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Background

• Multi-agent control: motivated by a large variety of
engineering applications: transportation systems, robotics,
smart grids

• Multi-agent control objectives: simple/control type
(consensus, formation control, ...)

• Formal methods based planning: higher level objectives for
single agent

• Based on discrete represenations (aka abstractions) of control
systems



State of the Art

Single Agent-Single Task

• High-level task specs using formal
languages

• Planning on discrete abstraction of agent
dynamics

• Implemented by continuous control
sequence

Multiple Agents-Multiple Tasks

• Need for distributed, bottom-up solutions
to deal with:

• Distributed tasks and abstractions

• Couplings, limited communication



Proposed approach

• Multi-agent control layer: distributed
control through continuous state
information

• Formal methods based planning:
distributed task planning based on discrete
information exchange

• Hybrid control: blending continuous and
discrete information, need for abstractions
of multi-agent control systems



Today’s talk

• Task planning and control through
specification-based abstraction

• Abstractions of dynamically coupled
multi-agent systems

• Distributed task planning for task-level
dependencies

0 5 10 15 20 25 30 35 40
x (m)

0

5

10

15

20

25

30

35

40

y (m
)

R1
R2

R3
R4



Table of Contents

Introduction

Multi-Agent Hybrid Control under Local LTL Tasks and
Relative-Distance Constraints

Abstractions for Constrained Multi-Agent Systems

Multi-Agent Planning from Local LTL Specifications



Problem Formulation

• A team of N mobile agents, xi (t), ui (t) ∈ R2:

ẋi (t) = ui (t), i ∈ N = {1, · · · ,N}.

• Agents i can observe agent j ’s position xj(t) only if:

‖xi (t)− xj(t)‖ ≤ r .

Initial network G0.

• Sphere regions of interest: Ri = {Ri`, ` ∈ {1, · · · ,Mi}}.
Ri` = (ci`, ri`).

• Assumptions on the workspace.

• Services Σi available at each region in Ri .



Problem Formulation, cont’d

• Local LTL task specification ϕi , over Σi .

• Note that ϕi can be co-safe or general LTL formulas.

• ϕi specifies the sequences at which the services should be
done at certain regions.

Problem

How to synthesize the control input ui (t) and the discrete plan Si
such that

ϕi is satisfied, ∀i ∈ N

and ‖xi (t)− xj(t)‖ ≤ r , ∀(i , j) ∈ E0, ∀t ∈ [0, ∞).



Challenges

• Discrete task planning

• Continuous motion constraints

• Sensing limitations

Solution: three main steps.

• High-level discrete plan synthesis.

• Distributed potential-field-based motion control.

• Hybrid control strategy.



Step1. Discrete Plan Synthesis

Aim

Each agent synthesizes a local discrete plan that satisfies ϕi and
minimizes a cost function.

• Automata-based model-checking algorithm1

• Discrete plan synthesized locally by each agent i ∈ N :

Si = σi1 · · ·σisi (σi(si+1) · · ·σiNi
)ω, σisi = (Risi , Σisi ).

• Our algorithm minimizes the maximal distance between two
consecutive regions along the plan2.

1C. Baier, J.-P Katoen. Principles of model checking, 2008.
2S. L. Smith, J. Tumova, C. Belta, D. Rus. Optimal Path Planning for

Surveillance with Temporal Logic Constraints. The International Journal of
Robotics Research, 2011.



Step2. Distributed Motion Control

• Setup for motion control:
• Each agent has its goal region σig = (Rig , Σig ), but only

known locally.

• Relative-distance constraints.

Goal

Design a distributed control law ui (t) such that one agent arrives
at its goal region in finite time, given the relative-distance
constraints.

• Time-varying connectivity graph G (t) = (N ,E (t)), where
E (t) ⊆ N ×N .

• initially G (0) = G0; dynamically add new edges.



• Solution: the two-mode control law
(1) the active mode:

Cact : ui (t) , −di pi −
∑

j∈Ni (t)

hij xij ,

(2) the passive mode:

Cpas : ui (t) , −
∑

j∈Ni (t)

hij xij ,

where xij , xi − xj ; pi , xi − cig; Rig = (cig, rig).

di ,
ε3

(‖pi‖2 + ε)2
+

ε2

2 (‖pi‖2 + ε)
; hij ,

r 2

(r 2 − ‖xij‖2)2

• ε > 0 is a key design parameter.

• ui is local w.r.t. Ni (t).



Convergence results

Considering a potential-field like Lyapunov function it can be
shown that:

• G (t) remains connected.

