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Overview

Initial motivation: Verifying exponential stability of Quasi Periodic
Linear Impulsive systems (QPLIS). Eg. sampled data, networked
control.

Approach: Introduce set representations called “complex (template)
zonotopes” to represent contractive sets to establish exponential
stability of QPLIS.

Advantage: Complex zonotopes can utilize eigenstructure to
represent contractive sets.
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Quasi periodic linear impulsive systems (QPLIS)

x(0) = x0 Initial State

ẋ(t) = Acx(t) t ∈ [tk , tk+1) Continuous linear evolution

x(t+
k ) = Arx(t−k ) Linear Impulse

tk+1 − tk ∈ [tmin, tmax ] Quasi-periodicity
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Global exponential stability

Global exponential stability (GES): Every state reaches
equilibrium at exponential rate.

Mathematically, GES means there exists λ ∈ [0, 1) and c > 0 such
that for all x0 ∈ Rn and k ∈ Z+

‖x(tk)‖ ≤ cλk‖x0‖.
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Stability verification problem

Given Ac , Ar and sampling interval ∆ = [tmin, tmax ], verify that the
quasi-periodic linear impulsive systems is exponentially stable.
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Contractive set

k-step contractive: Contracts after k-impulses if

Rk(Ψ) = {x(t+
k ) : x0 ∈ Ψ} ⊆ λ(Ψ) : λ ∈ [0, 1)
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Reachability operators

∆ = [tmin, tmax ]

One-step reachability operators

O1(∆) = {Ht = eAc tAr : t ∈ ∆}.

Multiple-step reachability operators:

Ok(∆) = {Ht1 ...Htk : ti ∈ ∆ ∀i ∈ {1, ..., k}}
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Set theoretic condition for exponential stability

Define C-set: Convex and compact set containing the origin in its
interior.

QPLIS is GES if and only if there is a contractive
C -set [Fiacchini2014,Athanasopoulos2014,AlKhatib2015].
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Finding a contractive C -set

Earlier approach [Fiacchini2014]: Starting with an initial
polytope, do iterative intersection of inverse images of large number
of reachability operators.

Drawback: Complexity of set representation grows with the number
of iterations.

Our solution: Find contractive complex zonotopes based on
eigenvectors of reachability operators.
Motivations

1 Eigenstructure of reachability operators is closely related to stability.
2 Size of set representation remains constant.
3 Contraction due to any reachability operator can be checked

efficiently using convex optimization (second order conic
programming).
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Review: Real (usual) Zonotopes

Minkowski sum of line segments (generators)

Definition

Let Vn×m be real valued matrix of m generators which are elements in Rn,

b ∈ Rn (center).

Zonotope is a set: Z = {V ε+ b : ε ∈ Rm, ||ε||∞ ≤ 1}
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Example of real zonotope
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Complex zonotopes: A new class of sets

Definition

Let Vn×m be a matrix of m complex valued generators which are
elements of Cn, c ∈ Cn (center).
Complex zonotope: Z = {V ε+ c : ε ∈ Cm, ||ε||∞ ≤ 1}
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Example of complex zonotope
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Reason for complex zonotopes: Utilizing eigenstructure

Fixed sampling period: If sampling period τ is fixed, i.e., has single
reachability operator Hτ :
Exponential stability ⇐⇒ generators chosen as eigenvectors of Hτ
give contractive complex zonotope.

Quasi-periodic case: Generators can be choosen from eigenvectors
of at a number of Ht : t ∈ [τmin, τmax ] and expect that set contracts.
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Complex zonotopes instead vs real zonotopes

Real zonotope Complex zonotope
Only real eigenvectors (not com-
plex) as generators

Can have complex and real eigen-
vectors as generators
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Related Work

Classical abstract domains: intervals [Cousot Cousot 1976] and convex
polyhedra [Cousot Halbwachs 1978], and their variants, such as zones [Mine 2001],
octagons [Mine 2006], linear templates [Sankaranarayanan et.al 2005], zonotopes
[Girard et.al 2009], and tropical polyhedra [Allamigeon et.al 2008] (to achieve a good
comprise between computational speed and precision)

Non-polyhedral set representations: ellipsoids [Kurzhanski Varaiya 2000],
polynomial invariants [Tiwari 2002] polynomial inequalities for
invariant computation via reduction to linear inequalities) [Bagnara et al.

