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Stabilizability of DT linear switched systems

Discrete-time autonomous switched system
xk+1 = Aσ(k)xk ,

where σ : N→ Nq selects the transition matrix {Ai}i∈Nq , and can be considered as:

a perturbation: necessary and sufficient condition for asymptotic stability; existence of a polyhedral
Lyapunov function (Molchanov & Pyatnitskiy, SCL89; Blanchini, AUT95),

or as a control input: sufficient condition for stabilizability, Lyapunov-Metzler inequality (Geromel & Colaneri,
IJC06), necessary and sufficient (Sun & Ge, 2011).

Objectives and contributions (F. & Jungers, IFAC13, AUT13):

provide necessary and sufficient condition for stabilizability,

set-theory and invariance based results,

computational espects: algorithmic test,

nonconvex control Lyapunov functions,

highlight the duality with the perturbation case,

characterize the class of stabilizing controls.
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Necessary and sufficient condition for stabilizability

Algorithm 1

Control λ -contractive C∗-set for the switched system.

Initialization: given the C∗-set Ω⊆ Rn, define Ω0 = Ω and k = 0;

Iteration for k ≥ 0:
Ωi

k+1 = A−1
i Ωk , ∀i ∈ Nq ,

Ωk+1 =
⋃

i∈Nq
Ωi

k+1;

Stop if Ω⊆ int
( ⋃
j∈Nk+1

Ω j

)
; denote Ň = k+1 and Ω̌ =

⋃
j∈NŇ

Ω j .

Geometrical interpretation:

the set Ωi
k is the set of x that can be stirred in Ω in k steps by a switching sequence

beginning with i ∈ Nq;

then Ωk is the set of points that can be driven in Ω in k steps;

and hence Ω̌ the set of those which can reach Ω in Ň or less steps, by an adequate
switching law.
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Necessary and sufficient condition for stabilizability.

Theorem

There exists a control Lyapunov function for the switched system if and only if the Algorithm 1 ends with finite Ň.
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Robustness-control duality

Uncertain linear systems

Robust λ -contractive C-set for an uncertain system.

Initialization: given the C-set Γ⊆ Rn and
λ ∈ [0,1], define Γ0 = Γ and k = 0;

Iteration for k ≥ 0:

Γi
k+1 = λA−1

i Γk , ∀i ∈ Nq ,

Γk+1 = Γ∩
⋂

i∈Nq
Γi

k+1;

Stop if Γk ⊆ Γk+1; denote N̂ = k and Γ̂ = Γk .

Theorem (Blanchini, AUT95)

There is a Lyapunov function for the parametric uncertain
linear system if and only if there exists a polyhedral
Lyapunov function for the system.

Then, the family of convex, homogeneous functions
induced by a C-set are a class of universal Lyapunov
functions for parametric uncertain linear systems.

Switched linear systems

Control λ -contractive C∗-set for the switched system.

Initialization: given the C∗-set Ω⊆ Rn, define
Ω0 = Ω and k = 0;

Iteration for k ≥ 0:

Ωi
k+1 = A−1

i Ωk , ∀i ∈ Nq ,

Ωk+1 =
⋃

i∈Nq
Ωi

k+1;

Stop if Ω⊆ int
( ⋃
j∈Nk+1

Ω j

)
; denote Ň = k+1 and

Ω̌ =
⋃

j∈NŇ

Ω j .

Theorem (F. & Jungers, AUT13)

There exists a control Lyapunov function for the switched
linear system if and only if the Algorithm ends with finite Ň.

Then, the family of nonconvex, homogeneous functions
induced by a C∗–set are a class of universal Lyapunov
functions for switched systems.
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Example 1

System with q = 4, n = 2 and

A1 =

[
1.5 0
0 −0.8

]
, A2 = 1.1R( 2π

5 )

A3 = 1.05R( 2π

5 −1), A4 =

[
−1.2 0

1 1.3

]
.

The matrices Ai, with i ∈ N4, are not Schur. Notice: only one stable eigenvalue!
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Example 2

Switched system with

A1 =

[
0 −1.01
1 −1

]
, A2 =

[
0 −1.01
1 −0.5

]
.

The technique based on Lyapunov-Metzler inequalities (Geromel & Colaneri, IJC06) has been numerically checked
(gridding) and it results not feasible.

