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Paradigm	shift	towards	wireless	control	architectures

“Removing cables undoubtedly saves cost, but often the real cost gains lie in the radically
different design approach that wireless solutions permit. […] In order to fully benefit from
wireless technologies, a rethink of existing automation concepts and the complete design
and functionality of an application is required.” Jan-Erik Frey, R&D Manager ABB



Wireless	Control	Network
A collection of cooperating algorithms (controllers) designed to achieve
a set of common goals, aided by interactions with the environment
through distributed measurements (sensors) and actions (actuators)
exchanged via a wireless communication network



Opportunities	vs	scientific	challenges	with	Wireless	Control	Networks

Lower	costs,	easier	installation
• Suitable	for	emerging	markets
Broadens	scope	of	sensing	and	control
• Easier	to	sense/monitor/actuate:	opens	new	application	domains
Compositionality
• Enables	system	evolution	via	composable control	loops
Runtime	adaptation	and	reconfiguration
• Control	can	be	maintained	in	response	to	failures	and	malicious	attacks

Complexity
• Systems	designers	and	programmers	need	suitable	abstract	models	to	hide	the	

complexity	from	wireless	channels	and	communication	protocols
Reliability
• Need	for	robust	and	predictable	behavior	despite	wireless	non-idealities
Security
• Wireless	technology	is	vulnerable:	security	mechanisms	for	control	loops

Take	into	account	communication	protocol	dynamics
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Control	loop	over	a	P2P	wireless	network
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Control	loops over	a	P2P	wireless	network
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Plant	control	law
(e.g.	PID,	MPC)

• Sensing	and	actuation	data	are	relayed	via	the	protocol	stack	layers
• In	classical	control	theory	communication	stack	and	medium	are	considered	as	

generic	disturbances	in	the	controller	design
• Several	feedback	control	mechanisms	within	separate layers

TCP	congestion	control
(e.g.	Tahoe,	Reno,	Cubic)

Routing	control
(e.g.	RIP,	Priority	buff.)

Medium	access	control
(e.g.	CSMA/CD)

Power,	coding	&	
modulation	control

(e.g.	UMTS	inner	loop)

Intra-layer control	loops



Control	loops over	a	mesh wireless	network
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Control	loops over	a	mesh wireless	network

Wireless	
network

Borderline	between	control	over network	
and	control	of network	disappears

M.C.	Escher,	Relativity
Lithograph,	1953

Different	perspectives	in	terms	of
• Time-scales

• Mathematical	setting
• Performance	metrics

• Constraints	&	non-idealities



Control-aware	networking	and	communication
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Design	network	to	
meet	control	
performance

Control	loop

Control-aware	networking	and	communication
Modify	network	protocols	and	radio	links	for	better	real-time	control	
performance
[Park	et	al	2011],	[Fischione	et	al	2009],	…

Control	specification



Network-aware	control
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Modify	control	algorithms	to	cope	with	communication	imperfections
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Robust		controller	
design

Control	specification

Network-aware	control
Modify	control	algorithms	to	cope	with	communication	imperfections
[Seiler&Sengupta	2001],	[Jacobsson	et	al.	2004],	[Sinopoli	et	al	2004],	[Elia	2005],	
[Imer	et	al	2006],	[Braslavsky et	al	2007],	[Gupta	et	al	2007],
[Hespanha	et	al	2007],	[Schenato	et	al	2007],	
[Heemels	et	al	2011,	2012],	[Chiuso	et	al	2014],	…



Co-design

Wireless	
network

Joint	design	of	the	control	algorithm	and	the	network	protocol	
configuration
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Co-design
Joint	design	of	the	control	algorithm	and	the	network	protocol	
configuration
[Park	et	al	2011],	[Mesquita et	al	2012],	[Pajic	et	al	2012],
[Antunes&Heemels 2013],	[D’Innocenzo	et	al	2013],	…



Cross-layer	adaptation	&	optimization
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Desirable signalling between	communication	layers	to	improve	
overall	performance
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Desirable signalling between	communication	layers	to	improve	
overall	performance
Example:	exploit	plant	and	network	feedback	to	decide	actuation	signal	and	power
[D’Innocenzo	et	al	2012],	[Gatsis et	al 2013],	…



Cross-layer	adaptation	&	optimization
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Desirable signalling between	communication	layers	to	improve	
overall	performance
Example:	exploit	plant	and	network	feedback	to	decide	actuation	signal	and	coding
[Tatikonda&Mitter 2004],	[Nair et	al	2007],	[Quevedo	et	al	2010],	…