2005] and polynomial equalities via Gröner basis method [Rodriguez-Carbonell et

al. 2007], quadratic templates [Feron et al. 2010, Adje et al. 2010]

Other extensions of zonotopes: quadratic [Adje et. al 2015] and more
generally polynomial zonotopes [Althoff 2011].

A polynomial zonotope is a set-valued polynomial function of
intervals, whereas a template complex zonotope is a set-valued
function of circles in the complex plane.
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Contributions

Introduce complex zonotopes and template complex zonotopes
for representing sets.

Algorithm for operations on these complex zonotopes and their
use for verification of stability and invariance properties
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Plan

1 Stability of Quasi-Periodic Linear Impulsive Systems, as motivation

2 Complex Zonotopes and Template Complex Zonotopes

3 Stability Verification Algorithm for Quasi-Periodic Linear Impulsive
Systems

4 Invariance Verification Algorithm for Switched Systems with
Additive Disturbance
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Contraction w.r.t. Reachability Operators

Let J be a k-step reachability matrix, i.e., J ∈ Ok(∆). We define
contraction χ(Ψ, J) = min{λ ∈ R+ : JΨ ≤ λΨ}.

Verify k-step contraction means verify that contraction due to all
J ∈ Ok(∆) is less than one, i.e., ∀J ∈ Ok(∆), verify χ(Ψ, J) < 1.
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Choice of initial C -set

Efficient verification: find a C -set that contracts in a small
number of steps

In this regard, we introduce complex zonotopes whose real
projection represents C -set.
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Complex zonotopes representing C -sets

Complex zonotope

Definition

Let m ∈ Z≥0 (number of generators), let Vn×m ∈Mn×m(C) (generators
are column vectors) be a complex-valued matrix, c ∈ Cn (center). Then

Z = {V ε+ c : y ∈ Cm, ||ε||∞ ≤ 1}

is a complex zonotope. We denote Z = 〈V , c〉.

Sufficient condition for C -sets: Real projection Re(Z) is a C -set
if c = 0, and rank(V ) = n.
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Template Complex Zonotopes

Drawback of complex zonotopes: adding generators may make the set
unnecessarily large in some directions.
Template Complex Zonotope: allowing to ”scale” the set along the
directions of the generators ⇒ dynamical addition of generators without
compromising the precision

Definition

V ∈Mn×m(C): template

c ∈ Cn: center

s ∈ Rm
≥0 : scaling factors

Template complex zonotope Z = 〈V , c , s〉 is the set

{V ζ + c : ζ ∈ Cm ∧ ∀i ∈ {1, ...,m}, |ζi | ≤ si} .

Note: Complex zonotopes are thus template complex zonotopes with
(fixed) unit scaling factors.
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Template Complex Zonotopes: Linear Transformation and
Minkowski Sum

Linear transformation of a template complex zonotope is a
template complex zonotope
A ∈Mn×n(C) is a complex square matrix. Then,

A 〈V , c , s〉 = 〈AV ,Ac , s〉 . (1)

Minkowski sum of two template complex zonotopes is another
template complex zonotope.
Let V ∈Mn×m(C), G ∈Mn×r (C) (generators), c , d ∈ Cn (centers),
s ∈ Rm

≥0, h ∈ Rr
≥0 (scaling factors). Then

〈V , c , s〉 ⊕ 〈G , d , h〉 =

〈
[V G ] , (c + d),

(
s
h

)〉
(2)
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Template Complex Zonotopes: Inclusion Checking

Problem: checking the inclusion between two template complex
zonotopes centered at the origin.