Nevertheless...
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Example 3

Switched system with

A1 =

[
1.3 0
0 0.9

][
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, A2 =

[
1.4 0
0 0.8

]
,

for θ = 0 (left) and θ = π

5 (right).
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Example 4

Switched system with q = 2, n = 3 and

A1 =

 1.2 0 0
−1 0.8 0
0 0 0.5

 , A2 =

 0.7 0 0
0 −0.6 −2
0 0 −1.2

 .
A1 and A2 are not Schur. The ball B3 is chosen as initial set.
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Necessary and sufficient condition

Necessary and sufficient condition for stabilizability: existence of N ∈ N such that

Ω⊆ int
( ⋃

i∈I [1:N]

Ωi

)
with

Ai =
k

∏
j=1

Ai j = Aik · · ·Ai1 ,

Ωi = Ωi(Ω) = {x ∈ Rn : Aix ∈Ω},

with Ω a given C∗-set. It does not depend on the C∗-set Ω, then for Ω = B we have

B⊆ int
( ⋃

i∈I [1:N]

Bi

)
, with Bi = {x ∈ Rn : xT AT

i Aix≤ 1},
B= {x ∈ Rn : xT x≤ 1}

stabilizability does not depend on Ω, but N does.

The set inclusions are the stop conditions to checked numerically at every step;

i.e. if a C∗-set Ω is in the interior of the union of C∗-sets⇒ very complex in general;

but, it provides the exact characterization of the complexity of the problem.

The objectives:

alternative, computationally suitable, conditions for stabilizability;

provide geometrical and numerical insights;

analyze their conservatism by comparison with the necessary and sufficient one.
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Lyapunov-Metzler BMI conditions

Lyapunov-Metzler condition is sufficient and given by BMI inequalities involving the Metzler matrices.

Theorem (Geromel & Colaneri, IJC06)

If there exist Pi > 0, with i ∈I , and π ∈Mq i.e. matrices π ∈ Rq×q whose elements are

nonnegative and
q

∑
j=1

π ji = 1 for all i ∈ Nq, such that

AT
i

(
q

∑
j=1

π jiPj

)
Ai−Pi < 0, ∀i ∈I ,

holds, then the switched system is stabilizable.

The condition implies that the homogeneous function induced by
⋃

i∈I
E (Pi) is a control Lyapunov function.

Theorem

If the Lyapunov-Metzler condition holds then the geometric one holds with N = 1 and Ω =
⋃

i∈I
AiE (Pi).

Proposition

For q = 2, the Lyapunov-Metzler condition is equivalent to A1E (P1)∪A2E (P2)⊆ int(E (P1)∪E (P2)).

Thus, the Lyapunov-Metzler condition for q = 2 is equivalent to the existence of a contractive set formed by two
ellipsoids, and then to a Lyapunov function given by the pointwise minimum of two quadratic functions.
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Generalized Lyapunov-Metzler conditions

First generalization: remove the link between the number of ellipsoids (and matrices Pi) and the system modes.

Proposition

If there exist M ∈ N and Pi > 0, with i ∈I [1:M], and π ∈MM̄ such that

AT
i

(
∑

j∈I [1:M]

π jiPj

)
Ai−Pi < 0, ∀i ∈I [1:M],

holds, then the switched system is stabilizable.

Meaning: Lyapunov Metzler condition for switched system with one fictitious mode for every matrix Ai with i ∈I [1:M].

Second generalization: to maintain the sequence length in 1 but increase the number of ellipsoids.

Proposition

If for every i ∈I there exist a set of indices Ki = Nhi , with hi ∈ N; a set of matrices P(i)
k > 0, with k ∈Ki, and there

are π
(p,i)
m,k ∈ [0,1], satisfying

∑
p∈I

∑
m∈Kp

π
(p,i)
m,k = 1,

for all k ∈Ki, such that
AT

i

 ∑
p∈I

∑
m∈Kp

π
(p,i)
m,k P(p)

m

Ai−P(i)
k < 0, ∀i ∈I, ∀k ∈Ki

holds, then the switched system is stabilizable.

Geometrically: there exists a C∗-set composed by a finite number of ellipsoids (P(i)
k with k ∈Ki) contractive.

Notice: the classical Lyapunov Metzler condition is a particular case.
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Stabilizability conditions relations
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LMI sufficient condition

Problem with Lyapunov-Metzler: non convex condition.

