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Motivation example: Power control
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Power control in wireless networks
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A typical distributed power control setup

◮ Set of transmitters: K = {1, ...,K}

◮ What Transmitter k does:

gk(1)

pk(1)

gk(2)

pk(2)

gk(3)

pk(3)

...

...

◮ Performance criteria: data rate, energy, etc.

uk(g1, ..., gK︸ ︷︷ ︸
a0

, p1, ..., pK)

◮ Local decision, local observation → Ultimate

average performance? (Cf Opt. Ctrl.)
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General problem statement

◮ Set of agents: K = {1, ...,K}

◮ Stage/instantaneous perf. criteria (utilities):

uk(a0, a1, ..., aK)

◮ Action sets: Ak with |Ak| < ∞

◮ T iterations/samples/stages: t ∈ {1, ..., T}

◮ Observation: (a0(t), a1(t), ..., aK(t)) → ok(t)
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Ultimate Goal: characterize the feasible long-term utility

region

◮ Long-term utilities:

v∞k (f1, ..., fK) = lim
T→+∞

1

T

T∑

t=1

E
[
uk(a0(t), a1(t), ..., aK(t))

]
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Ultimate goal: characterize the feasible long-term utility

region

◮ Long-term utilities:

v∞k (f1, ..., fK) = lim
T→+∞

1

T

T∑

t=1

E
[
uk(a0(t), a1(t), ..., aK(t))

]

◮ f1, ..., fK = ???
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Strategies

◮ Strategies informal definition: history 7→ action

◮ Observation structure: ok = (sk, yk) where sk is

given by kk(sk|a0) and yk by Γk(yk|a0, a1, ..., aK)

◮ Example: sk = ĝk and yk = ûk
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Strategies. Continued

◮ Definition (causal scenario):

ak(t) = fk,t(sk(1), ..., sk(t), yk(1), ..., yk(t− 1))
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Strategies. Continued

◮ Definition (causal scenario):

ak(t) = fk,t(sk(1), ..., sk(t), yk(1), ..., yk(t− 1))

◮ Definition (noncausal scenario):

ak(t) = fk,t(sk(1), ..., sk(T ), yk(1), ..., yk(t− 1))
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Problem statement: recap

Find the feasible region (v∞1 , ..., v∞K )

◮ for the causal/noncausal scenario

◮ when a0(t) is i.i.d. and ∼ ρ0

◮ with the memoryless observation structure given
by kk and Γk
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Example (noncausal+asymmetrical scenario)

◮ Agents: {1, 2}; 0 ≡ nature.

◮ Action sets: A0 = A1 = A2 = {0, 1} (think of PC).

◮ Stage utility function:

u(a0, a1, a2) =

∣∣∣∣
1 if a0 = a1 = a2
0 otherwise

.
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Long-term utility

◮ Scheme 1:

| | | | | |a2

| | | | | |a1

| | | | | |a0
0 0 1 0 1 1 · · ·

Match nature0 0 1 0 1 1 · · ·

1 1 1 1 1 1 · · ·

◮ Long-term utility

E

[
1

T

T∑

t=1

u(a(t))

]
→

1

2
= 0.5. for A0 ∼ B

(
1

2

)
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Long-term utility

◮ Scheme 2:

| | |a2

| | |a1

| | |a0
0 0 1 0 1 1 · · ·

0 0 0 0 1 1 · · ·

0 0 0 0 0 1 · · ·

◮ Long term utility:

E

[
1

T

T∑

t=1

u(a(t))

]
→

5

8
= 0.625.
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Maximal long-term utility

E

[
1

T

T∑

t=1

u(a(t))

]
→ x⋆ ≃ 0.81

where

x⋆ is the solution of
h(x)− 1

x− 1
= log

2
3

and h(x) = −x log
2
x− (1− x) log

2
(1− x).
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Performance characterization of stochastic games with

i.i.d. states

Noncausal scenario
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Key observation. Say A = {0, 1}, K = 1

1

T

T∑

t=1

u(a(t))

= 1
T
[u(0) + u(1) + u(1) + u(0) + ...+ u(1)]

= N0

T
u(0) + N1

T
u(1)

= q0u(0) + q1u(1) (q0 ≥ 0, q1 ≥ 0, q0 + q1 = 1)

=
∑

a∈A

qau(a) = E[u(a)]
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More formally

v∞i (f1, ..., fK)

= lim
T→+∞

1

T

T∑

t=1

E [uk(a0(t), a1(t), ..., aK(t))]

= lim
T→+∞

1

T

T∑

t=1

∑

a0,...,aK

Pt(a0, ..., aK)uk(a0, ...aK)

=
∑

a0,...,aK

uk(a0, ..., aK) lim
T→+∞

1

T

T∑

t=1

Pt(a0, ..., aK)
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Implementable coordination

Definition Q(a0, a1, ..., aK) is implementable if ∃

(f1, ..., fK) s.t.

