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Motivation

Networked Control Systems

Minimize communication load

To reduce energy consumption in wireless settings

To efficiently use a communication channel for multiple control loops

Event-triggered control “promises” to solve these problems...
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Motivation

Efficient communications usage

Alternative controller implementations:

Periodic: Controller updated in a periodic fashion

Event-triggered: Controller updated when pre-designed conditions are violated
(detected at the sensors)

Self-triggered: Controller updated time dependent on the last measurement
obtained (emulate event-triggered)

Pros/Cons:

Periodic: Wasteful, easy implementation/scheduling, robust

Event-triggered: Efficient communications use, robust, hard to schedule

Self-triggered: Efficient communications use, easy scheduling, fragile to
disturbances

Effective scheduling is critical for network sharing and
communication’s energy efficiency (in wireless systems).

Our objective: ease the scheduling of event-triggered controllers.
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Motivation

A separation of concerns

Control engineers design controllers

Real-time engineers design/implement the scheduling

Which information do they exchange?
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Motivation

A separation of concerns

Control engineers design controllers

Real-time engineers design/implement the scheduling

Event-triggered: ?
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Preliminaries

Event-triggered LTI control systems

System

Controller

υ(t)

ξ(t)

ξ(tk)

Sample-and-hold implementation:

ξ̇(t) = Aξ(t) + Bυ(t), ξ(t) ∈ Rn, υ(t) ∈ Rm (1)

υ(t) = υ(tk) = Kξ(tk), ∀t ∈ [tk , tk+1), k ∈ N. (2)

with update times determined by a triggering condition:

tk+1 = inf{t > tk | |e(t)|2 ≥ α|ξ(t)|2}, α ∈ R+,

e(t) := ξ(tk)− ξ(t), t ∈ [tk , tk+1[

(all what follows can be extended to any quadratic form on ξ and e)
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Preliminaries

Event-triggered LTI control systems

System

Controller

υ(t)

ξ(t)

ξ(tk)

tk+1 = inf{t > tk | |e(t)|2 ≥ α|ξ(t)|2}, α ∈ R+,
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Preliminaries

Event-triggered LTI control systems

System

Controller

υ(t)

ξ(t)

ξ(tk)

Sampling interval associated to state x :

τ(x) := min{t | |ex(t)|2 ≥ α|ξx(t)|2, ξx(0) = x}. (3)

The state-dependent sampling law can be reformulated as:

τ(x) = min{σ > 0| xTΦ(σ)x = 0}, (4)

where
Φ(σ) = [I − ΛT (σ)][I − Λ(σ)]− αΛT (σ)Λ(σ),

and Λ(σ) = [I +
∫ σ

0
eArdr(A + BK)].
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Preliminaries

Systems

Definition (System)

A system is a sextuple (X ,X0,U, - ,Y ,H) consisting of:

a set of states X ;

a set of initial states X0 ⊆ X ;

a set of inputs U;

a transition relation - ⊆ X × U × X ;

a set of outputs Y ;

an output map H : X → Y .

A system is said to be finite if X is a finite countable set, and autonomous if |U| ≤ 1.
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Preliminaries

Systems

Definition (Power Quotient System)

Let S = (X ,X0,∅, - ,Y ,H) be an autonomous system and R ⊆ X × X be an equivalence
relation on X . The power quotient of S by R, denoted by S/R , is the autonomous system

(X/R ,X/R,0,∅, -
/R

,Y/R ,H/R) consisting of:

X/R = X/R;

X/R,0 = {x/R ∈ X/R |x/R ∩ X0 6= ∅};

(x/R , u, x
′
/R

) ∈ -
/R

if ∃(x , u, x ′) ∈ - with x ∈ x/R and x ′ ∈ x ′
/R

;

Y/R ⊂ 2Y ;

H/R(x/R) = ∪
x∈x/R

H(x).

Lemma

S/R ε-approximately simulates S , i.e. S �εS S/R , for any

ε ≥ max
x∈x/R

x/R∈X/R

d(H(x),H/R(x/R)),

with d the Hausdorff distance over the set 2Y .
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Problem statement

The timing system

The following system produces as output sequences all possible sequences of inter-sample
intervals generated by the event-triggered controller.