Our next aim is to formulate an alternative condition that could be checked efficiently, a convex one.

Theorem

The switched system is stabilizable if there exist N ∈ N and η ∈ RN̄ such that η ≥ 0, ∑
i∈I [1:N]

ηi = 1 and

∑
i∈I [1:N]

ηiAT
i Ai < I.

The condition is just sufficient (except for particular cases), is it also necessary? No!

Counterexample

Consider the three modes given by the matrices

A1 = AR(0), A2 = AR
(

2π

3

)
, A3 = AR

(
−2π

3

)
, with A =

[
a 0
0 a−1

]
and a = 0.6. The geometric condition holds with N = 1.

−2 −1 0 1 2
−2

−1

0

1

2

For every N and every Bi with i ∈I [1:N], the related Ai is such that det(AT
i Ai) = 1 and Tr(AT

i Ai)≥ 2.

Notice that, for all the matrices Q > 0 in R2×2 such that det(Q) = 1, then Tr(Q)≥ 2 and Tr(Q) = 2 if and only if Q = I.

Thus, for every subset K ⊆I [1:N], we have that ∑
i∈K

ηiAT
i Ai < I, cannot hold, since either Tr(AT

i Ai)> 2 or AT
i Ai = I.
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Stabilizability conditions relations
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LMI-based control Lyapunov functions

The LMI condition provides control Lyapunov functions and the controller synthesis:
at p ∈ N get ip = arg min

i∈I [1:N]
(xT

kpA
T
i Aixkp ).

the next instant kp+1 is given by kp+1 = kp + l(ip), with l(ip) length of ip

the controller inputs are σkp+ j−1 = ip, j , ∀ j ∈ {1, . . . , l(ip)}.

Theorem

Assume the LMI condition holds, and the control above is applied. Then, for all x0 ∈ Rn, for all k ∈ N,

‖xk‖ ≤ µ
k/N−1LN−1‖x0‖ with µ ∈ [0,1) such that ∑

i∈I [1:N]

ηiAT
i Ai ≤ µ

2I,

where L≥ ‖Ai‖, for all i ∈I . Then, the controlled switched system is globally exponentially stable.

Nevertheless, neither the Euclidean norm of x nor the function min
i∈I [1:N]

(xT AT
i Aix) are monotonically decreasing.

On the other hand a positive definite homogeneous non-convex function decreasing at every step can be inferred.

Proposition

Suppose the LMI condition hold. Then there is λ ∈ [0,1) such that defining

V (x) = min
i∈I [1:N]

(xT
λ
−niAT

i Aix) and i∗(x) = arg min
i∈I [1:N]

(xT
λ
−niAT

i Aix)

where ni is the length of i ∈I [1:N] and σ(x) = i∗1(x), are such that V (Aσ(x)x)≤ λV (x) for all x ∈ Rn.
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LMI-condition and periodic stabilizability

A periodic switching law is given by σ(k) = ip(k) and

p(k) = k−M bk/Mc+1,

with M ∈ N and i ∈I M , which means that the sequence of modes given by i repeats cyclically in time.

The stabilizability through periodic switching law, i.e. periodic stabilizability, is formalized below.

Definition

The switched system is periodic stabilizable if there exist a periodic switching law σ : N→ Nq, c≥ 0 and λ ∈ [0,1)
such that the system is stabilizable for all x ∈ Rn.

Notice that for stabilizability the switching function might be state-dependent, hence a state feedback, whereas for
having periodic stabilizability the switching law must be independent on the state.

Is there an equivalence relation between periodic stabilizability and the LMI condition? The answer is below.

Theorem

A stabilizing periodic switching law for the switched system exists if and only if the LMI condition holds.
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Sketch of the proof

Necessity: stabilizing periodic switching law ⇒ implies satisfaction of LMI is direct.

Sufficiency: from LMI condition then

∑
i∈I [1:N]

ηiAT
i Ai ≤ λ I ⇒ ∑

i∈I [1:N]
∑

j∈I [1:N]

ηiη jAT
i A

T
j A jAi ≤ λ

2I ⇒ ∑
I∈I [q,Nq]

ηI AT
I AI ≤ λ

qI,

with λ ∈ [0,1) and for all q ∈ N, where for every I = (i1 , . . . , iq) ∈I [q,Nq] we define

ηI = ∏
k∈Nq

ηik , AI = ∏
k∈Nq

Aik .

