ), χ = (e, η) and ei = zi −
∑N

k=1 zi. The proof is
based off the following Lyapunov function

V (x) = χ⊤T̃ exp(A⊤
f2τ)P exp(Af2τ)T̃

⊤χ

where T̃ = diag(T, T ) and T is an orthonormal diagonalizing
matrix for the Laplacian L. Moreover, V satisfies

α1|x|
2
Ãsync

≤ V (x) ≤ α2|x|
2
Ãsync

Then, the key properties of V are

! ⟨∇V (x), f(x)⟩ = 0 for each x ∈ C,

! V (g) − V (x) ≤ −β|x|2
Ãsync

for each x ∈ D.

which leads us to

|φ(t, j)|Ãsync
≤ exp

(
R
2

)√
α2
α1

exp
(
−α

2 (t+ j)
)
|φ(0, 0)|Ãsync

where α ∈
(
0, |β|

1+T2

)
, R =

[
T2|β|
1+T2

,∞
)
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Asynchronous Update Times

A local timer for each agent triggering communication

τ̇i = −1 τi ∈ [0, T2],

τ+i ∈ [T1, T2] τi = 0.

when τi expires, information is transferred to agent i.
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Asynchronous Update Times

A local timer for each agent triggering communication

τ̇i = −1 τi ∈ [0, T2],

τ+i ∈ [T1, T2] τi = 0.

when τi expires, information is transferred to agent i.

η̇i = hηi τi ∈ [0, T2]

η+i = −γ
N∑

k=1

gik(zi − zk) τi = 0

where gik are the components of the adjacency matrix.

! the gains h and γ are to be determined.

Consensus Algorithm
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Synchronization Over a Network
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Hybrid System, H, with asynchronous update times

Hsync has state x = (z, η, τ) ∈ X := R2N × [0, T2]N with the
following dynamics

ẋ :=

⎡

⎣
η
hη
−1N

⎤

⎦ ∀x ∈ X

jumps are induced when a single timer state reaches 0, i.e.
when x ∈

⋃
i∈V Di, Di = {x ∈ C : τi = 0}. Then,

x+ ∈ {Gi(x) : x ∈ Di, i ∈ V}

where

Gi(x) =

⎡

⎣
z

(η1, η2, . . . , ηi−1,−γ
∑N

k=1
gik(zi − zk), ηi+1, . . . , ηN )

(τ1, τ2, . . . , τi−1, [T1, T2], τi+1, . . . , τN )

⎤

⎦



Asynchronous Update Times - Stability

Via a Coordinate System Change and a Lyapunov Analysis

Ricardo Sanfelice - University of California, Santa Cruz

Proposition

Given 0 < T1 ≤ T2 and a strongly connected and weight
balanced digraph Γ. If there exist scalars γ, h ∈ R, and σ > 0,
positive definite diagonal matrices P and Q such that

[
γHe(P,L) −PΠ+K⊤

1 QE(τ)
⋆ −σQE(τ)−He(QE(τ),K2)

]
≤ 0 (3)

for each τ ∈ [0, T2]N , where Π = I − 1
N 1N1

⊤
N , K1 = γK2L,

K2 = γL − hI, and E(τ) = diag(eστ1 , eστ2 , . . . , eστN ), then
the set A is globally asymptotically stable for the hybrid system
Hsync.



Proof Sketch.

Let x = (e, θ, τ), where ei = zi −
∑N

k=1 zk and
θi = γ

∑
k∈Ji

(xi − xk)− η. Consider the Lyapunov function
candidate

V (x) = e⊤Pe+ θ⊤QE(τ)θ ∀χ ∈ X

which satisfies

α1|x|
2
Async

≤ V (x) ≤ α2|x|
2
Async

with the data of H. As a consequence of (4), it can be shown that

! ⟨∇V (x), f(x)⟩ ≤ 0 for each x ∈ C

! V (g′)− V (x) ≤ 0 for each x ∈ D and g′ ∈ g(x)

Then, we apply the Invariance Principle involving a nonincreasing
function, which results in global asymptotic stability of Ãsync.
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Nominal Robustness For Networked Systems

Further results on robustness to ρ > 0

! Parameter uncertainty
! Skewed clocks

τ̇i = −1 → τ̇i ∈ − 1 + ρB
! Rate uncertainty

[T i
1, T

i
2] → [T i

1 − ρ, T i
2 + ρ]

! Unmodeled dynamics
! Additive dynamics

żi = fi(zi, ui) → żi ∈ fi(zi, ui) + ρB
! Event conditions

τi = 0 → τi ∈ ρB

! Disturbances
! Actuator noise (ISS)

! Measurement noise (ISS)
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Conclusion
! Introduction to Hybrid Systems

and Modeling for Control of Networks

! Control Design via Lyapunov
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! Applications and Current Projects

Future Directions:

! Temporal logic

! Optimality conditions

! Hybrid games

! Computation-based learning
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