This problem is non-convex in general ⇒ we derive an easily verifiable
sufficient condition (a set of second order conic constraints)

Z = 〈V , 0, s〉 and Z ′ = 〈G , 0, h〉: two template complex zonotopes.
Then Z ′ ⊆ Z if

∃X ∈Mm×r (C) such that

VX = GD(h) r∑
j=1

|Xij |

 ≤ si ∀i ∈ {1, ...,m}
(3)

D(h) is the diagonal matrix with h along the diagonal.

24 / 49



Template Complex zonotopes: Contraction Bound by
Linear Transformation

Definition (Contraction)

For a template complex zonotope Z = 〈V , 0, s〉, the amount of
contraction by a square matrix J ∈Mn×n(R) is

χ(Z, J) = min {λ ∈ R≥0 : J 〈V , 0, s〉 ⊆ λ 〈V , 0, s〉} .

A contraction bound can be derived:

χ(Z, J) ≤ β(Z, J) = min{‖X‖∞ : X ∈Mm×m(C) and VD(s)X = JVD(s)}
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Stability Condition in terms of Template Complex
Zonotopes

Consider again the Quasi-Periodic LIS system

ẋ(t) = Acx(t) ∀t ∈ R≥0 : t 6= ti ∀i ∈ Z>0

x(t+
i ) = Arx(t−i ) ∀i ∈ Z>0

(ti+1 − ti ) ∈ ∆ ∀i ∈ Z>0

(4)

Sufficient Condition for Globally Exponentially Stability(GES): if there
exists a scalar λ ∈ [0, 1) and template complex zonotope 〈V , 0, s〉
(centered at the origin) of rank n, such that for all t ∈ ∆, we have

HtZ ⊆ λZ

where Hτ = eAcτAr is the one-step reachability operator.
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Stability verification using Template Complex Zonotopes

Fixed sampling period τ : single reachability operator Hτ :
Exponential stability ⇔ generators chosen as eigenvectors of Hτ
form a contractive complex zonotope.

Quasi-periodic case: Generators can be chosen from the
eigenvectors of Ht : t ∈ [τmin, τmax ] at a number of time points t,
and expect that set contracts.
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Bounding contraction for small time uncertainty

Let ρ ∈ [0, ε], period uncertainty

One-step reachability operator Ht+ρ can be written using Taylor
expansion as Ht+ρ = e(Acρ)Ht = P t

r (ρ) + E t
r (δ) : 0 ≤ δ ≤ ρ

P t
r (ρ) =

r∑
i=0

Ai
cρ

i

i !
Ht , E t

r (δ) =
Ar+1
c δr+1

(r + 1)!
Ht

Contraction in the vicinity of a reachability operator

If 0 ≤ ρ ≤ ε, then the contraction χ(Z,Ht+ρ), due to Ht+ρ, is bounded
by

χ(Z,Ht+ρ) ≤ ηr (Z, t, ε) = max
j∈{0,...,r}

β
(
Z,P t

j (ε)
)

+
εr+1

(r + 1)!
β(Z,Ar+1

c )

Contraction bounds (due to linear transformation) β(Z, J) can be
efficiently computed

Similar bound obtained for multiple-step reachability operators.
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Contraction Verification

1: Initialize t = tmin and h = tol .
2: Initialize r as order of Taylor expansion (typically ≤ 2).
3: while h ≥ tol and t < tmax do
4: if ηr (Z, t, h) < 1 then
5: t ← t + h
6: h← h + tol
7: else
8: h← h − tol
9: end if

10: end while
11: if t ≥ tmax then
12: Z is contractive w.r.t. all reachability operators
13: else
14: Inconclusive
15: end if
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Synthesizing the Templates

Define k sampled time points Λk =
{
tmin + i (tmax−tmin)

k : i ∈ {1, ..., k}
}

and set of k sampled reachability operators as Γk = {Ht : t ∈ Λk}

Find Z that contracts w.r.t all operators in Γk :