From the linearity of the trace and the fact that ∑
I∈I [q,Nq]

ηI = 1, we have that

min
I∈I [q,Nq]

Tr(AT
I AI ) = ∑

I∈I [q,Nq]
ηI min

I∈I [q,Nq]
Tr(AT

I AI )≤ ∑
I∈I [q,Nq]

ηI Tr(AT
I AI ) = Tr

(
∑

I∈I [q,Nq]
ηI AT

I AI

)
≤ λ

qn,

since Tr(AT
I AI )> 0 for all I ∈I [q,Nq].

Thus, for q big enough, for which λ qn < 1, there exists a I∗ ∈I [q,Nq] such that Tr(AT
I∗AI∗ )< 1, which implies that

AI∗ is Schur.
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Relations between LMI and Lyapunov Metzler conditions

Relation between LMI and the generalized Lyapunov Metzler conditions.

Theorem

Generalized Lyapunov Metzler I⇔ LMI condition⇔ generalized Lyapunov Metzler II.

Relation between LMI and the Lyapunov Metzler condition.

Lemma

If the Lyapunov Metzler condition holds, then ∃α ∈ (0,1) such that Aα = αA1 +(1−α)

√
ρ(A2)

2−1
ρ(A2)

A2A1 is Schur.

Counterexample

Consider the matrices A1 =

[
1 0
0 0.5

]
, A2 =

[
4 −4
4 4

]
.

Since A11
1 A2

2 =

[
0 −32

1/64 0

]
then the LMI condition holds with N = 13.

But, from the Lemma, the Lyapunov-Metzler inequalities cannot hold.
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Stabilizability conditions relations
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Numerical example

Consider the switched system with q = 2, n = 2, x0 = [−3,3]T and the non-Schur matrices

A1 = 1.01R
(

π

5
)
, A2 =

[
−0.6 −2

0 −1.2

]
.

Four different stabilizing switching laws are designed and compared.

Lyapunov-Metzler BMI condition:

for systems with q = 2 the Lyapunov-Metzler inequalities become two linear matrix inequalities once two
parameters, both contained in [0,1], are fixed.

the Lyapunov-Metzler inequalities being bilinear, there is no generic numerical method to solve them when
a solution exists, except the gridding approach.

Such LMIs have been checked for this example to be infeasible on a grid of these two parameters, with step
of 0.01 ⇒ the Lyapunov-Metzler inequalities are (probably...) infeasible.

The computational complexity is unmanageable as q increases.

Moreover to circumvent the conservatism of the classical Lyapunov-Metzler inequalities, one should
increase the problem dimension. Even worse.

Conclusion: employing the Lyapunov-Metzler inequalities to prove stabilizability might often be computationally
intractable, also for systems with few modes.
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Numerical example

The geometric condition:

holds with N = 5;

the homogeneous function induced by the set is a control Lyapunov function and provide a stabilizing
switching law.
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Numerical example

The LMI condition:

is solved with N = 7;

the results of the time-varying length, i.e. {7,6,5,7,7, . . .} switching control are shown on the left;

those of the optimization-based control law with λ = 0.9661, on the right.
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Numerical example

The periodic switching law:

the shorter sequence of modes, length
M = 4, which yields a decreasing of the
Euclidean norm after its whole application.
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Comparison between the different switching laws:

Euclidean norm as a common measure to compare the
convergence performances;

geometric condition in blue star; LMI lenght-varying law
in red cross; LMI and optimization control in black circle
and periodic rule in black square.

0 5 10 15 20 25 30 35 40
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Time

x
k
’x

k

Mirko Fiacchini Stabilizability of switched linear systems 28 / 37



Necessary and sufficient condition for stabilizability
Novel conditions for stabilizability and comparisons

Control co-design

1 Necessary and sufficient condition for stabilizability

2 Novel conditions for stabilizability and comparisons

3 Control co-design

Mirko Fiacchini Stabilizability of switched linear systems 29 / 37



Necessary and sufficient condition for stabilizability
Novel conditions for stabilizability and comparisons

Control co-design

Control co-design

Controlled discrete-time switched linear system

xk+1 = Aσk xk +Bσk uk ,

Objective: design time-varying control policy ν : Rn×N→I ×Rm×n, is such that

ν(x,k) =
(
σ(x,k), K(x,k)

)
∈I ×Rm×n

stabilizes the system, with uk(xk) = K(xk ,k)xk .

