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Paradigm shift: Periodic control �! Aperiodic control

• Event-triggered control:

Actuator SensorPhysical System

Controller

u(t) = K(x(tk)), when t 2 [tk, tk+1)

tk+1 = inf{t > tk | kx(t)� x(tk)k > �kx(t)k}

[�] Hendricks et al, ACC’�� [�] Arzen, IFAC WC’��
[�] Astrom & Bernhardsson, IFAC WC’�� [�] Heemels et al, CEP’��
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Actuator SensorPhysical System

Controller

• Quality of Control (QoC): Stability, Performance, Robustness

– Stability to equilibrium (under vanishing disturbances) or to a set
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• Consider ẋ =

h
0 1
�2 3

i
x +

h
0
1

i
u and u(t) = [

1 �4
]x(tk)

• TTC: tk = k · 0.025
• ETC: tk = t () k e(t)|{z}

=x(t)�x̂(t)

k > 0.05kx(t)k (relative triggering)

• Properties established in [�]:

– Global exponential stability (GES)

– Global positive lower bound on minimal inter-event time (MIET)

inf{tk+1 � tk | k 2 N} > ⌧MIET > 0

[�] Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, TAC ����
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�! similar Zeno issues with output-based and distributed event-generators

Donkers, Heemels, Output-Based Event-Triggered Control with Guaranteed L1-gain ..., TAC ����
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tk+1 = inf{t > tk | ky(tk)| {z }
=ŷ(t)

�y(t)k > �ky(t)k + �}

• Relative: kŷ � yk > �kyk [�]

• Absolute: kŷ � yk > � [�-�]

• Mixed: kŷ � yk > �kyk + � [�]

[�] Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, TAC ����
[�] Yook, Tilbury, Soparkar, Trading computation for bandwidth: Reducing communication in

distributed control systems using state estimators, TCST ����
[�] Miskowicz, Send-on-delta concept: An event-based data-reporting strategy, Sensors, ����
[�] Lunze and Lehmann, A state-feedback approach to event-based control, Automatica, ����
[�] Donkers, Heemels, Output-Based Event-Triggered Control with Guaranteed L1-gain ..., TAC ����

Event-triggered control schemes
�/��

State-feedback case
ETM robust global global robust semi-global semi-global robust local local
relative ⇥ X ⇥ X ⇥ X
absolute ⇥ ⇥ X X X X
mixed X X X X X X

Output-feedback case

ETM robust global global robust semi-global semi-global robust local local
relative ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
absolute ⇥ ⇥ X X X X
mixed ⇥ ⇥ X X X X

• Robust semi-global at best!

• However, only practical stability / ultimate boundedness (no GAS)

Borgers, Heemels, Event-Separation Properties of Event-Triggered Control Systems, TAC ����

Overview
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Time regularisation:
• Periodic Event-Triggered Control (PETC) [�-�]

tk+1 = inf{t > tk | ky(t)� ŷ(t)k > �ky(t)k ^ t = kh, k 2 N}

• Enforcing minimal inter-event/waiting time [�,�-��]

tk+1 = inf{t > tk+T | ky(t)� ŷ(t)k > �ky(t)k}

Next: Analysis and design tools for these event generators

[�] Arzen, A simple event-based PID controller, IFAC ����
[�] Heemels, Sandee, van den Bosch, Analysis of event-driven controllers for linear systems, IJC ����
[�] Heemels, Donkers, Teel, Periodic Event-Triggered Control for Linear Systems, TAC ����
[�] Henningsson, Johannesson, Cervin, Sporadic event-based control of �rst-order linear stochastic .., Aut. ����
[��] Tallapragada, Chopra, Event-triggered dynamic output feedback control for LTI systems, CDC ����
[��] Tallapragada, Chopra, Event-triggered decentralized dynamic output .. LTI systems, NECSYS ����

Event-triggered control schemes
��/��

Description

d
dt
x = Apx + Bpu + Bww

u(t) = Kx̂(t)

x̂(t) =

(
x(tk), when ⇠>(tk)Q⇠(tk) > 0,

x̂(tk), when ⇠>(tk)Q⇠(tk) 6 0

for t 2 (tk, tk+1]

with tk = kh and h > 0 �xed sampling period and ⇠ = (x, x̂).