S = (X ,X0,∅, - ,Y ,H)

X = Rn;

X0 = Rn;

(x , x ′) ∈ - iff ξx(τ(x)) = x ′ given by (1)-(3);

Y ⊂ R+;

H : Rn → R+ where H(x) = τ(x).

Problem: Could we construct a finite system capturing the relevant information
of S for scheduler design?
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Proposed solution

Finite abstractions of the timing system

S/P = (X/P ,X/P,0,∅, -
/P

,Y/P ,H/P) where

X/P = Rn
/P := {R1, . . . ,Rq};

X/P,0 = Rn
/P ;

(x/P , x
′
/P) ∈ -

/P
if ∃x ∈ x/P , ∃x ′ ∈ x ′/P such that ξx(H(x)) = x ′;

Y/P ⊂ IR+ ⊂ 2Y , where IR+ is the set of closed intervals [a, b] such that 0 < a ≤ b;

H/P (x/P ) = [ min
x∈x/P

H(x), max
x∈x/P

H(x)] := [
¯
τx/P , τ̄x/P ].

Note: We actually construct ”over-approximations” of this symbolic system
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Proposed solution

Finite abstractions: State set

Remark

All states, excluding the origin, which lie on a line that goes through the origin, have the
same inter-sample time, i.e. τ(x) = τ(λx), ∀λ 6= 0.

This motivates defining Rs as convex polyhedral cones pointed at the origin
(union of rays): {

{x ∈ R2 | xTQsx ≤ 0} if n = 2
{x ∈ Rn |ET

s x � 0} if n ≥ 3
, (5)
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Proposed solution

Finite abstractions: Output set and map (I)

We compute a time interval [
¯
τs , τ̄s ] such that ∀x ∈ Rs , τ(x) ∈ [

¯
τs , τ̄s ].

Lemma

Let s ∈ {1, . . . , q}, and consider a time bound
¯
τs ∈ (0, σ̄]. One can construct a finite set of

matrices
¯
Φ(i,j),s such that if xT

¯
Φ(i,j),sx ≤ 0 then:

xT Φ(σ)x ≤ 0, ∀σ ∈ [0,
¯
τs ]

Lemma

Let s ∈ {1, . . . , q}, and consider a time bound τ̄s ∈ [
¯
τs , σ̄]. One can construct a finite set of

matrices Φ̄(i,j),s such that if xT Φ̄(i,j),sx ≥ 0 then:

xT Φ(σ)x ≥ 0, ∀σ ∈ [τ̄s , σ̄]

[HET07] L. Hetel, J. Daafouz, and C. Lung, ACC07
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Proposed solution

Finite abstractions: Output set and map (II)

Applying the S-procedure:

Theorem (Regional Lower Bound Approximation [FIT12] )

Consider a scalar
¯
τs ∈ (0, σ̄] and matrices

¯
Φκ,s , κ = (i , j) ∈ Ks , as in Lemma 4. If there exist

scalars
¯
εκ,s ≥ 0 (for n = 2) or symmetric matrices

¯
Uκ,s with nonnegative entries (for n ≥ 3) such

that for all κ ∈ Ks the following LMIs hold:{
¯
Φκ,s +

¯
εκ,sQs � 0 if n = 2

¯
Φκ,s + ET

s ¯
Uκ,sEs � 0 if n ≥ 3

,

the inter-sample time (3) of the system (1)-(2) is regionally bounded from below by
¯
τs , ∀x ∈ Rs .

Theorem (Regional Upper Bound Approximation)

Consider a scalar τ̄s ∈ [
¯
τs , σ̄] and matrices Φ̄κ,s , κ = (i , j) ∈ Ks , defined as in Lemma 5. If there

exist scalars ε̄κ,s ≥ 0 (for n = 2) or symmetric matrices Ūκ,s with nonnegative entries (for n ≥ 3)
such that for all κ ∈ Ks the following LMIs hold:{

Φ̄κ,s − ε̄κ,sQs � 0 if n = 2
Φ̄κ,s − ET

s Ūκ,sEs � 0 if n ≥ 3
,

the inter-sample time (3) of the system (1)-(2) is regionally bounded from above by τ̄s , ∀x ∈ Rs .