Cross-layer	adaptation	&	optimization
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Desirable signalling between	communication	layers	to	improve	
overall	performance
Example:	exploit	plant	and	network	feedback	to	decide	actuation	signal	and	access	
to	channel
[Xu&Hespanha 2004],	[Cogill et	al	2007],	[Li&Lemmon 2011],
[Tabuada 2007],	[Molin&Hirche 2009],	[Rabi&Johansson 2009],	
[Anta&Tabuada 2010],	[Donkers et	al	2011],…



Cross-layer	adaptation	&	optimization
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Desirable signalling between	communication	layers	to	improve
overall	performance
Example:	exploit	plant	and	network	feedback	to	decide	actuation	signal	and	routing
[Mesquita et	al	2012],	[Jungers et	al.	2014],	…



Opportunities	vs	scientific	challenges	with	Wireless	Control	Networks

Lower	costs,	easier	installation
• Suitable	for	emerging	markets
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Role	of	communication	in	cyber-physical	security	research?
Y.	Zacchia Lun ,	A.	D’Innocenzo ,	I.	Malavolta	and	M.D.	Di	Benedetto.	Cyber-Physical	Systems	
Security:	a	Systematic	Mapping	Study.	Submitted	for	publication,	preprint	on	arXiv.



Role	of	communication	in	cyber-physical	security	research?
Y.	Zacchia Lun ,	A.	D’Innocenzo ,	I.	Malavolta	and	M.D.	Di	Benedetto.	Cyber-Physical	Systems	
Security:	a	Systematic	Mapping	Study.	Submitted	for	publication,	preprint	on	arXiv.
A	systematic	mapping	study	is	a	research	methodology	intended	to	provide	an	unbiased,	
objective and	systematic instrument	to	identify,	classify,	and	analyze existing	research	on	a	
specific	research	area:	cyber-physical	systems	security	in	our	case.
K.	Petersen,	S.	Vakkalanka,	and	L.	Kuzniarz,	“Guidelines	for	conducting	systematic	mapping	
studies	in	software	engineering:	An	update,”	Information	and	Software	Technology,	vol.	64,	
pp.	1–18,	2015



Overview	of	the	whole	review	process



Search	strategy



Publication	trends

Distribution	of	primary	studies	over	the	years*

(*)	partial	data	for	2015



Characteristics	and	focus	of	research:	application	fields
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Characteristics	and	focus	of	research:	security	attributes



Characteristics	and	focus	of	research:	controllers
Studies	focusing	on	state	estimation	usually	do	not	examine	at	all	the	controller.

In	fact,	in	82	(69,49% of	118	selected)	studies	the	controller is	not	available.	

Some	of	the	remaining	36	studies	consider	more	than	one	controller	at	once.	
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Attacks	and	their	characteristics
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Communication	aspects	and	network-induced	imperfections
Surprisingly,	100	out	of	118	studies	(i.e.,	84,75%)	do	not	explicitly	consider	any	
communication	aspect	or	imperfection,	while	only	6	studies	(i.e.	5,08%)	address	
more	than	one	aspect.	

Surprisingly,	very	few	papers	(attempt	to)	provide	non-trivial	mathematical	models	
of	the	communication	protocol,	which	indeed	is	a	fundamental	actor	of	almost	any	
CPS.	In	particular,	only	in	2 works	a	specific	standard	for	communication	is	
explicitly	considered	in	the	CPS	mathematical	model.
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Co-design	over	time-triggered	communication	protocols

Challenge:	Co-design	the	control	algorithm	
and	the	communication	protocol
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Co-design	over	time-triggered	communication	protocols

Challenge:	Co-design	the	control	algorithm	
and	the	communication	protocol
(scheduling,	routing	and	control)
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WirelessHART MAC	(scheduling)	and	Network	(routing)	layers

§ Time-triggered access to	the	channel
§ Time	divided in	periodic frames
§ Each frame	divided in	Π time	slots of	duration Δ
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§ Enables	redundancy	in	data	routing
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§ Enables	redundancy	in	data	routing
§ Scheduling	must	guarantee	relay	via	multiple	paths
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WirelessHART MAC	(scheduling)	and	Network	(routing)	layers

§ Time-triggered access to	the	channel
§ Time	divided in	periodic frames
§ Each frame	divided in	Π time	slots of	duration Δ
§ Enables	redundancy	in	data	routing
§ Scheduling	must	guarantee	relay	via	multiple	paths

How	to	exploit	redundancy	optimally
w.r.t.	control	performance	metrics?