Remark

As proved in (Zhang et alt, AUT09), no loss of generality to consider static control policies of the form

ν(x) =
(
σ(x), K(x)

)
∈I ×Rm×n ,

such that ν(ax) = ν(x) for all x ∈ Rn and a ∈ R, and to piecewise quadratic Lyapunov functions.

Moreover K(x) belongs to a finite set i.e. K(x) ∈K = {κi}i∈NM , with M ∈ N.

We are not interested in determining periodic stabilizing switching laws but on computing a state-dependent control
policy whenever the system admits a periodic stabilizing switching sequence.
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Control co-design

Given an horizon N ∈ N, a set of NI = ∑
N
k=1 qk matrices Fϑ , one for every ϑ ∈I [1:N], can be defined as

Fϑ =
|ϑ |
∏
j=1

Fϑ j = FϑJ . . .Fϑ1 = (Aϑ|ϑ | +Bϑ|ϑ |K
ϑ

|ϑ |) . . .(Aϑ1 +Bϑ1 Kϑ
1 ).

that are parameterized in {Kϑ
j } j∈N|ϑ | .

Then, K(x) is a gain among the
N

∑
k=1

kqk possible, i.e. K(x) ∈K where

K = {κi}i∈NM = {Kϑ
j ∈ Rm×n : ϑ ∈I [1:N], j ∈ N|ϑ |}, with M =

N

∑
k=1

kqk .

Periodic ϑ -stabilizability

The system is periodic ϑ -stabilizable if there exist: a periodic ϑ : N→I and a periodic sequence Kϑ : N→ Rm×n,
both of cycle length D ∈ N; c≥ 0 and λ ∈ [0,1) such that ‖xϑ

k (x)‖ ≤ cλ k‖x‖ holds for all x ∈ Rn and k ∈ N.

Then:

∑
i∈I [1:N]

ηi = 1, η ≥ 0

∑
j∈I [1:N]

η jFT
j F j < I

 ⇔ ϑ−stabilizability ⇒ stabilizability

Problem: the second constraint is not convex in the variables η and {Kϑ
j } j∈NM .
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Necessary and sufficient LMI condition for the ϑ -stabilizability of switched systems.

Theorem

The controlled switched system is periodically ϑ -stabilizable if and only if there exist N ∈ N; η ∈ RNI such that
η > 0 and ∑

i∈I [1:N] ηi = 1 hold; and for every j ∈I [1:N] there are:

| j|−1 nonsingular matrices G j,k ∈ Rn×n, with k ∈ N| j|−1;

| j| matrices Z j,k ∈ Rm×n with k ∈ N| j|;

a symmetric positive definite matrix R j ∈ Rn×n;

such that 

η j I X j,| j| 0 . . . 0 0 0
XT

j,| j| Y j,| j|−1 X j,| j|−1 . . . 0 0 0

0 XT
j,| j|−1 Y j,| j|−1 . . . 0 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . Y j,2 X j,2 0
0 0 0 . . . XT

j,2 Y j,1 X j,1
0 0 0 . . . 0 XT

j,1 R j


> 0, ∑

j∈I [1:N]

R j < I

for every j ∈I [1:N] with


X j,1 = η jA j1 +B j1 Z j,1 ,

X j,k+1 = A jk+1 G j,k +B jk+1 Z j,k+1 , ∀k ∈ N| j|−1 ,

Y j,k = G j,k +GT
j,k , ∀k ∈ N| j|−1 ,

and gains K j
1 = η

−1
j Z j,1, K j

k+1 = Z j,k+1G−1
j,k , for all k ∈ N| j|−1.
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Theorem

Suppose there exist α > 1 and N ∈ N; η ∈ RNI such that η > 0; matrices G j,k ∈ Rn×n with k ∈ N| j|−1, Z j,k ∈ Rm×n

with k ∈ N| j| and R j ∈ Rn×n satisfy the conditions above and

∑
i∈I [1:N]

ηi = α.

The system is periodically ϑ -stabilizable and ‖Fϑ(x)x‖2 < λ‖x‖2 holds for all x ∈ Rn, with

ϑ = ϑ(x) = arg min
j∈I [1:N]

(xT FT
j F jx),

and λ = α−1/2. Given x(t) = x, the stabilizing control policy is defined within an horizon of length |ϑ | as

ν(x,k) = (σ(x,k), K(x,k)) =
(

ϑk , Kϑ
k

)
to be applied at time t + k−1, for all k ∈ N|ϑ |.