[FIT12] C.Fiter, L.Hetel, W.Perruquetti, and J.-P.Richard, Automatica 2012
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Proposed solution

Finite abstractions: Transition relation

Compute an over-approximation (X̄[
¯
τs ,τ̄s ](x/R)) of:

X[
¯
τs ,τ̄s ](Xs) := {x ′ ∈ Rn | ∃x ∈ Xs , ∃τ ∈ [

¯
τs , τ̄s ], x

′ = ξx(τ)}

X[
¯
τs ,τ̄s ](x/R) ⊆ X̄[

¯
τs ,τ̄s ](x/R).

Then (x/R , x
′
/R) ∈ -

/R
if X̄[

¯
τs ,τ̄s ](x/R) ∩ x ′/R 6= ∅.

[CHU98] A. Chutinan and B. Krogh, CDC98
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Proposed solution

Examples

ξ̇ =

[
0 1
−2 3

]
ξ +

[
0
1

]
υ, υ =

[
1 −4

]
ξ.

(6)

[TAB07] P. Tabuada, TAC07

ξ̇ =

[
−0.5 0

0 3.5

]
ξ +

[
1
1

]
υ, υ =

[
1.02 −5.62

]
ξ.

(7)

[HET11] L. Hetel, et al, TAC11
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Scheduling

Scheduling with Timed-Automata

Observe that the system S/P :

1 remains at x/P during the time interval [0,
¯
τx/P [,

2 possibly leaves x/P during the time interval [
¯
τx/P , τ̄x/P [ (Guards),

3 is forced to leave x/P at τ̄x/P (Invariants).

making S/P semantically equivalent to a Timed Automata (TA).

One can then leverage TA tools to synthesize schedulers for multiple Event-Triggered
Control (ETC) loops by:

1 Construct the TA related to each ETC

2 Enrich these automata with controllable actions (e.g. forcing early triggering)

3 Construct a simple model for network access

4 Compose the enriched TA (a TGA) with the network model and solve safety
synthesis problems
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Scheduling

Timed-Automata

Definition (Timed Automaton)

A timed automaton TA is a sextuple (L, `0,Act,C ,E , Inv) where

L is the set of finitely many locations (or nodes);

`0 ∈ L is the initial location;

Act is the set of finitely many actions;

C is the set of finitely many real-valued clocks;

E ⊆ L× B(C)× Act× 2C × L is the set of edges;

Inv : L→ B(C) assigns invariants to locations.

where B(C) to denote the set of clock constraints.

The states of a TA are pairs of locations ` and clock assignments u. The transitions can be:

Delayed transition: (`, u)
d

TS
- (`, u + d) if u � Inv(`) and (u + d) � Inv(`) for a

non-negative real number d ∈ R≥0;

Discrete transition: (`, u)
a

TS
- (`′, u′) if `

g,a,r- `′, u � g , u′ = u[r] and u′ � Inv(`′).
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Scheduling

Timed-Automata
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Rσ
1

0 ≤ c ≤ τ̄σ
1

Rσ
2

0 ≤ c ≤ τ̄σ
2

τ
¯

σ
1 ≤ c ≤ τ̄σ

1

c := 0

τ
¯

σ
2 ≤ c ≤ τ̄σ

2

c := 0

τ
¯

σ
1 ≤ c ≤ τ̄σ

1

c := 0
τ
¯

σ
2 ≤ c ≤ τ̄σ

2

c := 0
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Scheduling

Timed Game Automata

Definition (Timed Game Automaton)

A timed game automaton TGA is a septuple (L, `0,Actc ,Actu ,C ,E , Inv) where
(L, `0,Actc ∪ Actu ,C ,E , Inv) is a timed automaton with:

Actc is the set of controllable actions;

Actu is the set of uncontrollable actions;

Actc ∩ Actu = ∅.

We define two different types of TGA:

TGAnet - Capturing the network availability behaviour

TGAcl
i - An enriched version of the TA abstraction of the event-triggered loop, with

controllable actions:

Selection of different α triggering coefficient (performance selection)
Force an early deterministic update
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Scheduling

TGAnet

Idle InUse

0 ≤ c ≤ ∆

Bad

up?
c := 0

c == ∆

up?

up?