• There exists a finite time Tf and one active agent i? ∈ Na,
such that xj(Tf ) ∈ Ri?g, ∀j ∈ N .

• All agents will enter Ri?g, i.e., xj ∈ Ri?g, ∀j ∈ N .

• The above holds for any number of active agents that
1 ≤ Na ≤ N.



Potential-field-based Design

Consider the following potential-field function:

V (x(t)) ,
1

2

∑
i∈N

∑
j∈Ni (t)

φc(xij) + bi
∑
i∈N

φg (xi )

• φc(xij) is an attractive potential to agent i ’s neighbors.

• φg (·) is an attractive force to agent i ’s goal:

• bi = 1, ∀i ∈ Na and bi = 0, ∀i ∈ Np. N = Na ∪Np.

Connectivity Results

G (t) remains connected.
No existing edges within E (Ts) will be lost.

• Proof shows that V (t) remains bounded for t ∈ [Ts , ∞).
New edges might be added but no existing edges will be lost.



Convergence (non-switching case)

Constant sets of passive and active agents. Analysis of the critical
points of V :

• Regions around the critical points:

Si , {x ∈ R2N | ‖x− 1N ⊗ cig‖ ≤ rS(ε)}, ∀i ∈ Na.

Let S , ∪i∈NaSi and S¬ , R2N \ S.

• Lemma 1: There exists ε1 > 0 such that if ε < ε1, all critical
points of V in S¬ are non-degenerate saddle points.

• Lemma 2,3: There exists ε < min{ε2, ε6} such that regions
{Si} are sufficiently far. Critical points are close to the region
center.



Lemma 4: There exists εmin > 0 such that if ε < εmin, all critical
points of V within S are local minima.

Convergence Results

There exists a finite time Tf ∈ [Ts ,∞) and one active agent
i? ∈ Na, such that xj(Tf ) ∈ Ri?g, ∀j ∈ N , while
‖xi (t)− xj(t)‖ < r , ∀(i , j) ∈ E (Ts) and ∀t ∈ [Ts , Tf ].

• The system converge to the set of local minima within Si? for
one active agent i? ∈ Na.

• All agents would enter Ri?g, i.e., xj ∈ Ri?g, ∀j ∈ N .

• All edges within E (Ts) will be preserved for all t > Ts

The above theorem holds for any number of active agents that
1 ≤ Na ≤ N.



Step3. Hybrid Control: sc-safe LTL task case

Case one

All tasks {ϕi} are given as sc-safe LTL formulas.

• If ϕi is sc-safe, every agent has a finite plan

τi = (Ri1, Σi1)(Ri2, Σi2) · · · (RiNi
, ΣiNi

).

Local switching policy

• When Rik is reached, provide the services Σik and then set
goal to Ri(k+1).

• After (RiNi
, ΣiNi

), set bi = 0 and be passive.

• Guaranteed that ∀i ∈ N , ϕi is eventually satisfied, and
‖xi (t)− xj(t)‖ < r , ∀(i , j) ∈ E (0) and ∀t ≥ 0.



Step3. Hybrid Control: general LTL task case

• LTL and mixed sc-safe LTL/LTL tasks can be also tackled
under different switching policies

• Account for infiniteness of satisfying plans

• Further ongoing extension to double-integrator dynamics with
collision avoidance and quantified specs (MITL and STL
formulas)



Four agents with co-safe or general LTL tasks:

Workspace

• Π1 = {π1tl, π1tr, π1br, π1bl}. Σ1 = {σ11, σ12}.
• Π2 = {π2tl, π2tr, π2bl}. Σ2 = {σ21, σ22, σ23}.
• Π3 = {π3tr, π3br, π3bl}. Σ3 = {σ31, σ32, σ33}.
• Π4 = {π4tl, π4tr, π4br, π4bl}. Σ4 = {σ41, σ42, σ43}.

Sc-safe LTL task

• ϕ1 = ♦(σ12 ∧ ♦(σ11 ∧ ♦σ12)).

• ϕ2 = ♦(σ21 ∨ σ22) ∧ ♦σ23.

• ϕ3 = ♦(σ31 ∨ σ32) ∧ ♦σ33.

• ϕ4 = ♦(σ42 ∧ ♦(σ41 ∧ ♦σ42)).

General LTL task
• ϕ1 = �♦σ11 ∧�♦σ12.