Fix the template Ek (by all eigenvectors of the operators in Γk)

Synthesize scaling factors s such that Z is contractive w.r.t. Γk

(combining contraction bound and inclusion checking)

Find s ∈ Rn
≥1 for which

∃X ∈Mm×m(C) such that

EkX = HtEkD(s) ∀t ∈ Λk (a finite set of time points)
r∑

j=1

|Xij | ≤ λsi ∀i ∈ {1, ...,m}

(5)
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Example: Networked control systems modeled as LIS

Networked control system (NCS): Plant interacts with controller.

ẋp(t) = Aoxp(t) + Bou(t)

u(t) = u(tk) ∀t ∈ (tk , tk+1]

y(t) = Cpxp(t)

xo(tk+1) = Aoxo(tk) + Boyp(tk)

u(tk) = Coxo(tk) + Doyp(tk)

(6)

Has LIS representation where state is z =

 xp
xo
u

,

Ac =

 Ap 0 Bp

0 0 0
0 0 0

 , Ar =

 I 0 0
BoCp Ao 0
DoCp Co 0


Parameters: Ap =

(
−1 0
1 0

)
, Bp =

(
1
0

)
, Cp =

(
0 1

)
,

Ao = 0.4286, Bo = −0.8163, Co = −1 and Do = −3.4286.
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Implementation

Software: For convex optimization, we use CVX (disciplined convex
optimization software) on MATLAB.

Computation platform: For convex optimization, we used CVX version
2.1 with Matlab R2015a on 64 bit GNOME (3.4.2) with Intel Core
i5-3470 CPU, 3.20GHz processor, having 3.8 GiB memory and disk space
242.1 GB.
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Experiments: Example 1

Software: CVX (disciplined convex optimization software) on MATLAB.
We chose the template from 3 sampled reachability operators, and could
verify contraction in a sampling interval [0.08, 0.5], with first order Taylor
expansion (r = 1). Computation time is 2.69s.

The NCS tool [Hetel2013] could only verify until 0.4.

Reference τmin τmax

Digital Control Book [Wittenmark02] 0.08 0.22

NCS tool [Hetel2013] 0.08 0.4

Complex zonotope 0.08 0.5

Template complex zonotope 0.08 0.5
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Experiments: Example 2

[Hetel2013] Ac =

 0 −3 1
1.4 −2.6 0.6
8.4 −18.6 4.6

 and Ar =

 1 0 0
0 1 0
0 0 0


Using k = 3 sampled reachability operators, we could verify contraction
in a sampling interval [0.1, 0.495]. Computation time is 6.9076 seconds.

Reference τmin τmax

Lyapunov, parametric LMI [Hetel2013] 0.1 0.3

Polytopic set
contractiveness [Fiacchini2014] 0.1 0.475

Khatib et al. [AlKhatib2015] 0.1 0.514

Complex zonotope 0.1 0.49

Template complex zonotope 0.1 0.495
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Template Complex Zonotopes vs Complex Zonotopes

Using complex zonotopes, contraction had to be verified after two
impulses.
Using the (synthesized) template complex zonotopes, contraction is
verified only after one impulse.

TCZ CZ

Nb. of impulses 1 2
(both examples) (both examples)

Comp. time
Ex. 1

Ex. 2

2.69s

6.9076s

27.4052s

74.0311s

35 / 49



Switched Systems with Additive Disturbance

S = 〈L,A,Ω, I〉
L is a finite set of modes

A : L→Mn×n(R) specifying for each mode a set of switching
matrices

Ω is a bounded set called additive disturbance set

I is the initial set

x(t + 1) = A(σ(t))x(t) + w(t)

x(0) ∈ I.
(7)

Switching signal σ : Z≥0 → L, disturbance signal w : Z≥0 → Ω

Starting from a set Ψ, reachable set at the next time instant.

