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Introduction

Discrete-time systems

x(k + 1) = f (x(k), u(k))

Discounted cost function

J(x , u) :=
∞∑
k=0

γk`(x(k), u(k))

• x(k) solution to the system at step k starting from x with inputs
(u(0), u(1), . . . , u(k))

• `: stage cost, non-negative, example: `(x , u) = xTQx + uTRu

• γ ∈ (0, 1): discount factor
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Introduction: motivations

Fields

• Control engineering

• Artificial intelligence

• Operations research

Optimal control of systems subject to commmunication/computation
constraints, see e.g.

• Radio-mode management event-based control of linear systems in [de Castro
et al., ACC 2012]

• Event-triggered control of linear systems in [Antunes and Heemels, IEEE TAC
2014]

• Self-triggered control of linear systems in [Gommans et al., Automatica 2014]

• Time-triggered and self-triggered control of nonlinear systems using an optimal
planning algorithm in [Busoniu et al., IEEE TAC 2016]
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Introduction: a simple example

Consider
x(k + 1) = 2x(k) + u(k)

and

J(x , u) =
∞∑
k=0

γk
(
x(k)2 + u(k)2

)
Solution [Bertsekas, 2012]:

u(k) = K(γ)x(k)

with

K(γ) = −2

(
1 + 2

(
5γ − 1 +

√
(5γ − 1)2 + 4γ

)−1
)−1

Hence
x(k + 1) = (2 + K(γ))x(k)

and stability is guaranteed iff 2 + K(γ) ∈ (−1, 1), i.e. γ ∈ ( 1
3
, 1]
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Introduction: existing results

Stability results:

• Linear systems with discounted quadratic costs [Bertsekas, 2012]

• Local stability for continuous-time systems e.g., [Rodriguez, JEDC 2004;

Sorger, JOTA 1992]

• Analysis for specific algorithms

• Semiglobal practical stability for nonlinear systems affine in the input,
quadratic stage cost [Boussios et al., ACC 2001]

No general conditions to guarantee stability for nonlinear systems
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Introduction: objectives

• Stability guarantees for general nonlinear systems and stage costs (i.e. `)
when applying optimal inputs

• Robust stability

• Same guarantees when applying near-optimal inputs

• Relationship between the optimal cost function when γ = 1 and γ ∈ (0, 1)
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Optimization problem

Consider the system

x(k + 1) = f (x(k), u(k))

where x ∈ Rn, u ∈ U(x) ⊆ Rm, U(x) non-empty set of admissible inputs

We define W := {(x , u) : x ∈ Rn and u ∈ U(x)}

Objective is to minimize the cost function

J(x , u) :=
∞∑
k=0

γk`(x(k), u(k))

with ` :W → R≥0

Workshop CO4 - Toulouse, October 2016 9/38 Romain Postoyan - CNRS (Nancy)
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Assumption: existence of optimal inputs

Assumption: existence of optimal inputs

For any x ∈ Rn and γ ∈ (0, 1), there exists an infinite-length input sequence
u∗γ(x), called optimal solution, such that

J(x , u∗γ(x)) = inf
u
Jγ(x , u) =: Vγ(x),

where Vγ is the optimal value function.

Conditions available in e.g., [Keerthi and Gilbert, IEEE TAC 1985]
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Optimization problem (c’d)

Assumptions and stability analysis inspired by

G. Grimm, M.J. Messina, S.E. Tuna, A.R. Teel, Model predictive control : for a
want of a local control Lyapunov function, all is not lost, IEEE TAC 2005

J(x , u) =
N−1∑
k=0

`(x(k), u(k)) + g(x(N)) J(x , u) =
∞∑
k=0

γk`(x(k), u(k))
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Assumptions: controllability

Stability with respect to σ : Rn → R≥0 (continuous)

Examples of σ: x 7→ |x |, x 7→ |x |2, x 7→ |x |A for some set A

Controllability assumption

There exists αV ∈ K∞ such that for any γ ∈ (0, 1) and x ∈ Rn,

Vγ(x) ≤ αV (σ(x)).

Recall: Vγ(x) = inf
u
Jγ(x , u)
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Assumptions: controllability (c’d)

Lemma [` is globally exponentially controllable to zero w.r.t. σ]

∃M, λ > 0, ∀x ∈ Rn, ∃u, ∀k ∈ Z>0,

`(x(k), u(k)) ≤ Mσ(x)e−λk .

