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Introduction

Discrete-time systems
x(k +1) = f(x(k), u(k))

Discounted cost function

oo

J(x,u) =D 7 Ux(k), u(k))

k=0

e x(k) solution to the system at step k starting from x with inputs
(u(0), u(1),...,u(k))

e {: stage cost, non-negative, example: £(x,u) = x* Qx + uT Ru

e v € (0,1): discount factor
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Introduction: motivations

Fields
e Control engineering
o Artificial intelligence

e Operations research
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Introduction: motivations

Fields
e Control engineering
o Artificial intelligence

e Operations research

Optimal control of systems subject to commmunication/computation
constraints, see e.g.
e Radio-mode management event-based control of linear systems in [de Castro
et al., ACC 2012]
e Event-triggered control of linear systems in [Antunes and Heemels, IEEE TAC
2014]
o Self-triggered control of linear systems in [Gommans et al., Automatica 2014]

e Time-triggered and self-triggered control of nonlinear systems using an optimal
planning algorithm in [Busoniu et al., IEEE TAC 2016]
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Introduction: a simple example
Consider
x(k + 1) = 2x(k) + u(k)
and

S = 3 (<O + u(k))

k=0
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[o]e] lele]e]
Introduction: a simple example
Consider
x(k + 1) = 2x(k) + u(k)
and

S = 3 (<O + u(k))

k=0
Solution [Bertsekas, 2012]:

u(k) = K(3)x(k)
with

K(y)=-2 (1+2 (57_ 14 \/m)1>1
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Introduction
Introduction: a simple example

Consider
x(k + 1) = 2x(k) + u(k)

and

S = 3 (<O + u(k))

k=0
Solution [Bertsekas, 2012]:
u(k) = K(7)x(k)
with
1

K(y) = —2 (1 +2 (57 —1+/(5y - 12+ 47/) )

Hence
x(k+1) = (24 K(7))x(k)

and stability is guaranteed iff 2+ K(7) € (=1,1), i.e. v € (3,1]
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Introduction: existing results

Stability results:
o Linear systems with discounted quadratic costs [Bertsekas, 2012]

o Local stability for continuous-time systems e.g., [Rodriguez, JEDC 2004;
Sorger, JOTA 1992]

o Analysis for specific algorithms

e Semiglobal practical stability for nonlinear systems affine in the input,
quadratic stage cost [Boussios et al., ACC 2001]

No general conditions to guarantee stability for nonlinear systems

Romain Postoyan - CNRS (Nancy)
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Introduction: objectives

e Stability guarantees for general nonlinear systems and stage costs (i.e. £)
when applying optimal inputs
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Introduction: objectives

e Stability guarantees for general nonlinear systems and stage costs (i.e. £)
when applying optimal inputs

e Robust stability
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Introduction: objectives

e Stability guarantees for general nonlinear systems and stage costs (i.e. £)
when applying optimal inputs

e Robust stability

e Same guarantees when applying near-optimal inputs
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Introduction: objectives

e Stability guarantees for general nonlinear systems and stage costs (i.e. £)
when applying optimal inputs
e Robust stability

e Same guarantees when applying near-optimal inputs

Relationship between the optimal cost function when v =1 and v € (0,1)

Workshop CO?% - Toulouse, October 2016 / Romain Postoyan - CNRS (Nancy)
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@ Introduction

@ Stability guarantees

© Robustness

O Near-optimal inputs

@ Miscellanies

@ Conclusions
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Optimization problem

Consider the system
x(k+1) = f(x(k),u(k))

where x € R”, u € U(x) C R™, U(x) non-empty set of admissible inputs
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Optimization problem

Consider the system
x(k+1) = f(x(k),u(k))

where x € R”, u € U(x) C R™, U(x) non-empty set of admissible inputs

We define W := {(x,u) : x € R" and u € U(x)}
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Optimization problem