R(Ψ) =
⋃
l∈L

(
AlΨ⊕ Ω

)
(8)
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Positive Invariance

Definition (Positive invariant)

A set Ψ ⊆ Cn is called a positive invariant of the switched system if

R(Ψ) ⊆ Ψ and I ⊆ Ψ

or equivalently, for all locations l ∈ L,(
AlΨ⊕ Ω

)
⊆ Ψ and

I ⊆ Ψ
(9)
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Sufficient Condition for Positive Invariance

V ∈Mn×m(C), G ∈Mn×r (C), W ∈Mn×p(C), s ∈ Rm
≥0 and h ∈ Rr

≥0

and z ∈ Rp
≥0. Let Ψ = 〈V , 0, s〉, Ω = 〈G , 0, h〉 and I = 〈W , 0, z〉 be

template complex zonotopes. Then 〈V , 0, s〉 is a positive invariant if

∃X l ∈Mm×(m+r)(C) for each l ∈ L and ∃Y ∈Mm×p(C) such that

VX l =
[
AlV G

]
D
(

s
h

)
∀l ∈ L

VY = WD(z)

m+r∑
j=1

|X l
ij | ≤ si ∀i ∈ {1, ...,m} ∀l ∈ L (inclusion after switching)

p∑
j=1

|Yij | ≤ si ∀i ∈ {1, ...,m} (containment of the initial set)
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Sufficient Condition for Linear Positive Invariance

A linear invariant is a collection of linear constraints s.t. every trajectory
starting in the initial set always satisfies the linear constraints.

Let k ∈ Z>0, T ∈Mk×n(R) and b ∈ R≥0. A linear invariant property is
specified a tuple (T , b) such that ∀t ∈ Z>0 and ∀x ∈ R t(Ψ), we have
‖Tx‖∞ ≤ b.

Condition for linear invariance

The set of constraints (T , b) is a linear invariant iff there exists a positive
invariant Ψ such that ∀x ∈ real(Ψ), we have ‖Tx‖∞ ≤ b.
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Verifying Linear Invariance

Problem: We want to find a positive invariant as a template complex
zonotope satisfying a given set of linear constraints.

Approach: fix the template and derive sufficient conditions on the
scaling factors, by combining (1) the (above) condition for positive
invariance and (2) the (following) condition for inclusion in a set defined
by linear constraints.

Inclusion of a zonotope in set defined by linear constraints

∀x ∈ 〈V , 0, s〉, the inequality ‖Tx‖∞ ≤ b holds if and only if
‖TVD(s)‖∞ ≤ b.
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Sufficient Condition for Linear Invariance

Disturbance set Ω = 〈G , 0, h〉 and initial set I = 〈W , 0, z〉 (with scaling
factors h ∈ Rr

≥0 and z ∈ Rp
≥0). A tuple (T , b) (where T ∈Mk×n(R) and

b ∈ R≥0) is linear invariant if

∃s ∈ Rm
≥0 (scaling factors), ∃X l ∈Mn×(m+r)(C) ∃Y ∈Mn×p(C)

VX l =
[
AlV G

]
D
(

s
h

)
∀l ∈ L

VY = WD(z)

‖TVD(s)‖∞ ≤ b (satisfaction of linear constraints)

m+r∑
j=1

|Xij | ≤ si ∀i ∈ {1, ...,m} ∧ ∀l ∈ L (inclusion after switching)

p∑
k=1

|Yik | ≤ si ∀i ∈ {1, ...,m} (containment of initial set)
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Choosing the template

For linear systems without switching, a positive invariant exists if and
only if a template complex zonotope having eigenvectors as the template
is a positive invariant.

For a switched system, we can choose the template as the collection of
eigenvectors of the switching matrices.

We can add new direction vectors to the template (to increase the
chances of successful verification)
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Experiments: Example 1

Example

Switching matrices [Allamigeon et. al. 2015].