1

T

T∑

t=1

Pt(a0, ..., aK) → Q(a0, a1, ..., aK)

Reminder:

ak(t) = fk,t(sk(1), ..., sk(T ), yk(1), ..., yk(t− 1))
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Extreme cases of distribution

◮ Team control uk = u

◮ Zero correlation (lower bound):

Q(a0, a1, ..., aK) = ρ0(a0)

K∏

k=1

PAk
(ak)

◮ Full correlation (upper bound):

(a1(t), ..., aK(t)) ∈ arg max
a1,...,aK

u(a0(t), a1, ..., aK)

→ Q(a0, a1, ..., aK︸ ︷︷ ︸
a

) = ρ0(a0)δ(a−m(a0))
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Implementable distribution set characterization

Proposition 1 Solving the problem is at least as

hard as solving the two-way channel.

Theorem 2

− K = 2

− a1(t) = f1,t(s1(1), ..., s1(T ))

− a2(t) = f2,t(s2(1), ..., s2(T ), y2(1), ..., y2(t− 1))

◮ Then Q(a0, a1, a2) is implementable iff ... see

[Larrousse et al ITW 2015].
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Review of the entropy function

For a vector in the unit simplex x = (x1, ..., xN),

xn ≥ 0:
∑

n xn = 1.

H(x) = −
∑

n

xn log xn.

For a random variable A ∼ P :

H(A) = −
∑

a∈A

P (a) logP (a).
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Implementable distribution set characterization

Corollary 3

− K = 2

− a1(t) = f1,t(a0(1), ..., a0(T ))

− a2(t) = f2,t(a1(1), ..., a1(t− 1))

◮ Then Q(a0, a1, a2) is implementable iff its marginal

w.r.t (a1, a2) is ρ0 and

HQ(A0, A1, A2) ≥ HQ(A0) +HQ(A2).
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Utility region characterization

Pareto frontier: use wα = αu1 + (1− α)u2

minimize −
∑

a0,a1,a2

Q(a0, a1, a2)wα(a0, a1, a2)

subject to HQ(A0) +HQ(A2)−HQ(A0, A1, A2) ≤ 0

−Q(a0, a1, a2) ≤ 0

−1 +
∑

a0,a1,a2

Q(a0, a1, a2) = 0

−ρ0(a0) +
∑

a1,a2

Q(a0, a1, a2) = 0
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Let us try to interpret by specializing further

◮ HQ(a0) = constant = −
∑

a0

ρ0(a0) log ρ0(a0)

◮ HQ(a2) ∼ constant

◮ Boltzmann-Gibbs is optimal:

Q⋆(a0, a1, a2) =
eλu(a0,a1,a2)∑

a0,a1,a2

eλu(a0,a1,a2)
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Performance characterization of stochastic games with

i.i.d. states

Causal scenario: omitted
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Application to power control over the interference channel

◮ K = 2 transmitter-receiver pairs

◮ Single-band case

◮ Utility u = log(1 + SINR1) + log(1 + SINR2) with

SINR1 =
g11a1

σ2+g21a2
, SINR2 =

g22a2
σ2+g12a1

.
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Application to power control over the interference channel
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Technical challenges

◮ Construct codes (see [Larrousse and Lasaulce

ISIT 2013][Larrousse et al TIT 2016]). Joint

control-communication problem.

◮ Controlled states.

◮ Nash equilibrium points.

30



Performance characterization of stochastic games with

i.i.d. states

Thank you for your attention!
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Performance characterization of stochastic games with

i.i.d. states

Causal scenario
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Implementable distribution set characterization

Theorem 1 [Larrousse et al ITW 2015] Let K ≥ 2.

Q(a0, ..., aK) is implementable if and only if it

factorizes as

Q(a0, ..., aK) =

∑

s1,...,sk,w

ρ0(a0)k(s1, ..., sk|a0)P (w)

K∏

k=1

PAk|Sk,W(ak|sk, w)
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Finding particular stationary strategies [Lasaulce and

Visoz 2015]

◮ Set uk = u

◮ Set ak(t) = fk(sk(t), w(t))

◮ Apply the sequential best response dynamics on

E[u] =
∑

a0,a

Q(a0, a)u(a0, a) = U(PA1|S1,W , ..., PAK |SK,W , P (w))

→ f 1, ..., fK
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