Consider the system

x(k+1) = f(x(k),u(k))

where x € R”, u € U(x) C R™, U(x) non-empty set of admissible inputs

We define W := {(x,u) : x € R" and u € U(x)}

Objective is to minimize the cost function

oo

JOx,u) =Yy (x(k), u(k))

k=0

with £ : W—)RZO
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Assumption: existence of optimal inputs

Assumption: existence of optimal inputs

For any x € R" and v € (0, 1), there exists an infinite-length input sequence
u’(x), called optimal solution, such that

J(Xa Uf/(x)) = iEfJ’Y(Xv U) = V’Y(X)7

where V, is the optimal value function.

Conditions available in e.g., [Keerthi and Gilbert, IEEE TAC 1985]

Workshop CO?% - Toulouse, October 2016 10/38 Romain Postoyan - CNRS (Nancy)
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Optimization problem (c'd)
Assumptions and stability analysis inspired by

G. Grimm, M.J. Messina, S.E. Tuna, A.R. Teel, Model predictive control : for a
want of a local control Lyapunov function, all is not lost, IEEE TAC 2005

(x,u) = Ze )) + g(x(N)) Jxu) =y U(x(k), u(k))

=V

Workshop CO?% - Toulouse, October 2016 11/38 Romain Postoyan - CNRS (Nancy)
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Assumptions: controllability

Stability with respect to o : R” — Rx>¢ (continuous)

Examples of : x — |x|, x = |x|?, x = |x| 4 for some set A
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Assumptions: controllability

Stability with respect to o : R” — Rx>¢ (continuous)

Examples of : x — |x|, x = |x|?, x = |x| 4 for some set A

Controllability assumption

There exists @y € Ko such that for any v € (0,1) and x € R”,
V,(x) < av(a(x)).

Recall: V,(x) = inf J,(x, u)

Workshop CO? - Toulouse, October 2016 12/38 Romain Postoyan - CNRS (Nancy)
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Assumptions: controllability (c'd)

Lemma [¢ is globally exponentially controllable to zero w.r.t. o]

IM, A >0, Vx € R", Ju, Yk € Z~o,
£(x(k), u(k)) < Ma(x)e

Then V,(x) < @(o(x)) for all x € R", with @ € Koo

Idea of the proof:

Vy(x) < J(x,u)= Z’yké(x(k ié(x(k ), u(k)) < i Mo (x)e
k=0 k=0

M
= —= o
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Assumptions: detectability

Detectability assumption

There exist a continuous function W : R" — R>o, aw, xw € K« and
aw : R>g — R>o continuous, nondecreasing and zero at zero, such that for
any (x,u) € W

W(x)
W(f(x,u)) — W(x)

aw(a(x))
—aw(o(x)) + xw(l(x, u)).

IAIA

Example: ¢(x,u) = xTQx + uTRu where Q = QT >0and R=R" >0
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Assumptions: detectability

Detectability assumption

There exist a continuous function W : R" — R>o, aw, xw € K« and
aw : R>g — R>o continuous, nondecreasing and zero at zero, such that for
any (x,u) € W

W(x)
W(f(x,u)) — W(x)

aw(a(x))
—aw(o(x)) + xw(l(x, u)).

IAIA

Example: ¢(x,u) = xTQx + uTRu where Q = QT >0and R=R" >0

W(x)=0
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Assumptions: detectability

Detectability assumption

There exist a continuous function W : R" — R>o, aw, xw € K« and
aw : R>g — R>o continuous, nondecreasing and zero at zero, such that for
any (x,u) € W

W(x)
W(f(x,u)) — W(x)

aw(a(x))
—aw(o(x)) + xw(l(x, u)).

IAIA

Example: ¢(x,u) = xTQx + uTRu where Q = QT >0and R=R" >0

W(x)=0
W(f(x,u) = W(x)=0 < = Xain(Q)|x* +xT@x+ uTRu
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Assumptions: detectability

Detectability assumption

There exist a continuous function W : R" — R>o, aw, xw € K« and
aw : R>g — R>o continuous, nondecreasing and zero at zero, such that for
any (x,u) € W

W(x) < aw(o(x))
w <

W(f(x, u)) = W(x) —aw(o(x)) + xw((x; v)).