PETC
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Hybrid system formulation

d

dt


⇠
⌧

�
=


A⇠ + Bw

1

�
, when ⌧ 2 [0, h],


⇠+

⌧+

�
=

8
>>>>><

>>>>>:

"
J1⇠

0

#

, when ⇠>Q⇠ > 0, ⌧ = h

"
J2⇠

0

#

, when ⇠>Q⇠ 6 0, ⌧ = h

with ⇠ = (x, x̂) and

A :=


Ap BpK
0 0

�
, B :=


Bw

0

�
, J1 :=


I 0

I 0

�
, J2 :=


I 0

0 I

�

[�] Goebel, Sanfelice, Teel, Hybrid dynamical systems: Modeling, Stability and Robustness, ����

PETC
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d

dt


⇠
⌧

�
=


A⇠ + Bw

1

�
, when ⌧ 2 [0, h],


⇠+

⌧+

�
=

8
>>>>><

>>>>>:

"
J1⇠

0

#

, when ⇠>Q⇠ > 0, ⌧ = h

"
J2⇠

0

#

, when ⇠>Q⇠ 6 0, ⌧ = h

Problem formulation:

• Globally exponentially stable (w = 0): k⇠(t)k 6 ce�⇢tk⇠(0)k
• L2 gain smaller than or equal to � with z = C⇠ +Dw

sZ 1

0
kz(t)k2dt 6 �(⇠0) + �

sZ 1

0
kw(t)k2dt

PETC
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d

dt


⇠
⌧

�
=


A⇠ + Bw

1

�
, when ⌧ 2 [0, h],


⇠+

⌧+

�
=

8
>>>>><

>>>>>:

"
J1⇠

0

#

, when ⇠>Q⇠ > 0, ⌧ = h

"
J2⇠

0

#

, when ⇠>Q⇠ 6 0, ⌧ = h

Main idea L
2

gain analysis: z = C⇠ +Dw

• Timer-dependent quadratic Lyapunov function V (⇠, ⌧ ) = ⇠>P (⌧ )⇠

• d
dt
V 6 �2⇢V � ��2z>z + w>w

• During jumps non-increase of LF:

V (J1⇠, 0) 6 V (⇠, h), for all ⇠ with ⇠>Q⇠ > 0,

V (J2⇠, 0) 6 V (⇠, h), for all ⇠ with ⇠>Q⇠ 6 0

L
2

-gain: intersample behaviour
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Main idea L
2

gain analysis V (⇠, ⌧ ) = ⇠>P (⌧ )⇠

• d
dt
V 6 �2⇢V � ��2z>z + w>w

• During jumps non-increase:

V (J1⇠, 0) 6 V (⇠, h), for all ⇠ with ⇠>Q⇠ > 0,

V (J2⇠, 0) 6 V (⇠, h), for all ⇠ with ⇠>Q⇠ 6 0

Nice idea ... but how?

L
2

-gain: intersample behaviour



��/��

Main idea L
2

gain analysis V (⇠, ⌧ ) = ⇠>P (⌧ )⇠

• d
dt
V 6 �2⇢V � ��2z>z + w>w

• During jumps non-increase:

V (J1⇠, 0) 6 V (⇠, h), for all ⇠ with ⇠>Q⇠ > 0,

V (J2⇠, 0) 6 V (⇠, h), for all ⇠ with ⇠>Q⇠ 6 0

Nice idea ... but how?
• Riccati di�erential equation

d
d⌧
P = �A>P�PA�2⇢P���2C>C�(PB+��2C>D)M(B>P+��2D>C)

• Hamiltonian H :=

h
A+ ⇢I + ��2BMD>C BMB>

�C>LC �(A+ ⇢I + ��2BMD>C)

>

i

• F (⌧ ) := e�H⌧
=

h
F11(⌧) F12(⌧)
F21(⌧) F22(⌧)

i

• P0 = (F21(h) + F22(h)Ph)
�
F11(h) + F12(h)Ph

��1

L
2

-gain: intersample behaviour
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Theorem [�]: Suppose that there exist matrix Ph � 0, and scalars µi > 0, such that
for i 2 {1, 2}

2

4
Ph + (�1)

iµiQ J>
i
¯F�>
11 Ph

¯S J>
i (

¯F�>
11 Ph

¯F�1
11 +

¯F21
¯F�1
11 )

? I � ¯S>Ph
¯S 0

? ? ¯F�>
11 Ph

¯F�1
11 +

¯F21
¯F�1
11

3

5 � 0

Then, the PETC system is GES with convergence rate ⇢ (when w = 0) and has an
L2-gain smaller than or equal to �.