• ϕ2 = �♦(σ21 ∨ σ22 ∨ σ23)

• ϕ3 = �♦(σ31 ∨ σ32 ∨ σ33)

• ϕ4 = �♦σ41 ∧�♦σ42



Scenario one
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Scenario two
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Motivation

• Coupled multi-agent control systems

• Define discrete representations irrespective of given high-level
specs

• May lead to trade-offs or fundamental limits to what can be
requested from the system



Systems Description and objective

• Consider the multi-agent system

ẋi = ui = fi (xi , xj) + vi , xj = (xj1 , . . . , xjNi
), i = 1, . . . ,N

• Closed loop system with coupled constraints fi (xi , xj) and free
inputs vi

• Goal: abstract continuous space-time system properties in a
discrete Transition System

• Goal: find finite abstractions for the multi-agent system in a
distributed way that makes sense



Preliminaries - Notation

• Abstraction Requirements: find

• cell decomposition → finite or countable “partition”
S = {Sl}l∈I of the workspace by uniformly bounded sets

• time step δt

• which ensure that the discretized model of closed loop system
is well posed - meaningful

• Notation

• Cell Configuration CC of i and its neighbors j1, . . . , jNi

• Ni + 1-tuple of cell indices li = (li , lj1 , . . . , ljNi
) ∈ INi+1

• Cell decomposition diameter dmax :

• “maximum” diameter of a cell Sl ∈ S

dmax := sup{|x − y | : x , y ∈ Sl , l ∈ I}



Cell Decomposition - Cell Configuration Example

dmax 1
1 2 3 4

5 6 7 8

9 10 11 12

xi

xj1

xj2

xj3

S1 S2

• Cell decomposition: S = {Sl}l∈{1,...,12}
• Cell configuration CC of i and its neighbors j1, j2, j3:

l = (l , l1, l2, l3) = (1, 9, 7, 12) ∈ {1, . . . , 12}4

• Cell decomposition diameter: dmax =
√

2



Well Posed Discretizations

Given the cell decomposition S = {Sl}l∈{I} and the time step δt,
we say that the space-time discretization S-δt is well posed if for
each i = 1, . . . ,N and CC li = (li , lj1 , . . . , ljNi ) of i

• there exists (at least one) cell Sl ′i

• and a control law assigned to the input vi , such that for each
xi (0) ∈ Sl and irrespectively of vk , k 6= i and the exact initial
positions of the neighbors xjk (0) in Sljk

• agent i is driven to cell Sl ′i exactly in time δt



Well Posed Discretizations

Sl xi

Sl1xj1

Sl2xj2Sl̂

Sys. (A): ẋi=fiA(xi ,xj1 ,xj2) + viA Sys. (B): ẋi=fiB(xi ,xj1 ,xj2) + viB

Sl xi

Sl1xj1

Sl2xj2

xi (δt) xi (δt)

• The discretization is well posed for System (A)

• The discretization is not well posed for System (B)



Dynamics Properties3

• Lipschitz constants L1, L2

|fi (xi , xj)− fi (xi , yj)| ≤L1|xj − yj |

|fi (xi , xj)− fi (yi , xj)| ≤L2|xi − yi |

• Dynamics bounds

|fi (xi , xj)| ≤ M

|vi (t)| ≤ vmax (< M)

xj := (xj1 , . . . , xj|Ni |
)

3D. Boskos and D. V. Dimarogonas, Robust Connectivity Analysis for
Multi-Agent Systems, CDC 2015



Analytical Results on Well Posed dmax - δt

QUESTION

• How do we quantify acceptable dmax - δt?

RESULT: Assuming that vmax < M, a sufficient condition which
guarantees that the space-time discretization dmax-δt is well posed,
is that dmax and δt satisfy the following restrictions

dmax ∈
(

0,
v2max

4ML

]
δt ∈

[
vmax −

√
v2max − 4MLdmax

2ML
,
vmax +

√
v2max − 4MLdmax

2ML

]

with the dynamics dependent parameter L defined as

L := max{2L2 + 4L1
√

Ni , i = 1, . . . ,N}



Analytical Results on Well Posed dmax - δt

dmax

δt

v2
max

4ML

vmax
ML

Figure: Feasible dmax − δt region



Selection of dmax - δt for Motion Planning

Transition possibilities can be quantified by employing additional
d.o.f.!
PROPOSITION
Consider a cell decomposition S of D with diameter dmax, a time step δt,
the parameters λ ∈ (0, 1), µ > 0 and define

r := λvmaxδt

We assume that r satisfies the design requirement

r ≥ µ

2
dmax

Then the space-time discretization is well posed for the multi-agent
system, provided that λ, µ, dmax and δt satisfy certain algebraic sufficient
conditions.