Redundancy	in	data	routing…

1. Separation	of	concerns
2. Co-design

§ …makes	system	
tolerant	to	long-
term	link	failures

§ …enables	detection	and	
isolation	of	failures	and	
malicious	attacks

§ …makes	system	robust	to	short-term	
link	failures	(e.g.	packet	losses)



Wireless	control	networks	as switching systems
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𝐾(𝑡)

Different paths are associated with different delays.



Wireless	control	networks	as switching systems

𝑡+…

𝐾(𝑡)

Different paths are associated with different delays.
Mathematical model: 𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵 𝜎 𝑡 𝑣 𝑡 , 𝑡 ∈ ℕ, where 𝑥 𝑡 is the plant
and network state, 𝜎 𝑡 ∈ Σ	depends on routing/scheduling. The switching signal is
considered as a disturbance.



Wireless	control	networks	as switching systems

𝑡+…

𝐾(𝑡)
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Different paths are associated with different delays.
Mathematical model: 𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵 𝜎 𝑡 𝑣 𝑡 , 𝑡 ∈ ℕ, where 𝑥 𝑡 is the plant
and network state, 𝜎 𝑡 ∈ Σ	depends on routing/scheduling. The switching signal is
considered as a disturbance.



Wireless	control	networks	as switching systems

𝑡+…

𝐾(𝑡)

Problem:	Design	a	controller	𝐾(𝑡) s.t.	the	closed	loop	system	is	asymptotically	stable.
Given a	state-feedback	controller 𝐾(𝑡),	the	closed loop systems is asymptotically stable
iff the	Joint	Spectral Radius of	 𝐴 + 𝐵 𝜎 𝑡 𝐾 𝑡 M N ∈R is smaller than 1.

Different paths are associated with different delays.
Mathematical model: 𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵 𝜎 𝑡 𝑣 𝑡 , 𝑡 ∈ ℕ, where 𝑥 𝑡 is the plant
and network state, 𝜎 𝑡 ∈ Σ	depends on routing/scheduling. The switching signal is
considered as a disturbance.



Wireless	control	networks	as switching systems

𝑡+…

Problem:	Design	a	controller	𝐾(𝑡) s.t.	the	closed	loop	system	is	asymptotically	stable.
Given a	state-feedback	controller 𝐾(𝑡),	the	closed loop systems is asymptotically stable
iff the	Joint	Spectral Radius of	 𝐴 + 𝐵 𝜎 𝑡 𝐾 𝑡 M N ∈R is smaller than 1.

Insights:	Switching	systems	analysis	and	design	is	a	crowded	research	area:
• Leverage	special	structure	of	matrices	𝐴 and	𝐵 𝜎 𝑡 to	provide	tailored	results	that	

outperform classical	results	on	general	switching	systems
• Decidability	results	on	controllability	and	stabilizability depend on	knowledge	of	𝜎 𝑡

𝐾(𝑡)

Different paths are associated with different delays.
Mathematical model: 𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵 𝜎 𝑡 𝑣 𝑡 , 𝑡 ∈ ℕ, where 𝑥 𝑡 is the plant
and network state, 𝜎 𝑡 ∈ Σ	depends on routing/scheduling. The switching signal is
considered as a disturbance.
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tolerant	to	long-
term	link	failures

§ …enables	detection	and	
isolation	of	failures	and	
malicious	attacks

§ …makes	system	robust	to	short-term	
link	failures	(e.g.	packet	losses)

Investigate	algorithms	to	merge	redundant	data:
• Objective:	stabilize	the	closed-loop	system	or	maximise control	performance
• Best	strategy:	keep	most	recent	packet	vs.	compute	combination?
• Different	paths	are	associated	with	different	delays
• Not	a	trivial	question,	best	strategy	from	the	point	of	view	of	stability	strongly	

depends	on	plant	and	network:	need	for	a	control-theoretic	approach

Redundancy	in	data	routing…



Network	paths	characteristics are	often “at	odds”

Motivational	example
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Network	paths	characteristics are	often “at	odds”

Motivational	example

𝐶 𝑃

Very	reliable	but	slow

Very	fast	but	unreliable

Optimally	exploit	the	best	of	each	path	by	co	designing	controller	and	routing



Network	model



• Plant	dynamics: 𝑥F 𝑘 + 1 = 𝐴F𝑥F 𝑘 +𝐵F𝑣 𝑘

Network	model



• Send	different	actuation data	trough	the	paths	of	the	network

• Controller	can	measure via	sensors the	plant state	(state	feedback	architecure)

• Controller	is aware of	the	current and	past actuation signals (memory)

Network	model

𝑢U 𝑘 = 𝐾U 𝑘 𝑥F 𝑘 , 𝐾 𝑘 =

𝐾"(𝑘)
𝐾$(𝑘)
⋮

𝐾V(𝑘)