[�] Heemels, Donkers, Teel, Periodic Event-Triggered Control for Linear Systems, TAC ����

L
2

-gain: intersample behaviour
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d

dt


⇠
⌧

�
=


A⇠ + Bw

1

�
, when ⌧ 2 [0, h],


⇠+
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�
=

8
>>>>><

>>>>>:

"
J1⇠

0

#

, when ⇠>Q⇠ > 0, ⌧ = h

"
J2⇠

0

#

, when ⇠>Q⇠ 6 0, ⌧ = h

• Observation:

– The LMIs can be re-interpreted as a conservative `2-gain test for a discrete-
time PWL system (not being the discretisation) using CQLF

.... food for thought ....

The years ����-����
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Alternative approach: lifting ...

d

dt


⇠
⌧

�
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A⇠ + Bw

1

�
, when ⌧ 2 [0, h],


⇠+
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�
=

8
>>>>><
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0

#

, when ⇠>Q⇠ > 0, ⌧ = h
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J2⇠

0

#

, when ⇠>Q⇠ 6 0, ⌧ = h

z = C⇠ +Dw

PETC
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Hybrid systems formulation

d

dt
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�
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Hybrid systems formulation

d

dt


⇠
⌧

�
=


A⇠ + Bw

1

�
, when ⌧ 2 [0, h]


⇠+

⌧+

�
=
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0
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, when ⌧ = h

z = C⇠ +Dw

Other applications for this framework:

• Reset controllers with testing for reset only at kh, k 2 N [�]

• Linear systems/controllers with one sensor/actuator node transmitting at kh,
k 2 N determined by quadratic protocol [�]

• Linear systems controlled by arbitrarily switching sampled-data controllers (in
this case � setvalued) [�]

• Linear systems controlled by saturating sampled-data controllers [�]

[�] Heemels, Dullerud, Teel, L2-gain Analysis for a Class of Hybrid Systems with Applications to Reset and Event-triggered Control: A Lifting Approach, TAC’��
[�] CDC’�� version of above

PETC
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Hybrid systems formulation

d

dt
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�
=


A⇠ + Bw

1

�
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�
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0

�
, when ⌧ = h

z = C⇠ +Dw

• Internally stablea: k⇠kL2 6 �(max(|⇠0|, kwkL2)) for K-function �

aimplies limt!1 ⇠(t) = 0 and Lyapunov stability k⇠kL1 6 �(max(|⇠0|, kwkL2))

PETC
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d

dt
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A⇠ + Bw

1

�
, when ⌧ 2 [0, h]


⇠+

⌧+

�
=


�(⇠)
0

�
, when ⌧ = h

z = C⇠ +Dw

• Internally stablea: k⇠kL2 6 �(max(|⇠0|, kwkL2)) for K-function �

• L2-contractive: There is �0 2 [0, 1) and a K-function � s.t.

kzkL2 6 �(|⇠0|) + �0kwkL2 with kzkL2 =

sZ 1

0
kz(t)k2dt

aimplies limt!1 ⇠(t) = 0 and Lyapunov stability k⇠kL1 6 �(max(|⇠0|, kwkL2))

PETC
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d

dt


⇠
⌧

�
=


A⇠ + Bw

1

�
, when ⌧ 2 [0, h]


⇠+

⌧+

�
=


�(⇠)
0

�
, when ⌧ = h

z = C⇠ +Dw

¯⇠k+1 = Ad�(¯⇠k) + Bdvk
rk = Cd�(¯⇠k)

Main result: The hybrid system is internally stable and L2-contractive i� the
discrete-time system is internally `2-stable and `2-contractive.