Selection of dmax - δt for Motion Planning

COROLLARY
Consider a cell decomposition S with diameter dmax, a time step
δt, and parameters λ ∈ (0, 1), µ > 0 such that the hypotheses
above are fulfilled. Then for each agent i ∈ {1, . . . ,N} and each
CC of i , there exist at least

bµnc+ 1, if µn /∈ N,
bµnc, if µn ∈ N,

possible discrete transitions.



Corresponding Transition System

Agent’s i individual transition system TSi := (Q,Acti ,−→i )

• state set Q the indices I of the cell decomposition

• actions all possible cell indices of i and its neighbors

Acti := INi+1

(the set of all possible cell configurations of i)

• transition relation −→i⊂ Q ×Acti ×Q as follows: For li , l
′
i ∈ Q and

li = (li , lj1 , . . . , ljNi
) ∈ INi+1,

li
li−→i l

′
i iff li

li−→ l ′i is well posed.



Example with Four Agents

Ag.4

Ag.3

Ag.2

Ag.1

R

• Network topology N1 = {2}, N2 = ∅, N3 = {2}, N4 = {3}

• Bounded circular domain of radius R

• Connectivity distance between neighboring agents ρ



Dynamics and Selection of vmax

• Saturated dynamics

ẋ1 = satρ(x2 − x1) + g(x1) + v1

ẋ2 = g(x2) + v2

ẋ3 = satρ(x2 − x3) + g(x3) + v3

ẋ4 = satρ(x3 − x4) + g(x4) + v4

• satρ(x) := x if |x | ≤ ρ; satρ(x) := ρ
|x|x , if |x | > ρ

• Repulsion vector filed g(x)

• Selecting vmax = ρ
2 ensures that initially connected configurations

remain connected



Simulation Results

+ +

+

+

+ +

+

+
(i) (ii)

• Reachable cells: (i) λ = 0.2 and (ii) λ = 0.3

• Agents: 1-cyan, 2-green, 3-blue, 4-yellow

• Agent 4 reaches its target box with the finer discretization, also due
to the increased number of (red) paths of 3 that reach its target box



Ongoing and Future Work

• Abstractions of varying decentralization degree4

• based on discrete positions up to a distance in the network
graph

• improved discretizations due to the reduction of the required
control for the coupling terms

• Online abstractions

• based on the discretization of each agent’s reachable set over a
time horizon

• applicable to forward complete systems
• improved discretizations and reachability properties for agents

with weaker couplings over the horizon

• Future directions: higher order systems, special network structures
...

4D. Boskos and D. V. Dimarogonas, Abstractions of Varying
Decentralization Degree for Coupled Multi-Agent Systems, CDC 2016
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Aim

• A team N = {1, . . . ,N} of agents
• A finite discrete transition system Ti

• Abstraction of action capabilities
• Example: transition system emerging from previous

abstraction procedure

• Synchronization capabilities

• High-level behavior specification
• Motion LTL specification φi over the states

• Task LTL specification ψi over the inputs/actions

• Efficiently synthesize controllers fulfilling the tasks
• A satisfying trace of each Ti
• Necessary synchronizations

• The catch: dependencies at the task (discrete) level



Problem Formulation

For each i ∈ N , synthesize appropriate motion and action
sequences so that

• the set of induced behaviors is nonempty

• the motion specification φi is satisfied

• the task specification ψi is locally satisfied



Example I

Agent 1 is a ground vehicle and has to avoid walls and obstacles.
Agent 2 and Agent 3 are UAVs and their environment is obstacle-free except
for the walls.

Motion specifications
Agent 1: Keep avoiding R1, φ1 = G¬R11.
Agent 2: Keep avoiding R2, φ2 = G¬R22.
Agent 3: Periodically survey R1 and R2,
φ3 = G F R13 ∧ G F R23.

Task specifications

R4

R1 R2

R3

Agent 1: periodically load(−) with the help of agent 2 (−) and the assistance
of agent 3 (−), then unload ( | ) with the help of agent 2 (−) or the assistance
of agent 3 (−)

ψ1 = load ∧ help ∧ assist ∧ G (load ⇒ X (unload ∧ (help ∨ assist)))∧
G (unload ⇒ X (load ∧ help ∧ assist))

Agent 2: Periodically provide inform service ( | ), ψ2 = GF inform.

Agent 3: Nothing specific, ψ3 = true.



Straightforward Approach

Computational infeasibility!