Then V γ(x) ≤ α(σ(x)) for all x ∈ Rn, with α ∈ K∞.

Idea of the proof:

Vγ(x) ≤ J(x , u) =
∞∑
k=0

γk`(x(k), u(k)) ≤
∞∑
k=0

`(x(k), u(k)) ≤
∞∑
k=0

Mσ(x)e−λk

=
M

1− e−λ
σ(x)
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Assumptions: detectability

Detectability assumption

There exist a continuous function W : Rn → R≥0, αW , χW ∈ K∞ and
αW : R≥0 → R≥0 continuous, nondecreasing and zero at zero, such that for
any (x , u) ∈ W

W (x) ≤ αW (σ(x))
W (f (x , u))−W (x) ≤ −αW (σ(x)) + χW (`(x , u)).

Example: `(x , u) = xTQx + uTRu where Q = QT > 0 and R = RT ≥ 0

W (x) = 0
W (f (x , u))−W (x) = 0 ≤ − λmin(Q)|x |2 + xTQx + uTRu

⇒ σ(x) = |x |2, W = 0, αW = 0, χW (s) = s and αW (s) = λmin(Q)s for s ≥ 0

Workshop CO4 - Toulouse, October 2016 14/38 Romain Postoyan - CNRS (Nancy)
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System model: difference inclusion

For any x ∈ Rn, in view of the Bellman equation

U∗γ (x) := arg min
u∈U(x)

[`(x , u) + γVγ(f (x , u))] ,

Hence,
x(k + 1) ∈ f

(
x(k),U∗γ (x(k))

)
=: F ∗γ (x(k))

where f (x ,U∗γ (x)) is the set {f (x , u) : u ∈ U∗γ (x)} for x ∈ Rn.
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Lyapunov analysis: main idea

Consider

Vγ(x) = inf
u

∞∑
k=0

γk`(x(k), u(k))

• Controllability assumption ⇒ Vγ(x) ≤ αV (σ(x))

• We have

Vγ(x) =
∞∑
k=0

γk`(x(k), u∗(k)) = `(x , u∗(0))+γ`(x(1), u∗(1))+. . . ≥ `(x , u∗(0))

Suppose the detectability condition holds with W = 0,

W (f (x , u∗(0)))−W (x) = 0 ≤ −αW (σ(x)) + `(x , u∗(0))

Hence
αW (σ(x)) ≤ `(x , u∗(0)) ≤ Vγ(σ(x))

⇒ Vγ is positive definite and radially unbounded
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Lyapunov analysis: main idea (c’d)

• In view of Bellman equation

Vγ(x(0)) = `(x(0), u∗(0)) + γVγ(x(1))

therefore

Vγ(x(1))− Vγ(x(0)) = Vγ(x(1))− `(x(0), u(0))− γVγ(x(1))
= −`(x(0), u(0)) + (1− γ)Vγ(x(1))
≤ −αW (σ(x(0))) + (1− γ)αV (σ(x(1)))

After some manipulations

Vγ(x(1))− Vγ(x(0)) ≤ −αW (σ(x(0))) +
1− γ
γ

αV (σ(x(0))).
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Lyapunov analysis: theorem

Theorem

There exist αY , αY , αY ∈ K∞, Υ ∈ KK and for any γ ∈ (0, 1) there exists
Yγ : Rn → R≥0 such that the following holds.

(a) For any x ∈ Rn,
αY (σ(x)) ≤ Yγ(x) ≤ αY (σ(x)).

(b) For any x ∈ Rn, υ ∈ F ∗γ (x),

Yγ(υ)− Yγ(x) ≤ −αY (σ(x)) + Υ(σ(x),
1− γ
γ

).

Lyapunov function: Yγ = V + W or Yγ = ρV (Vγ) + ρW (W ) with
ρV , ρW ∈ K∞
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Main stability result

Theorem [Uniform semiglobal practical stability]

∃β ∈ KL such that ∀δ,∆ > 0, ∃γ? ∈ (0, 1) such that ∀γ ∈ (γ?, 1) and
∀x ∈ {z ∈ Rn : σ(z) ≤ ∆}, any solution to the system satisfies

σ(φ(k, x)) ≤ max{β(σ(x), k), δ} ∀k ∈ Z≥0.