[�] Heemels, Dullerud, Teel, L2-gain Analysis for a Class of Hybrid Systems with Applications to Reset and Event-triggered Control: A Lifting Approach, TAC’��

Lifting-based approach
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�
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1

�
, when ⌧ 2 [0, h]


⇠+

⌧+

�
=


�(⇠)
0

�
, when ⌧ = h

z = C⇠ +Dw

¯⇠k+1 = Ad�(¯⇠k) + Bdvk
rk = Cd�(¯⇠k)

Main result: The hybrid system is internally stable and L2-contractive i� the
discrete-time system is internally `2-stable and `2-contractive.

• `2-contractive: there is �0 2 [0, 1) s.t.

krk`2 6 �(|¯⇠0|) + �0kvk`2 with krk2`2 =
1X

k=0

|rk|2

• internally `2-stable: k¯⇠k`2 6 �(max(|¯⇠0|, kvk`2)

[�] Heemels, Dullerud, Teel, L2-gain Analysis for a Class of Hybrid Systems with Applications to Reset and Event-triggered Control: A Lifting Approach, TAC’��

Lifting-based approach

��/��

d

dt


⇠
⌧

�
=


A⇠ + Bw

1

�
, when ⌧ 2 [0, h]


⇠+

⌧+

�
=


�(⇠)
0

�
, when ⌧ = h

z = C⇠ +Dw

¯⇠k+1 = Ad�(¯⇠k) + Bdvk
rk = Cd�(¯⇠k)

Main result: The hybrid system is internally stable and L2-contractive i� the
discrete-time system is internally `2-stable and `2-contractive.

• Lifting with veri�able conditions without linearity

• For PETC piecewise linear system �! contractivity/stability analysis via LMIs us-
ing piecewise quadratic Lyapunov functions

[�] Heemels, Dullerud, Teel, L2-gain Analysis for a Class of Hybrid Systems with Applications to Reset and Event-triggered Control: A Lifting Approach, TAC’��

Lifting-based approach
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• Reset control example taken from [�]. � also piecewise linear.

−3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

pole β of the FORE
L 2

-g
ai
n

 

 
Nesic et al. Automatica 2008
Heemels et al. TAC 2012
van Loon et al. CDC 2014
New conditions

d

dt


⇠
⌧

�
=


A⇠ +Bw

1

�
, when ⌧ 2 [0, h],


⇠+

⌧+

�
=

8
>>>><

>>>>:

"
J1⇠

0

#
, when ⇠>Q⇠ > 0, ⌧ = h

"
J2⇠

0

#
, when ⇠>Q⇠ 6 0, ⌧ = h

• LMI-based `2-gain analysis using piecewise quadratic storage functions for
discrete-time PWL system

• Earlier results [�]: Su�cient LMI-based results with V (⇠) = ⇠>P (⌧ )⇠
[�] Ne�íc, Zaccarian, Teel, Stability properties of reset systems, Automatica ����
[�] Heemels, Donkers, Teel, Periodic event-triggered control for linear systems, TAC ����
[�] Heemels, Dullerud, Teel, L2-gain Analysis for a Class of Hybrid Systems with Applications to Reset and

Event-triggered Control: A Lifting Approach, TAC ����

Reset control example
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• Analysis/design tools for PETC

– Riccati di�erential equation approach (����-����)

– Lifting approach giving tight characterisation based on nonlinear/PWL
discrete-time system

�! What about CETC with time-regularisation ?

Conclusions PETC
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• Analysis/design tools for PETC

– Riccati di�erential equation approach (����-����)

– Lifting approach giving tight characterisation based on nonlinear/PWL
discrete-time system

�! What about CETC with time-regularisation ?

�! Where the years ����-���� lost?