• 𝜎U 𝑘 =W0 𝐿𝑂𝑆𝑇
1 𝑂𝐾 is a Markov chain modeling packet losses at time 𝑘 on path 𝑖

• 𝜎 𝑘 = 𝜎" 𝑘 … 𝜎V 𝑘 	occurrence of packet losses in the network - not
necessarily measurable

Packet	losses	model



• 𝑎U 𝑘 models the choice at time 𝑘 of sending a packet via path 𝑖

• 𝑎U 𝑘 =W0 ¬𝑆𝐸𝑁𝐷
1 𝑆𝐸𝑁𝐷 , 𝑎 𝑘 = 𝑎" 𝑘 … 𝑎V 𝑘

Routing	redundancy	control



• 𝑎U 𝑘 models the choice at time 𝑘 of sending a packet via path 𝑖

• 𝑎U 𝑘 =W0 ¬𝑆𝐸𝑁𝐷
1 𝑆𝐸𝑁𝐷 , 𝑎 𝑘 = 𝑎" 𝑘 … 𝑎V 𝑘

• 𝑎 𝑘 is a control variable
• Example: 𝑎 𝑘 = [1, 0, 1, 0, … , 0] means that at time 𝑘	 we send actuation data

only on paths 1 and 3.

Routing	redundancy	control



• Actuate	sum	of	received	packets…

Network	model

𝑣 𝑘 =e𝑢U(𝑘 − 𝑑U)
V

Uh"



• Actuate	sum	of	received	packets…or	actuate most recent received packet

Network	model

𝑣 𝑘 = 𝑢U∗(𝑘 − 𝑑U∗),	with	𝑖∗ the	index	of	the	path	
associated	to	the	smallest	delay	among	received	packets	

𝑣 𝑘 =e𝑢U(𝑘 − 𝑑U)
V

Uh"
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• When the	actuator receives no	packets,	actuate zero…
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• Actuate	sum	of	received	packets…or	actuate most recent received packet

• When the	actuator receives no	packets,	actuate zero…or	hold the	previous actuation

Network	model

𝑣 𝑘 = 𝑢U∗(𝑘 − 𝑑U∗),	with	𝑖∗ the	index	of	the	path	
associated	to	the	smallest	delay	among	received	packets	

𝑣 𝑘 =e𝑢U(𝑘 − 𝑑U)
V

Uh"



• Actuate	sum	of	received	packets…or	actuate most recent received packet

• When the	actuator receives no	packets,	actuate zero…or	hold the	previous actuation

• Optimal design of	𝐾 𝑘 , 𝑎(𝑘) allows	determining what is the	best	protocol to	apply at
the	actuator

Network	model

𝑣 𝑘 = 𝑢U∗(𝑘 − 𝑑U∗),	with	𝑖∗ the	index	of	the	path	
associated	to	the	smallest	delay	among	received	packets	

𝑣 𝑘 =e𝑢U(𝑘 − 𝑑U)
V

Uh"
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MJLS	mathematical	framework
We	leverage	discrete-time	Markov-jump	linear	systems	(MJLS).	A	MJLS	is	a	switching
linear	system	where	the	switching	signal	is	a	Markov	chain.	The	transition	probability	
matrix	(TPM)	𝑃(𝑘) of	the	Markov	chain	𝜎 𝑘 can	be	used	to	model	the	stochastic	
process	that	rules	packet	losses	due	to	wireless	communication.

j
𝑥 𝑘 + 1 = 𝐴k l 𝑥 𝑘 + 𝐵k l 𝑢 𝑘 ,

𝑥 0 = 𝑥O	,
𝜃 0 = 𝜃O

𝑥 𝑘 ∈ ℂo is	the	state	vector,
u 𝑘 ∈ ℂq is	the	input	vector,	𝑘 ∈ ℕO,	
𝐴k l ∈ ℂo×o,	𝐵k l ∈ ℂo×q are	the	state	and	
input	matrices	associated	with	mode	𝜃 𝑘