Definition

Let ∆ represent the minimum channel occupancy time, TGAnet = (Lnet , `net
0 ,Actnet

c ,

Actnet
u ,Cnet ,Enet , Invnet ) is defined by:

the set of locations Lnet = {Idle, InUse,Bad};
the initial location `net

0 = Idle;

the controllable actions Actnet
c = {∗};

the uncontrollable actions Actnet
u = {up?};

the set of clock variables Cnet = {c};
the set of edges
Enet = {(Idle, true, up?, {c}, InUse), (InUse, c = ∆, ∗, ∅, Idle), (InUse, true, up?, ∅,Bad),
(Bad , true, up?, ∅,Bad)};
Invnet (InUse) = {c | 0 ≤ c ≤ ∆}.
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Scheduling

(Networks of) Timed Game Automata

Definition (Parallel Composition (NTGA))

The parallel composition of TGA1, . . . , TGAn denoted by TGA1 | · · · | TGAn is a timed game
automaton TGA = (L, `0,Actc ,Actu ,C ,E , Inv) where

L = L1 × · · · × Ln;

`0 = (`1
0, . . . , `

n
0);

Actc = {∗} ∪
⋃n

i=1{a ∈ Actic | a is an internal action};

Actu = {~} ∪
⋃n

i=1{a ∈ Actiu | a is an internal action};

C = C1 ∪ · · · ∪ Cn;

E is defined according to the following two rules:

a TA makes a move on its own via its internal action: the edge is controllable iff the
internal action is controllable;
two TA move simultaneously via a synchronizing action: the edge is controllable iff
both input and output actions are controllable (i.e. the environment has priority over
the controller);

Inv((`1, . . . , `n)) = Inv1(`1) ∧ · · · ∧ Invn(`n).
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Scheduling

Synthesis problem

1 Construct TGAcl
i for each ETC loop.

2 Construct TGAnet

3 Construct NTGA = TGAcl
1 | TGAcl

1 | · · · | TGAnet

4 solve safety synthesis problems over NTGA

Synthesis problem: Design strategies to avoid visiting the NTGA set of states:

A = {(`net , `1, . . . , `N , unet , u1, . . . , uN) | `net = Bad}.

Issue: Synthesis tries to force always ”early triggering”.

Solutions:

Define costs of actions and find ”optimal” strategies (no synthesis results available).

Forbid the use of more than a pre-specified number of consecutive ”early triggers”.
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Illustrative example

Abstractions

ξ̇ =

[
0 1
−2 3

]
ξ +

[
0
1

]
υ, υ =

[
1 −4

]
ξ.

(8)

[TAB07] P. Tabuada, TAC07

ξ̇ =

[
−0.5 0

0 3.5

]
ξ +

[
1
1

]
υ, υ =

[
1.02 −5.62

]
ξ.

(9)

[HET11] L. Hetel, et al, TAC11
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Illustrative example

Schedule

Channel occupancy after event: ∆ = 0.005 s;

Controllable action: force an early triggering d = 0.005 s before
¯
τs (of each region);

Abstractions with 200 conic regions;

Maximum consecutive earlier triggering: 4.

0 2 4 6 8 10

Long bars = Event-triggered Top [TAB07]
Short bars = Early triggering Bottom [HET11]
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400

t

υ

The scheduler is synthesized on UPAAL-Tiga to solve the safety game [CAS05].
[CAS05] F. Cassez, A. David, E. Fleury, K. Larsen, and D. Lime, CONCUR’05
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Illustrative example

Schedule

Channel occupancy after event: ∆ = 0.005 s;

Controllable action: three different triggering coefficients α1 < α2 < α3;

Abstractions with 200 conic regions;

Maximum consecutive earlier triggering: 0.

0 2 4 6 8 10

Top [TAB07], Bottom [HET11]
Short/Medium/Long bars = α1/α2/α3
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2 4 6 8 10
−50
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t
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2 4 6 8 10200

200

400

t

υ

The scheduler is synthesized on UPAAL-Tiga to solve the safety game [CAS05].
[CAS05] F. Cassez, A. David, E. Fleury, K. Larsen, and D. Lime, CONCUR’05
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Conclusion

Wrap-up

We provide:

A class of abstractions (in the form of timed-automata) for the timing of
event-triggered systems

An approach to scheduler design for ETCs

On-going/Future work:

Extension to disturbed systems (To be presented at CDC16)

Extensions to classes of non-linear systems

More advanced (decentralized?) scheduling approaches

Performance optimization through TPGA

Fault/Attack detection

Toolbox
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Conclusion

Thanks for your attention!
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