Example: ¢(x,u) = xTQx + uTRu where Q = QT >0and R=R" >0

W(x)=0
W(f(x,u) = W(x)=0 < = Xain(Q)|x* +xT@x+ uTRu

= o(x) = x|, W =0, aw =0, xw(s) = s and aw(s) = Amin(Q)s for s > 0

Workshop CO?% - Toulouse, October 2016 14/38 Romain Postoyan - CNRS (Nancy)
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System model: difference inclusion

For any x € R", in view of the Bellman equation

Uy (x) = argmin[l(x,u)+~vyV,(f(x,u))],
u€eU(x)
Hence,
x(k+1) € f(x(k),Us(x(k)) = Fi(x(k))

where f(x,UJ(x)) is the set {f(x,u) : v e Uj(x)} for x € R".
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Lyapunov analysis: main idea

Consider
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Lyapunov analysis: main idea

Consider .
V5 (x) = inf > A e(x(k), u(k))
k=0

e Controllability assumption = V,(x) < @y(o(x))
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Lyapunov analysis: main idea
Consider .
Z u(k))

=0
o Controllability assumption = V. (x) < av(o(x))

e We have
Vo (x) = DA U(x(K), u” (k) = £(x, 0" (0))+7E(x(1), u" (1)) +. .. > £(x, u™(0))
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Lyapunov analysis: main idea
Consider .
Z u(k))

=0
o Controllability assumption = V. (x) < av(o(x))

e We have
Vo (x) = DA U(x(K), u” (k) = £(x, 0" (0))+7E(x(1), u" (1)) +. .. > £(x, u™(0))

Suppose the detectability condition holds with W = 0,
W(f(x,u™(0))) — W(x) =0 < —aw(o(x)) + £(x, u"(0))

Hence
aw(o(x)) < £(x,u™(0)) < Vy(o(x))
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Lyapunov analysis: main idea
Consider .
Z u(k))

=0
o Controllability assumption = V. (x) < av(o(x))

e We have
Vo (x) = DA U(x(K), u” (k) = £(x, 0" (0))+7E(x(1), u" (1)) +. .. > £(x, u™(0))

Suppose the detectability condition holds with W = 0,
W(f(x,u™(0))) — W(x) =0 < —aw(o(x)) + £(x, u"(0))

Hence
aw(o(x)) < £(x,u™(0)) < Vy(o(x))

=V, is positive definite and radially unbounded
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Lyapunov analysis: main idea (c'd)

e In view of Bellman equation

V5 (x(0)) = £(x(0), u™(0)) + v V5 (x(1))

Workshop CO?% - Toulouse, October 2016 17/38 Romain Postoyan - CNRS (Nancy)
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Lyapunov analysis: main idea (c'd)

e In view of Bellman equation

V5 (x(0)) = £(x(0), u™(0)) + v V5 (x(1))

therefore

V5 (x(1)) = V5 (x(0)) V5 (x(1)) = £(x(0), u(0)) — vV~ (x(1))
—£(x(0), u(0)) + (1 — ) V4 (x(1))

—aw(o(x(0)) + (1 —y)av(e(x(1)))

IAI

Workshop CO? - Toulouse, October 2016 17/38 Romain Postoyan - CNRS (Nancy)
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Lyapunov analysis: main idea (c'd)

e In view of Bellman equation

V5 (x(0)) = £(x(0), u™(0)) + v V5 (x(1))

therefore

V5 (x(1)) = V5 (x(0)) V5 (x(1)) = £(x(0), u(0)) — vV~ (x(1))
—£(x(0), u(0)) + (1 — ) V4 (x(1))

—aw(o(x(0)) + (1 —y)av(e(x(1)))

IAI

After some manipulations

A

Vo(x(1) = V5(x(0)) < —aw(o(x(0) + ;Wav(U(X(O)))-

Workshop CO? - Toulouse, October 2016 7/ Romain Postoyan - CNRS (Nancy)
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Lyapunov analysis: theorem

Theorem

There exist ay, @y, ay € Ko, T € KK and for any v € (0, 1) there exists
Y, : R" — R such that the following holds.