• 4-dimensional	unstable	plant

• 2	routing	paths:	𝑝" = "
t⁄ , 𝑑" = 1; 𝑝$ = 0, 𝑑$ = 5

• 5k	Monte	Carlo	simulations

• Compare	3	routing	policies:
– LQR	using	only	path	1	for	any	𝑘

– LQR	using	only	path	2	for	any	𝑘

– LQR	using	both	paths	for	any	𝑘

Example



Use	only	path	1	for	any	𝑘



Use	only	path	2	for	any	𝑘



Use	both	paths	for	any	𝑘
Plant state	plot

Averaged	cost	

Via	path	1 ∼ 900
Via	path	2 ∼ 250	
Via	paths	1 and	2 ∼ 100	



Use	both	paths	for	any	𝑘
Actuation signals plot



MJLS	mathematical	framework
We	leverage	discrete-time	Markov-jump	linear	systems	(MJLS).	A	MJLS	is	a	switching
linear	system	where	the	switching	signal	is	a	Markov	chain.	The	transition	probability	
matrix	(TPM)	𝑃(𝑘) of	the	Markov	chain	𝜎 𝑘 can	be	used	to	model	the	stochastic	
process	that	rules	packet	losses	due	to	wireless	communication.

j
𝑥 𝑘 + 1 = 𝐴k l 𝑥 𝑘 + 𝐵k l 𝑢 𝑘 ,

𝑥 0 = 𝑥O	,
𝜃 0 = 𝜃O

Extension	1:	In	general	wireless	channels	are	time-varying	and	packet	loss	probability	
not	easy	to	compute/measure,	thus	𝑃(𝑘) is	unmeasurable	and	time-varying

Extension	2:	We	want	to	control	the	routing	policy:	MJLS	where 𝜃(𝑘) is	a	Markov-
decision	process

𝑥 𝑘 ∈ ℂo is	the	state	vector,
u 𝑘 ∈ ℂq is	the	input	vector,	𝑘 ∈ ℕO,	
𝐴k l ∈ ℂo×o,	𝐵k l ∈ ℂo×q are	the	state	and	
input	matrices	associated	with	mode	𝜃 𝑘
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time-inhomogeneous	MJLS

MJLS	is	time-inhomogeneous,	i.e.	a	Markov	chain	has	its	TPM varying	over	time,	
with	variations	that	are	arbitrary within	a	polytopic set	of	stochastic	matrices.
Formally,	TPM	𝑃 𝑘 = 𝑝Ux 𝑘 y×y ,	𝑘 ∈ ℕO	, 𝑁, 𝐿 ∈ ℕ,
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time-inhomogeneous	MJLS

MJLS	is	time-inhomogeneous,	i.e.	a	Markov	chain	has	its	TPM varying	over	time,	
with	variations	that	are	arbitrary within	a	polytopic set	of	stochastic	matrices.
Formally,	TPM	𝑃 𝑘 = 𝑝Ux 𝑘 y×y ,	𝑘 ∈ ℕO	, 𝑁, 𝐿 ∈ ℕ,

𝑃 𝑘 =e𝜆{ 𝑘 𝑃ℓ

}

ℓh"

, 	𝜆{ 𝑘 ≥ 0	,e𝜆{ 𝑘 = 1
}

ℓh"

,	

𝑃ℓ ℓ∈ℒ≜ ",…,} = 𝒫}	is	a	given	set of	vertices

So,	the	TPM	𝑃 𝑘 = 𝑝Ux 𝑘 y×y is	a	stochastic	𝑁×𝑁 matrix	with	entries	𝑝Ux 𝑘 .



Stability	of	autonomous	time-homogeneous	MJLS

The	noiseless	autonomous	discrete-time	time-homogeneous	MJLS	 𝑺 is

j
𝑥 𝑘 + 1 = 𝐴k l 𝑥 𝑘 	,

𝑥 0 = 𝑥O	,
𝜃 0 = 𝜃O

𝑥 𝑘 ∈ ℂo is	the	state	vector,	𝑘 ∈ ℕO	,	
𝐴k l ∈ ℂo×o the	state	matrix,	
associated	with	the	operational	mode	𝜃 𝑘
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associated	with	the	operational	mode	𝜃 𝑘

For	a	time-homogeneousMJLS,	the	system	is	Mean	Square	Stable	(MSS)	if	and	
only	if	a	spectral	radius	of	the	augmented	matrix	𝒜 ,	associated	to	the	second	
moment	of	the	state	vector	𝑥 𝑘 ,	is	<	1
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AU is	the	conjugate	of	AU ,	and	𝑃�is	transpose	of	𝑃.