Conclusions PETC
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Event times:
tk+1 = inf{t > tk + h | ⇠>Q⇠ > 0}

Waiting time h

d
dt


⇠
⌧

�
=


A⇠ + Bw

1

�
, when ⌧ 2 [0, h] or ⇠>Q⇠ 6 0


⇠+

⌧+

�
=


J1⇠
0

�
, when ⌧ 2 [h,1) and ⇠>Q⇠ > 0

z = C⇠ +Dw

CETC with time regularisation
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d

dt


⇠
⌧

�
=


A⇠ + Bw

1

�
, when ⌧ 2 [0, h],


⇠+

⌧+

�
=

8
>>>>><

>>>>>:

"
J1⇠

0

#

, when ⇠>Q⇠ > 0, ⌧ = h

"
J2⇠

0

#

, when ⇠>Q⇠ 6 0, ⌧ = h

Main idea L
2

gain analysis: z = C⇠ +Dw

• Timer-dependent quadratic Lyapunov function V (⇠, ⌧ ) = ⇠>P (⌧ )⇠

• d
dt
V 6 �2⇢V � ��2z>z + w>w

• During jumps non-increase:

V (J1⇠, 0) 6 V (⇠, h), for all ⇠ with ⇠>Q⇠ > 0,

V (J2⇠, 0) 6 V (⇠, h), for all ⇠ with ⇠>Q⇠ 6 0

Recall: PETC



��/��

Main idea L
2

gain analysis V (⇠, ⌧ ) = ⇠>P (⌧ )⇠

• d
dt
V 6 �2⇢V � ��2z>z + w>w

• During jumps non-increase:

V (J1⇠, 0) 6 V (⇠, h), for all ⇠ with ⇠>Q⇠ > 0,

V (J2⇠, 0) 6 V (⇠, h), for all ⇠ with ⇠>Q⇠ 6 0

Nice idea ... but how?
• Riccati di�erential equation

d
d⌧
P = �A>P�PA�2⇢P���2C>C�(PB+��2C>D)M(B>P+��2D>C)

• Hamiltonian H :=

h
A+ ⇢I + ��2BMD>C BMB>

�C>LC �(A+ ⇢I + ��2BMD>C)

>

i

• F (⌧ ) := e�H⌧
=

h
F11(⌧) F12(⌧)
F21(⌧) F22(⌧)

i

• P0 = (F21(h) + F22(h)Ph)
�
F11(h) + F12(h)Ph

��1

Recall: PETC
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Event times:
tk+1 = inf{t > tk + h | ⇠>Q⇠ > 0}

Waiting time h

d
dt


⇠
⌧

�
=


A⇠ + Bw

1

�
, when ⌧ 2 [0, h] or ⇠>Q⇠ 6 0


⇠+

⌧+

�
=


J1⇠
0

�
, when ⌧ 2 [h,1) and ⇠>Q⇠ > 0

z = C⇠ +Dw

L2-gain analysis using timer-dependent quadratic Lyapunov function:

V (⇠, ⌧ ) =

(
⇠>P (⌧ )⇠, when ⌧ 2 [0, h)

⇠>P (h)⇠, when ⌧ 2 [h,1)

CETC with time regularisation

��/��

• Ricatti di�erential equation

! d
dt
V 6 �2⇢V � ��2z>z + w>w when ⌧ 2 [0, h]

CETC with time regularisation
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• Ricatti di�erential equation

! d
dt
V 6 �2⇢V � ��2z>z + w>w when ⌧ 2 [0, h]

• LMI guaranteeing (only for J1) - similar as for PETC

! V (J1⇠, 0) 6 V (⇠, h), for all ⇠ with ⇠>Q⇠ > 0

CETC with time regularisation
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• Ricatti di�erential equation

! d
dt
V 6 �2⇢V � ��2z>z + w>w when ⌧ 2 [0, h]

• LMI guaranteeing (only for J1) - similar as for PETC

! V (J1⇠, 0) 6 V (⇠, h), for all ⇠ with ⇠>Q⇠ > 0

•

A>Ph + PhA� �Q + 2⇢Ph + ��2C>C ?

B>Ph + ��2D>C ��2D>D � I

�
� 0

! d
dt
V 6 �2⇢V � ��2z>z + w>w when ⌧ 2 [h,1) and ⇠>Q⇠ 6 0

CETC with time regularisation
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• Ricatti di�erential equation

! d
dt
V 6 �2⇢V � ��2z>z + w>w when ⌧ 2 [0, h]

• LMI guaranteeing (only for J1) - similar as for PETC

! V (J1⇠, 0) 6 V (⇠, h), for all ⇠ with ⇠>Q⇠ > 0

•

A>Ph + PhA� �Q + 2⇢Ph + ��2C>C ?