(a) For any x € R",
ay(a(x)) < Y5(x) <av(o(x)).

(b) For any x € R", v € FJ(x),
Yo(0) = ¥, (6) < =av(o()) + T(o(x), =),

Lyapunov function: Y, =V + W or Y, = pv(V4) + pw(W) with
pv, pw € Ko

Workshop CO? - Toulouse, October 2016

Romain Postoyan - CNRS (Nancy)
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Main stability result

Theorem [Uniform semiglobal practical stability]

3B € KL such that V5, A > 0, 3y* € (0,1) such that Vv € (v*,1) and
Vx € {z € R" : o(z) < A}, any solution to the system satisfies

o(p(k,x)) < max{B(o(x),k),0} Vk € Z>o.

@(k, x): solution at k initialized at x

Workshop CO? - Toulouse, October 2016 19/38 Romain Postoyan - CNRS (Nancy)
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Link with [Grimm et al., IEEE TAC 2005]

Cost functions of the form

Joqu) = > E(k)U(x(K), u(k)),
k=0

e In [Grimm et al., IEEE TAC 2005],

1 when k<N
k) = { 0 when k>N
e For us, £(k) = ~*
1 N<N
1 -—
1
1
1
N N k

Workshop CO?% - Toulouse, October 2016 20/38 Romain Postoyan - CNRS (Nancy)
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Corollaries

Under additional conditions on the comparison functions
e Uniform semiglobal asymptotic stability

e Uniform global exponential stability

Recall:
Vo (x) <av(o(x)) and W(x) <aw(o(x))

W(f(x, u)) = W(x) < —aw(a(x)) + xw(l(x, u))
Explicit lower bounds on + in all cases

Tailored bounds for linear systems with quadratic stage cost

Workshop CO?% - Toulouse, October 2016 21/38 Romain Postoyan - CNRS (Nancy)



Stability guarantees
0000000000000 e0

Examples

o Simple example:
x(k 4+ 1) = 2x(k) + u(k), €(x,u) = x* + o

— UGES for v* = 0.8090

— True value v* = 3 142% mismatch

Workshop CO?% - Toulouse, October 2016 22/38 Romain Postoyan - CNRS (Nancy)
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Examples

o Simple example:
x(k 4+ 1) = 2x(k) + u(k), €(x,u) = x* + o

— UGES for v* = 0.8090

— True value v* = 3 142% mismatch

e Linearized inverted pendulum
x(k 4+ 1) = Ax(k) + Bu(k), £(x,u) =x"Qx+u' Ru

with @ = CTC, C = [1000 0] (the pair (A, C) is observable) and R =1
— UGES for v* = 0.9878
— True estimated value v* = 0.9063: 8% mismatch

Workshop CO? - Toulouse, October 2016 / Romain Postoyan - CNRS (Nancy)
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Examples (c'd)

o A nonholonomic integrator

X1(k+1) = X1(k)+U1(k)
X2(k—|—1) = X2(k)—|—U2(k)
xs(k+1) = x3(k) +x(k)uz(k) — x2(k)u(k),

with
Ux,u) = xl2 + x22 + 10|x3| + |u|2

— UGES for y* = 2

25

'Like in [Grimm et al., IEEE TAC 2005]
Workshop co? - Toulouse, October 2016 23/38 Romain Postoyan - CNRS (Nancy)
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Robustness
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What about robustness?