Stability	of	autonomous	time-homogeneous	MJLS

The	noiseless	autonomous	discrete-time	time-homogeneous	MJLS	 𝑺 is

j
𝑥 𝑘 + 1 = 𝐴k l 𝑥 𝑘 	,

𝑥 0 = 𝑥O	,
𝜃 0 = 𝜃O

𝑥 𝑘 ∈ ℂo is	the	state	vector,	𝑘 ∈ ℕO	,	
𝐴k l ∈ ℂo×o the	state	matrix,	
associated	with	the	operational	mode	𝜃 𝑘

For	a	time-homogeneousMJLS,	the	system	is	Mean	Square	Stable	(MSS)	if	and	
only	if	a	spectral	radius	of	the	augmented	matrix	𝒜 ,	associated	to	the	second	
moment	of	the	state	vector	𝑥 𝑘 ,	is	<	1,	where

𝒜 ≜ 𝑃�⨂𝕀o� 	diag	 AU⨂AU ,	 diag	 AU⨂AU ≜
A"⨂A" ⋯ 0

⋮ ⋱ ⋮
0 ⋯ Ay⨂Ay

,

AU is	the	conjugate	of	AU ,	and	𝑃�is	transpose	of	𝑃.

Does	a	similar	condition	hold	also	for	time-inhomogeneous	MJLS?



Illustrative	example
Let us	consider	the	MJLS	 𝑆 with	𝑁 = 3 operational	modes,	where	
the	state	matrices	associated	with	the	operational	modes	are	

𝐴" =
1 0
0 1.2 , 		𝐴$=

1.13		 0
0.16		 0.48		 ,			𝐴� =

0.3		 0.13		
0.16		 1.14		
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Let us	consider	the	MJLS	 𝑆 with	𝑁 = 3 operational	modes,	where	
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𝐴" =
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0 1.2 , 		𝐴$=

1.13		 0
0.16		 0.48		 ,			𝐴� =

0.3		 0.13		
0.16		 1.14		

The	time-varying	probability	matrix	𝑃(𝑘) is	uncertain	and	belongs	to	a	polytope	
with	𝐿 = 2	vertices

𝑃" = 	
0		 0.35		 0.65		
0.6		 0.4		 0
0.4		 0.6 0

,				𝑃$ = 	
0.25 0.75 0
0 0.6 0.4
0 0.4 0.6

,	

Any	probability	matrix	within	a	polytope	is	represented	by	
𝑃 𝑘 = 𝜆 𝑘 𝑃" + 1 − 𝜆 𝑘 𝑃$



Illustrative	example
Let us	consider	the	MJLS	 𝑆 with	𝑁 = 3 operational	modes,	where	
the	state	matrices	associated	with	the	operational	modes	are	

𝐴" =
1 0
0 1.2 , 		𝐴$=

1.13		 0
0.16		 0.48		 ,			𝐴� =

0.3		 0.13		
0.16		 1.14		

The	time-varying	probability	matrix	𝑃(𝑘) is	uncertain	and	belongs	to	a	polytope	
with	𝐿 = 2	vertices

𝑃" = 	
0		 0.35		 0.65		
0.6		 0.4		 0
0.4		 0.6 0

,				𝑃$ = 	
0.25 0.75 0
0 0.6 0.4
0 0.4 0.6

,	

Any	probability	matrix	within	a	polytope	is	represented	by	
𝑃 𝑘 = 𝜆 𝑘 𝑃" + 1 − 𝜆 𝑘 𝑃$

The	spectral	radii	𝜌 of	augmented	matrices	from	the	previous	slide,	here	denoted	
by	ΛU,	are	

𝜌 𝒜" = 0.901601 < 1	, 𝜌 𝒜$ = 0.905686	 < 1

Thus,	the	time-homogeneous	MJLS	with	TPM	𝑃",	𝑃$ are	mean	square	stable.



Illustrative	example
Sample	trajectories	of	the	system	state	vector	having	for	all	time	instants	either	
TPM	𝑃"(left)	or	𝑃$(right),	for	𝑥O =

100
85 and	initial	probability	distribution	𝑝O =

0.33 0.34 0.33	



Illustrative	example
However, when	the	transition	probability	matrix	is	time-inhomogeneous	and	is	
switching	between	𝑃"and	𝑃$,	a	trajectory	for	the	same	conditions	may	become



Illustrative	example
However, when	the	transition	probability	matrix	is	time-inhomogeneous	and	is	
switching	between	𝑃"and	𝑃$,	a	trajectory	for	the	same	conditions	may	become

The	system	is	clearly	unstable.	Hence,	some	perturbations	on	transition	probability	
matrix	𝑃 can	make	a	stable	MJLS	system	unstable.
In	the	following	we	prove	N&S	conditions,	based	on	the	notion	of	Joint	Spectral	
Radius,	that	will	show	that	the	considered	system	is	indeed	unstable.	