φ(k, x): solution at k initialized at x
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Link with [Grimm et al., IEEE TAC 2005]

Cost functions of the form

J(x , u) :=
∞∑
k=0

ξ(k)`(x(k), u(k)),

• In [Grimm et al., IEEE TAC 2005],

ξ(k) =

{
1 when k ≤ N
0 when k > N

• For us, ξ(k) = γk
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Corollaries

Under additional conditions on the comparison functions

• Uniform semiglobal asymptotic stability

• Uniform global exponential stability

Recall: {
Vγ(x) ≤ αV (σ(x)) and W (x) ≤ αW (σ(x))
W (f (x , u))−W (x) ≤ −αW (σ(x)) + χW (`(x , u))

Explicit lower bounds on γ in all cases

Tailored bounds for linear systems with quadratic stage cost
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Examples

• Simple example:

x(k + 1) = 2x(k) + u(k), `(x , u) = x2 + u2

→ UGES for γ∗ = 0.8090

→ True value γ∗ =
1

3
: 142% mismatch

• Linearized inverted pendulum

x(k + 1) = Ax(k) + Bu(k), `(x , u) = xTQx + uTRu

with Q = CTC , C = [1000 0] (the pair (A,C) is observable) and R = 1
→ UGES for γ∗ = 0.9878
→ True estimated value γ∗ = 0.9063: 8% mismatch
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Examples (c’d)

• A nonholonomic integrator1

x1(k + 1) = x1(k) + u1(k)
x2(k + 1) = x2(k) + u2(k)
x3(k + 1) = x3(k) + x1(k)u2(k)− x2(k)u1(k),

with
`(x , u) = x2

1 + x2
2 + 10|x3|+ |u|2

→ UGES for γ∗ = 22
25

1Like in [Grimm et al., IEEE TAC 2005]
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What about robustness?

Arbitrarily small vanishing perturbations might destroy stability

Example in the context of model predictive control in [Grimm et al.,

Automatica 2004]
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Robust stability

[Kellett and Teel, SIAM J. of Contr. and Optim. 2005]

• Continuous Lyapunov function Yγ
in our case

Yγ = ρV (Vγ) + ρW (W ),

with ρV , ρW ∈ K∞
→ continuity of Vγ to be proved

• F ∗γ maps compacts into compacts and is non-empty
(recall x(k + 1) ∈ f

(
x(k),U∗γ (x(k))

)
= F ∗γ (x(k)))
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Continuity of Vγ

Theorem

Suppose the following holds.

(a) Previous assumptions are satisfied.

(b) f and ` are continuous on W and U : Rn ⇒ Rm is continuous and locally
bounded on Rn (recall u ∈ U(x)).

(c) For any M ≥ 0, the set {x : σ(x) ≤ M} is compact.

For any ∆ > 0, there exists γ? ∈ (0, 1) such that for any γ ∈ (γ?, 1), Vγ is
continuous on {x ∈ Rn : σ(x) ≤ ∆}. �

Proof based on [Kellett and Teel, SCL 2004]

Remark: γ? independent of ∆ under stronger conditions
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What we mean by near-optimal inputs

[Near-optimality]

• ∃α̂ : R≥0 → R≥0 continuous, positive semi-definite

• ∃η ≥ 0

such that ∀x ∈ Rn and ∀γ ∈ (γ, 1) with γ ∈ [0, 1), ∃ûγ(x) such that

Vγ(x) ≤ V̂γ(x) := Jγ(x , ûγ(x)) ≤ Vγ(x) + α̂(σ(x)) + η.

[Dynamic programming relationship]

V̂γ(x) = `(x , ûγ,0(x)) + γV̂γ(υ̂) ∀x ∈ Rn

where ûγ,0(x) is the first element of ûγ(x) and υ̂ := f (x , ûγ,0(x)).
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Stability result

Closed-loop system

x(k + 1) ∈ f
(
x(k), Ûγ(x(k))

)
=: F̂γ(x(k)).