Af =
(

−0.06515 −0.4744 0.3041
−0.4744 0.4872 0.3732
0.3041 0.3732 −0.1271

)
Ag =

(
0.04419 0.3155 −0.04247
0.1451 −0.04931 −0.2805
0.2833 −0.01418 0.1554

)
,

We additionally considered an input set and a disturbance set.
Zonotopic disturbance set is box Ω =

〈
I3×3, 0, [0.1 0.1 0.1]T

〉
Initial set as box I =

〈
I3×3, 0, [0.5 0.5 0.5]T

〉
.

We chose a template of eigenvectors Af and Ag . For rectangular
constraints (I3×3, b) to be a linear invariant, we found b = 0.9569.
Computation time is 0.6006s.

Note: To handle additive disturbance, it is not easy to extend the
ellipsoidal method [Allamigeon et. al. 2015] (Minkowski sums need to be
abstracted as ellipsoids), and the LMI approach (biconvex optimization
required)
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Experiments: Example 2

[Kouramas et. al. 2005]
Here we additionally considered an initial zonotopic set around the origin.

Switching matrices Af = F1 + GK and Ag = F2 + GK where

F1 =

(
1.2 1
0 1

)
, F2 =

(
0.8 1
−0 1

)
, G = [1 1]T and K = [−1.2 − 1].

Disturbance set is box Ω =
〈
0.1× I3×3, 0, [0.1 0.1 0.1]T

〉
. Initial set is

box I =
〈
I3×3, 0, [1 1 1]T

〉
and rectangular constraints of the form

‖x‖∞ ≤ b.

We chose a template of eigenvectors Af and Ag . For rectangular
constraints (I2×2, b) is a linear invariant, we found b to be 1.10.
Computation time is 0.3920s.
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Random examples

Figure: Computation time (in seconds) for scaling factors vs dimension

Disturbance set (in all the runs) is the unit box centered at the origin.
Initial set is the origin.
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Conclusion

Template complex zonotopes are appropriate for verification of stability
and invariance properties, since they can capture eigenstructures of linear
dynamics ⇒ good convergence of fixed point computations

Ongoing Work

Extending the framework to invariant computation of hybrid systems
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Template Complex Zonotopes: Inclusion Checking

Problem: checking the inclusion between two template complex
zonotopes centered at the origin.
Although this problem is non-convex in general, we derive an easily
verifiable sufficient condition, as a set of second order conic constraints.
Let V ∈Mn×m(C), G ∈Mn×r (C), s ∈ Rm

≥0 and h ∈ Cr
≥0 for some

n,m, r ∈ Z>0. Let Z = 〈V , 0, s〉, Z ′ = 〈G , 0, g〉 be two template
complex zonotopes. Recall that D(h) is the diagonal matrix with h along
the diagonal. Then Z ′ ⊆ Z if all the following constraints are collectively
satisfied.

∃X ∈Mm×r (C) such that

VX = GD(h) r∑
j=1

|Xij |

 ≤ si ∀i ∈ {1, ...,m}
(10)
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Template Complex Zonotopes: Inclusion Checking

Proof.

Any point p inside Z ′ can be represented as p = Gζ for some ζ ∈ Cr

such that for all j ∈ {1, ..., r}, |ζj | ≤ hj . Equivalently, p can be written as
GD(h)ε such that ∀j ∈ {1, ..., r}, εj = ζj/hj . Using the equations in (10),
p can be rewritten as VX ε where ∀j ∈ {1, ..., r} : |εj | = |ζj |/hj ≤ 1. So,
for p to be included in Z as well, it is sufficient if the absolute values of
components of the vector of coefficients X ε to be less than the
corresponding components of s, i.e. ∀i ∈ {1, ...,m} : |

∑r
j=1 Xijεi | ≤ si .

Since ∀j ∈ {1, ..., r} : |εj | ≤ 1, using this bound gives the last inequality
in (10).
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