Related	works	on	stability	of	time-inhomogeneous	MJLS

Only sufficient stability	conditions have	been	derived	for	MJLS	with	time-
inhomogeneous	Markov	chains	having	TPM	arbitrarily	varying	within	a	polytopic	set	
of	stochastic	matrices:
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inhomogeneous	Markov	chains	having	TPM	arbitrarily	varying	within	a	polytopic	set	
of	stochastic	matrices:

• a	sufficient condition	for	stochastic	stability (SS)	in	terms	of	linear	matrix	
inequality feasibility	problem	is	provided	in
S.	Aberkane,	"Stochastic	stabilization	of	a	class	of	nonhomogeneous	Markovian	jump	linear	systems,”	
Syst.	&	Control	Lett.,	vol.	60,	no.	3,	pp.	156–160,	2011.
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Only sufficient stability	conditions have	been	derived	for	MJLS	with	time-
inhomogeneous	Markov	chains	having	TPM	arbitrarily	varying	within	a	polytopic	set	
of	stochastic	matrices:

• a	sufficient condition	for	stochastic	stability (SS)	in	terms	of	linear	matrix	
inequality feasibility	problem	is	provided	in
S.	Aberkane,	"Stochastic	stabilization	of	a	class	of	nonhomogeneous	Markovian	jump	linear	systems,”	
Syst.	&	Control	Lett.,	vol.	60,	no.	3,	pp.	156–160,	2011.

• a	sufficient condition	for	MSS	of	MJLS	with	interval TPM,	which	in	turn	can	be	
represented	as	a	convex	polytope,	is	presented	in	relation	to	spectral	radius in
S.	Chitraganti,	S.	Aberkane,	and	C.	Aubrun,	"Mean	square	stability	of	non-homogeneous	Markov	jump	
linear	systems	using	interval	analysis,”	in	Proc.	of	the	2013	European	Control	Conf.	(ECC),	2013,	pp.	
3724–3729.



Stability	of	time-inhomogeneous	MJLS

Our	contribution:

• We	provide	a	necessary	and	sufficient	condition	for	MSS	of	discrete-time	MJLS	
with	time-inhomogeneous	polytopic TPM,	which	require	to	decide	whether	the	
joint	spectral	radius	of	a	finite	family	of	matrices	is	smaller	than	1
Y.	Zacchia Lun,	A.	D'Innocenzo,	M.D.	Di	Benedetto.	On	stability	of	time-inhomogeneous	Markov	jump	
linear	systems.	55th	IEEE	Conference	on	Decision	and	Control,	Las	Vegas,	US,	December	12-14,	2016.
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Our	contribution:

• We	provide	a	necessary	and	sufficient	condition	for	MSS	of	discrete-time	MJLS	
with	time-inhomogeneous	polytopic TPM,	which	require	to	decide	whether	the	
joint	spectral	radius	of	a	finite	family	of	matrices	is	smaller	than	1
Y.	Zacchia Lun,	A.	D'Innocenzo,	M.D.	Di	Benedetto.	On	stability	of	time-inhomogeneous	Markov	jump	
linear	systems.	55th	IEEE	Conference	on	Decision	and	Control,	Las	Vegas,	US,	December	12-14,	2016.

• We	provide	a	necessary	and	sufficient	condition	for	“practical”	MSS	with	
bounded	disturbances
Y.	Zacchia Lun,	A.	D'Innocenzo,	M.D.	Di	Benedetto.	On	robust	stability	of	time-inhomogeneous	
Markov	jump	linear	systems.	In	preparation	for	submission.



Joint	Spectral	Radius	(JSR)
Introduced by	Rota	and	Strang in	1960,	Joint	Spectral	Radius	(JSR)

• characterizes	the	maximal	asymptotic	growth	rate	of	the	norms	of	long	
products of	matrices	taken	in	a	set;

• is	subject	of	intense	research	due	to	its	role	in	the	study	of	wavelets,	switching	
systems,	approximation	algorithms,	curve	design,	and	many	other	topics.
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𝜌¢l ℳ ≜ sup
£∈£� ℳ

Π
"
l 	, 𝑘 ∈ ℕ

The	joint	spectral	radius	of	ℳ is	defined	as	

𝜌¢ ℳ ≜ lim
l→¦

𝜌¢l ℳ
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Theorem	1.	Given	a	discrete-time	MJLS	(S)	with	polytopic	TPM,	it	is	MSS if	and	
only	if	JSR	of	𝒜𝐿 is	< 1,	where	𝒜L	 is	a	set	of	all	vertices	of	the	polytope	associated	
to	the	second	moment	of	𝑥 𝑘 .