Arbitrarily small vanishing perturbations might destroy stability

Example in the context of model predictive control in [Grimm et al.,
Automatica 2004]

Workshop CO?% - Toulouse, October 2016 25/38 Romain Postoyan - CNRS (Nancy)
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Robust stability

[Kellett and Teel, SIAM J. of Contr. and Optim. 2005]

e Continuous Lyapunov function Y,
in our case
Yy = pv(V5) + pw (W),

with pv, pw € Koo
— continuity of V/, to be proved
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Robust stability

[Kellett and Teel, SIAM J. of Contr. and Optim. 2005]

e Continuous Lyapunov function Y,
in our case

Yy = pv(V5) + pw(W),
with pv, pw € Koo
— continuity of V/, to be proved

e F} maps compacts into compacts and is non-empty
(recall x(k + 1) € f(x(k),U;(x(k))) = F;(x(k)))

Workshop CO?% - Toulouse, October 2016 26/38 Romain Postoyan - CNRS (Nancy)
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Continuity of V

Theorem

Suppose the following holds.
(a) Previous assumptions are satisfied.

(b) f and ¢ are continuous on W and U : R" =% R is continuous and locally
bounded on R"” (recall u € U(x)).

(c) For any M > 0, the set {x : o(x) < M} is compact.

For any A > 0, there exists v* € (0, 1) such that for any v € (v*,1), V4 is
continuous on {x € R" : o(x) < A}. O

Proof based on [Kellett and Teel, SCL 2004]

Remark: ~+* independent of A under stronger conditions

Workshop CO?% - Toulouse, October 2016 /l Romain Postoyan - CNRS (Nancy)



Near-optimal inputs

Plan

@ Near-optimal inputs

Workshop CO% October 2016 Romain Postoyan - CNRS (Nancy)




Near-optimal inputs
o0

What we mean by near-optimal inputs

[Near-optimality]
e Ja: R>g — R>( continuous, positive semi-definite
e dn>0
such that Vx € R" and Vv € (7, 1) with 5 € [0, 1), Ju,(x) such that

Va(x) < V4 (x) = Js (3, (x)) < Vs (x) + @(o(x)) + .

Workshop CO?% - Toulouse, October 2016 29/38 Romain Postoyan - CNRS (Nancy)



Near-optimal inputs
o0

What we mean by near-optimal inputs

[Near-optimality]
e Ja: R>g — R>( continuous, positive semi-definite
e dn>0
such that Vx € R" and Vv € (7, 1) with 5 € [0, 1), Ju,(x) such that

Va(x) < V4 (x) = Js (3, (x)) < Vs (x) + @(o(x)) + .

[Dynamic programming relationship]
Vo (x) = (x, Ty.0(x)) + 7V, (0) Vx € R"

where 1y o(x) is the first element of U, (x) and U := f(x, Uy,0(x)).

Workshop CO?% - Toulouse, October 2016 Romain Postoyan - CNRS (Nancy)



Near-optimal inputs
(o] J

Stability result

Closed-loop system

x(k+1) € F(x(k),Uy(x(k))) = Fy(x(k)).

Theorem [Uniform semiglobal practical stability]

Under the previous assumptions, 38 € KL and ¥ € K such that Vd, A > 0,
Iv* € (7,1) such that Vy € (v*,1) and Vx € {z € R" : o(z) < A}, any
solution ¢(+, x) satisfies

o(p(k,x)) < max{B(a(x),k),6,9(n)} Vk € Zxo.

Continuity of \77 also ensured

Workshop CO? - Toulouse, October 2016 30/38 Romain Postoyan - CNRS (Nancy)



Miscellanies

Plan

@ Miscellanies

Workshop CO% October 2016 Romain Postoyan - CNRS (Nancy)




Miscellanies
00000

Reverse-discounted cost

What if v > 17
o Existence of optimal inputs assumed ([Keerthi and Gilbert, IEEE TAC
1985])
o Detectability assumption remains the same (as it is independent of ~)
e Controllability assumption: V,(o(x)) < @y(o(x)) for any v € [1,7),
7 € [0, 0]
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Reverse-discounted cost (c'd)

Theorem [Uniform global asymptotic stability]

V¥ € (0,1), 38 € KL such that Vy € (0,%), x € R”, any solution ¢(+, x) to the
system satisfies

a(¢(k, x)) < B(a(x), k),
for any k € Z>o.