B>Ph + ��2D>C ��2D>D � I

�
� 0

! d
dt
V 6 �2⇢V � ��2z>z + w>w when ⌧ 2 [h,1) and ⇠>Q⇠ 6 0

! Then, the CETC with TR system is GES with convergence rate ⇢ (when w = 0)
and has an L2-gain smaller than or equal to �

CETC with time regularisation
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Observations:

• Extra decrease along jumps with ⇠>Q⇠ > 0:

V (J1⇠, 0) 6 V (⇠, h)� µ1⇠
>Q⇠

• Extra decrease during �ow with ⌧ 2 [h,1) and ⇠>Q⇠ 6 0:

d
dt
V 6 �2⇢V � ��2z>z + w>w + �⇠>Q⇠

Idea: store extra decrease in bu�er ⌘

⌘̇ =

(
�2⇢⌘ when ⌧ 2 [0, h]

�2⇢⌘ � �⇠>Q⇠ when ⌧ 2 [h,1)

⌘+ = ⌘ + µ1⇠
>Q⇠

! new Lyapunov/storage function: U = V + ⌘

CETC with time regularisation
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New storage function U(⇠, ⌧, ⌘) = V (⇠, ⌧ ) + ⌘

• d
dt
U 6 �2⇢U � ��2z>z + w>w for all ⌧ 2 [0,1)

• U(J1⇠, 0) 6 U(⇠, h) for all ⇠ 2 Rn⇠

• U proper storage function as long as ⌘ > 0:

tk+1 = inf{t > tk + h | ⌘ < 0}

Bene�ts dynamic ETC vs. static ETC (with TR):

• Extended inter-event times compared to static CETC with TR

• Identical control performance guarantees!

[�] Postoyan et al., “Event-triggered and self-triggered stabilization ...,” CDC ����
[�] Girard, “Dynamic triggering mechanisms for event-triggered control,” TAC ����
[�] Dolk, Borgers, Heemels, “Dynamic Event-triggered Control...,” CDC ����, TAC ����
[�] Borgers, Dolk, Heemels, “Dynamic event-triggered control with time regularization for linear systems,” CDC ���� ++

Dynamic CETC + TR
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Case study: L2-gain ✓ = 4 from input w to state x: h = 9.1 · 10�3

Dynamic ETC: Example
��/��

P

ETM

C

ZOH

u
wz

x

x̂
P : ẋ =
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Case study: L2-gain ✓ = 4 from input w to state x: h = 9.1 · 10�3

• Dynamic event generator tk+1 := inf{t > tk + h | ⌘(t) < 0}
• Static event generator: tk+1 := inf{t > tk + h |  (x, e, ⌧, ⌘) < 0}
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0 1

�2 3

�
x +


0

1

�
u + w

C : u =

⇥
1 �4

⇤
x

Case study: L2-gain ✓ = 4 from input w to state x: h = 9.1 · 10�3

• Dynamic event generator tk+1 := inf{t > tk + h | ⌘(t) < 0}
• Static event generator: tk+1 := inf{t > tk + h |  (x, e, ⌧, ⌘) < 0}
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• New dynamic ETM does not converge to TTC

Dynamic ETC: Example
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• Event-triggered control: A resource-aware control paradigm

• Challenges:

– Disturbances & Output-based / distributed event generators

• Relative/absolute/mixed at best: practical stability and semi-global MIET

• ) CETC with time-regularisation or PETC

• (Tight) analysis/design tools for linear systems

– PETC: Riccati di�erential equation approach (����-����)

– PETC: Lifting approach

– CETC + TR: Riccati di�erential equation approach + dynamic CETC with TR

• Extensions using PWQ LF and dynamic PETC design (HSCC ����?)

• Many interesting practical and theoretical issues open

More info: http://www.heemels.tue.nl

Conclusions
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Cooperative Adaptive Cruise Control

WiFi-p: Feedforward

Radar: Feedback

• String stability: disturbance attenuation along the vehicle string

– Lp-gain6 1

• Communication resources limited ! event-triggered communication

Motivation
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