Formally,	𝒜𝐿 = Λℓ ℓ∈ℒ≜ ",…,} ,		Λℓ ≜ 𝑃ℓ�⨂𝕀o� 	diag	 AU⨂AU
(The	JSR	of	the	set	of	TPMs	of	the	system	provided	in	the	illustrative	example	is	𝜌¢ 𝒜𝐿 > 1)
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(by	reduction	from	the	matrix	semigroup	stability)
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Theorem	3.	The	following	assertions	are	equivalent	for	a	system	(S):

i. (S)	is	mean	square	stable (MSS).

ii. (S)	is	exponentially	mean	square	stable (EMSS),	i.e.	

𝚬 𝑥(𝑘) $ ≤ 𝛽𝜍l 𝑥O $
$	, ∀𝑥O ∈ ℂo, 𝑘 ∈ ℕO	, 𝛽 ≥ 1	, 0 < 𝜍 < 1	, 𝑃O	, 𝜃O	.

iii. (S)	is	stochastically	stable (SS),	i.e.	
∑ 𝚬 𝑥(𝑘) $ < ∞¦
lhO 										∀𝑥O ∈ ℂo, 𝑘 ∈ ℕO	, 𝑃O	, 𝜃O	.
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MJLS	mathematical	framework
We	leverage	discrete-time	Markov-jump	linear	systems	(MJLS).	A	MJLS	is	a	switching
linear	system	where	the	switching	signal	is	a	Markov	chain.	The	transition	probability	
matrix	(TPM)	𝑃(𝑘) of	the	Markov	chain	𝜎 𝑘 can	be	used	to	model	the	stochastic	
process	that	rules	packet	losses	due	to	wireless	communication.

j
𝑥 𝑘 + 1 = 𝐴k l 𝑥 𝑘 + 𝐵k l 𝑢 𝑘 ,

𝑥 0 = 𝑥O	,
𝜃 0 = 𝜃O

Extension	1:	In	general	wireless	channels	are	time-varying	and	packet	loss	probability	
not	easy	to	compute/measure,	thus	𝑃(𝑘) is	unmeasurable	and	time-varying

Extension	2:	We	want	to	control	the	routing	policy:	MJLS	where	𝜃(𝑘) is	a	Markov-
decision	process

𝑥 𝑘 ∈ ℂo is	the	state	vector,
u 𝑘 ∈ ℂq is	the	input	vector,	𝑘 ∈ ℕO,	
𝐴k l ∈ ℂo×o,	𝐵k l ∈ ℂo×q are	the	state	and	
input	matrices	associated	with	mode	𝜃 𝑘



Robust	LQR	on	MJLS	with	continous and	discrete	inputs
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Future	work

• Take	into	account	infinite	horizon	LQR	&	Stability
• Co-design	control	and	transmission	power
• Co-design	control	and	network	coding
• Co-design	control	and	tx time	(static	PETC)
• Develop	FDI	techniques	on	our	model	(CPS	security)
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Modeling,	analysis	and	design
of	wireless	sensor	and	actuator	networks

Abstract of the course:
The massive deployment of smart and wirelessly interconnected devices in cyber-physical systems such as smart
grids, networks, and intelligent transport systems, is providing extensive information from the physical world
through distributed sensing mechanisms. With the emergence of low-cost controllers/actuators that can be
potentially embedded in everything (e.g., vehicles, robots, buildings, human body), the sensed information can be
utilized to act and perform control, estimation and monitoring at an unprecedented scale. This is demanding the
development of fundamental design principles for Wireless Sensor Network and Actuators Networks (WSAN) so
to reliably and certifiably observe the physical world, processing the data, making decisions based on the sensor
observations and performing appropriate control actions. In addition, due to the vulnerability of wireless
networks to cyber-physical malicious attacks, security is a primary concern for WSAN.

This course is devoted to the study of WSANs: a co-design approach of Control Systems and Networks
supporting control applications over WSAN will be presented. In particular, we will discuss the following
scenarios:
Control-aware network design, when the protocol parameters can be adapted by an optimization problem whose
objective is a network utility, and the constraints are the reliability and latency of the messages as requested by a
control application;
Network-aware controller design, when the controller can be adapted to guarantee some control specifications
robustly with respect to networking non-idealities and malicious attacks;
Cross-layer optimization, where desirable signaling between communication layers enable simultaneous
computation of control actions and networking configuration to improve the overall system performance;
Distributed optimization, including privacy constrains, where the nodes of a WSAN jointly cooperate to solve
network global optimization problems that may possibly include privacy constraints.
Topics: • Mathematical modeling of networks for WSANs

• Mathematical modeling of closed-loop systems over WSANs
• Robust, resilient and secure control co-design over WSANs
• Distributed optimization over WSANs
• Discussion of open problems and opportunities for research