The value of α, is related to λ and then could serve for obtaining the fastest decreasing rate, for a given N.

Remark

A nonconvex control Lyapunov function V (x), decreasing at every step, and a state-dependent control policy ν(x)
can be defined from the solution of the LMI problem:

V (x) = min
j∈YN

(
xT

λ
−| j| FT

j F jx
)
, ĵ(x) = arg min

j∈YN

(
xT

λ
−| j| FT

j F jx
)
.

where YN is the set of all suffixes of the elements of I [1:N], and the control policy is ν(x) = ( ĵ1(x), K ĵ(x)
1 ).
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Comparison with switched LQR method

As a first term of comparison, consider (Zhang et alt, AUT09; Zhang et alt, TAC12):

exponential stabilizability if and only if the infinite-horizon LQR problem leads to a control Lyapunov function;

the method is based on the iterative application of the Riccati-like mapping

ρi(P) = Qi +AT
i PAi−AT

i PBi(Ri +BT
i PBi)

−1BT
i PAi , ∀i ∈I ;

it generates an increasing set of gains and positive definite matrices that eventually provide (an
approximation of) the stabilizing LQR control and the related Lyapunov function;

a stop condition, in form of contraction test, must be checked at every iteration.
Remarks

constructive necessary and sufficient condition, no conservatism;

number of matrices generated might grow exponentially, despite the redundancy reduction;

redundancy test would entail additional computational burden;

since the general condition could be overly complex, an only sufficient alternative, analogous to our, is
employed in the relaxed version of the algorithm (still necessary?);

not a “real” co-design.
Comparison

in our approach the feedback gains are design variables;

they are effectively computed by solving a single LMI problem, co-design;

still exponential complexity, but on the “shortest” horizon;

same conservatism as the stop condition only sufficient (periodicity).
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Comparison with Lyapunov-Metzler-like conditions

The methods based on Lyapunov-Metzler conditions, (Geromel et alt, TAC08, Deaecto et alt, AUT11):

based on BMI conditions analogous to autonomous case:
Y ∗ ∗ ∗ ∗ ∗
I Xi ∗ ∗ ∗ ∗
0 0 ρI ∗ ∗ ∗

YAi +LiCi Mi Y Hi +LiDi Y ∗ ∗
Ai AiXi +BiWi Hi I Ji + Ji−∑ j∈I π j,iTi, j ∗
Ei EiXi +FiWi Gi 0 0 I

> 0, ∀ j ∈I

Remarks
fixed geometric complexity, then more conservative;
nonconvex conditions, computationally demanding;
“real” co-design.

Example 1

Given n = 3 and q = 2, define

A1 =

 1 0 0
0 0.5 0
0 0 a

 , A2 =

 4 −4 0
4 4 0
0 0 a

 , B1 = B2 =

 0
0
1

 .
Clearly the subsystem x3 is stabilized by u = Kx3 with |a+K|< 1.

The subsystem (x1 , x2) is stabilizable through the LMI condition but no solution to the Lyapunov-Metzler condition.
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Example 2 in (Zhang et alt, AUT09)

A1 =


0.5 −1 2 3
0 −0.5 2 4
0 −1 2.5 2
0 0 0 1.5

 , A2 =


−0.5 −1 2 1

0 1.5 −2 0
0 0 0.5 0
−2 −1 2 2.5

 , B1 =


1
2
3
4

 , B2 =


4
3
2
1

 ,

A3 =


1.5 0 0 0
1 1 0.5 −0.5
0 0.5 1 −0.5
1 0 0 0.5

 , A4 =


0.5 1 0 0
0 0.5 0 0
0 0 0.5 0
0 2 −2 0.5

 , B3 =


4
3
2
1

 , B4 =


1
2
3
4

 .
In (Zhang et alt, AUT09) stabilizability with horizon 7 and 13 matrices.

In our case, after solving the LMI problem with N = 3, we obtain α = 1149.2, that implies λ = 0.0295 (deadbeat?).

The control related to i = {3,4,4} leads to a Schur matrix whose spectral radius is 0.0069 (deadbeat?)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

Control ν(x,k) in blue; periodic control in red; and min-switch control

in yellow. IC x(0) = x(1)0 .
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