Theorem [Uniform semiglobal practical stability]

Under the previous assumptions, ∃β ∈ KL and ϑ ∈ K∞ such that ∀δ,∆ > 0,
∃γ? ∈ (γ, 1) such that ∀γ ∈ (γ?, 1) and ∀x ∈ {z ∈ Rn : σ(z) ≤ ∆}, any
solution φ(·, x) satisfies

σ(φ(k, x)) ≤ max{β(σ(x), k), δ, ϑ(η)} ∀k ∈ Z≥0.

Continuity of V̂γ also ensured
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Reverse-discounted cost

What if γ > 1?

• Existence of optimal inputs assumed ([Keerthi and Gilbert, IEEE TAC

1985])

• Detectability assumption remains the same (as it is independent of γ)

• Controllability assumption: Vγ(σ(x)) ≤ αV (σ(x)) for any γ ∈ [1, γ),
γ ∈ [0,∞]
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Reverse-discounted cost (c’d)

Theorem [Uniform global asymptotic stability]

∀γ̌ ∈ (0, 1), ∃β ∈ KL such that ∀γ ∈ (0, γ̌), x ∈ Rn, any solution φ(·, x) to the
system satisfies

σ(φ(k, x)) ≤ β(σ(x), k),

for any k ∈ Z≥0.

Idea of the proof:

Vγ(x(1))− Vγ(x(0)) ≤ −αW (σ(x(0))) + (1− γ)αV (σ(x(1)))
≤ −αW (σ(x(0)))
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Reverse-discounted cost (c’d)

Similar result for costs

J(x , u) :=
∞∑
k=0

(1− γk+1)`(x(k), u(k))

with γ ≥ 1.
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Optimal value functions of the discounted and the undiscounted problems

Assumption on the undiscounted problem

• There exists an optimal sequence of inputs when γ = 1 for any x ∈ Rn.
The optimal value function is denoted V (x).

• ∃aV > 0 such that ∀x ∈ Rn, V (x) ≤ aVσ(x).

Assumption on the discounted problem

• Controllability: Vγ(x) ≤ aVσ(x)

• Detectability: W (x) ≤ aW (σ(x)) and
W (f (x , u))−W (x) ≤ −aWσ(x) + `(x , u).

⇒ UGES
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Optimal value functions of the discounted and the undiscounted problems

Theorem

Let

γ? >
aV

aV + aW
,

then ∀γ ∈ (γ?, 1) and ∀x ∈ Rn,

Vγ(x) ≤ V (x) ≤ Vγ(x) + (1− γ)θ(γ)(Vγ(x) + W (x))

where θ(γ) is given.

Tailored result for linear systems with quadratic costs
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Conclusions

• General conditions for the stability of optimal control problems with
discounted cost

• Continuity of the value function and robustness

• Results applicable for near-optimal inputs

• Relationship between the optimal value functions γ ∈ (0, 1) / γ = 1

• Reverse-discounted cost

• Results for uniformly bounded stage costs [Postoyan et al., IEEE CDC

2014]

R. Postoyan, L. Busoniu, D. Nešić and J. Daafouz, Stability analysis of
discrete-time infinite-horizon optimal control with discounted cost, IEEE

Transactions on Automatic Control, available on IEEE Xplore
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Definitions

Definition [Rockafellar & Wets, 1998]

The mapping S : Rn ⇒ Rm is locally bounded when for any x̄ ∈ Rn, for some
neighborhood V of x̄ , the set S(V) ⊂ Rm is bounded.

Definition [Rockafellar & Wets, 1998]

We denote

lim sup
x→x̄

S(x) :=

{
u : ∃{xn}n∈Z≥0

∃{un}n∈Z≥0
s.t. xn →

n→∞
x̄, un →

n→∞
u with un ∈ S(xn)

}
lim inf
x→x̄

S(x) :=

{
u : ∀{xn}n∈Z≥0

s.t. xn →
n→∞

x̄, ∃φ ∈ N ∃{uφ(n)}n∈Z≥0
s.t. uφ(n) →

n→∞
u with un ∈ S(xn)

}
,

where N is the set of strictly increasing functions from Z≥0 to Z≥0.

The set-valued mapping S is continuous at x̄ ∈ Rn when

lim sup
x→x̄

S(x) = lim inf
x→x̄

S(x) = S(x̄) as x → x̄ ,

and it is continuous on X ⊆ Rn when it is continuous at any x̄ ∈ X .
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