Idea of the proof:

V5 (x(1)) = V4(x(0)) —aw(o(x(0)) + (1 = y)av(o(x(1)))

—aw(a(x(0)))

APAY
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Reverse-discounted cost (c'd)

Similar result for costs
Jxu) =" (1= 5" He(x(k), u(k))
k=0

with v > 1.
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Optimal value functions of the discounted and the undiscounted problems

Assumption on the undiscounted problem

e There exists an optimal sequence of inputs when 7 =1 for any x € R”".
The optimal value function is denoted V/(x).
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Optimal value functions of the discounted and the undiscounted problems

Assumption on the undiscounted problem

e There exists an optimal sequence of inputs when 7 =1 for any x € R”".
The optimal value function is denoted V/(x).

e Jay > 0 such that Vx € R”, V(x) < avo(x).

Assumption on the discounted problem

= UGES
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Optimal value functions of the discounted and the undiscounted problems

Assumption on the undiscounted problem

e There exists an optimal sequence of inputs when 7 =1 for any x € R”".
The optimal value function is denoted V/(x).

e Jay > 0 such that Vx € R”, V(x) < avo(x).

Assumption on the discounted problem

o Controllability: V,(x) < avo(x)

= UGES
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Optimal value functions of the discounted and the undiscounted problems

Assumption on the undiscounted problem

e There exists an optimal sequence of inputs when 7 =1 for any x € R”".
The optimal value function is denoted V/(x).

e Jay > 0 such that Vx € R”, V(x) < avo(x).

Assumption on the discounted problem

e Controllability: V,(x) < avo(x)
o Detectability: W(x) < aw(o(x)) and
W(f(x,u)) — W(x) < —awo(x) + £(x, u).

= UGES
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Optimal value functions of the discounted and the undiscounted problems

Let _
’Y* ay
av +aw’

then Vy € (v*,1) and Vx € R",
Vs (%) < V(%) < V5(x) + (1= 1)0(7)(V4(x) + W(x))

where () is given.

Tailored result for linear systems with quadratic costs
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Conclusions

o General conditions for the stability of optimal control problems with
discounted cost

o Continuity of the value function and robustness

o Results applicable for near-optimal inputs

o Relationship between the optimal value functions v € (0,1) / v =1
o Reverse-discounted cost

e Results for uniformly bounded stage costs [Postoyan et al., IEEE CDC
2014]

R. Postoyan, L. Busoniu, D. Ne$i¢ and J. Daafouz, Stability analysis of
discrete-time infinite-horizon optimal control with discounted cost, |IEEE
Transactions on Automatic Control, available on IEEE Xplore
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Definition [Rockafellar & Wets, 1998]

The mapping S : R” = R" is locally bounded when for any X € R", for some
neighborhood V of X, the set S(V) C R™ is bounded.

Definition [Rockafellar & Wets, 1998]
We denote

Iir:\j:p S(x) == {u 3 El{x,,},,ezzo El{u,,}nezzo Stoxg = X, up = u with u, € S(x,,)}
Ii)r(n_igf S(x) = {u o V{X"}"Ezzo s.t. X"njoo)_(’ Jp € N 3{U¢(n)}n€Z205-t- ud,(,,)njoou with u, € S(x,)
where N is the set of strictly increasing functions from Z>q to Z>o.

The set-valued mapping S is continuous at X € R"” when

limsup S(x) = liminf S(x) = S(X) as x — X,
X—X =

and it is continuous on X C R” when it is continuous at any x € X.
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