Our Hierarchical Approach I

• Each φi is translated to a Büchi automaton Bφi
• N motion products Pi = Ti ⊗ Bφi are built

• Each motion product is reduced to P̈i by systematic removal
of states, where no services of interest are available

• Each ψi is translated to a Büchi automaton Bψi
• N task and motion products P̄i = P̈i ⊗ Bψi
• Each motion and task product is reduced to P̂i by systematic

removal of states, where no dependent services are available

• A global product P = P̂1 ⊗ . . .⊗ P̂N containing only states
relevant for planning of dependent tasks is constructed



Our Hierarchical Approach II

• An accepting run in the global product projected onto the
original system gives
• a motion plan

• a task execution plan

• a synchronization plan

for each agent i , that is correct-by-design with respect to φi
and ψi .



Example I Revisited

Agent 1 is a ground vehicle and has to avoid walls and obstacles.
Agent 2 and Agent 3 are UAVs and their environment is obstacle-free except
for the walls.

Motion specifications
Agent 1: Keep avoiding R1, φ1 = G¬R11.
Agent 2: Keep avoiding R2, φ2 = G¬R22.
Agent 3: Periodically survey R1 and R2,
φ3 = G F R13 ∧ G F R23.

Task specifications
Agent 1: periodically load(−) with the help of agent 2 (−) and the assistance
of agent 3 (−), then unload ( | ) with the help of agent 2 (−) or the assistance
of agent 3 (−)

ψ1 = load ∧ help ∧ assist ∧ G (load ⇒ X (unload ∧ (help ∨ assist)))∧
G (unload ⇒ X (load ∧ help ∧ assist))

Agent 2: Periodically provide inform service ( | ), ψ2 = GF inform.
Agent 3: Nothing specific, ψ3 = true.



Example I Revisited

Centralized approach

• Each TS: 100 states

• Product TS: 1003 states

• Bφ1 ,B
φ
2 ,B

φ
3 ,B

ψ
1 ,B

ψ
2 ,B

ψ
3 : 2, 2, 3, 2, 2, 1 states, respectively

respectively

• Intersection BA: 2 · 2 · 3 · 2 · 2 · 1 · 7 = 330 states

• The overall product P: ≈ 330 mil. states

Our approach:

• P1, P2, P3: 200, 200, 300 states, respectively

• P̂1, P̂2, P̂3: 27,17,8 states, respectively

• The largest structure handled has cca 15000 states.



Remarks

• Worst-case complexity meets the complexity of the centralized
solution

• Suitable for sparsely distributed services of interest and
occasional needs for collaboration

• The bottleneck is still the product P and (some)
synchronization

• Extension to event-based receding horizon approach: uses
local versions of product and synchronizations in an
event-based fashion



Event-triggered Receding Horizon Approach

• Each φi is translated to a Büchi automaton Bφi
• N motion products Pi = Ti ⊗ Bφi are built

• Each motion product is reduced to P̈i by systematic removal
of states, where no services of interest are available

• Each ψi is translated to a Büchi automaton Bψi
• N task and motion products P̄i = P̈i ⊗ Bψi
• Each motion and task product is reduced to P̂i by systematic

removal of states, where no dependent services are available

• A global product P = P̂1 ⊗ . . .⊗ P̂N containing only states
relevant for planning of dependent tasks is constructed



Event-triggered Receding Horizon Approach

• Translate the infinite-horizon problem into an infinite
sequence of finite-horizon problems

• Dynamically partition the agents based on dependency

• Define progressive function to indicate closeness to goal
satisfaction

• Introduce event-triggered synchronization



Stepwise Receding Horizon



Stepwise Receding Horizon



Example II

• Agent 1 can load (lH , lA, lB), carry, and unload (uH , uA, uB) a heavy
object H or a light object A, B, in the green cells.

ψ1 = F(lH ∧ hH ∧ X uH ∧
∧

i∈{A,B}

GF (li ∧ Xui )))

• Agent 2 is capable of helping the agent 1 to load object H (hH),
and to execute simple tasks in the purple regions (t1 − t5).

ψ2 = GF (t1 ∧ X (t2 ∧ X (t3 ∧ X (t4 ∧ X t5 ∧ s4))))))

• Agent 3 is capable of taking a snapshot of the rooms (s1 − s5) when
being present in there.

ψ3 =
∧

i∈{2,4,5} GF si



Example II

cca 3 mil. vs. hundreds to thousands of states



Remarks

• The worst-case complexity still the same as for the centralized
case

• Suitable for collaborations executed in small (dynamically
changing) subgroups



Conclusion and Future Work

• Conclusion

• Decentralized abstractions and planning for multi-agent
systems

• Consideration of dynamics and continuous-time constraints

• Decomposition of formulas and event-based horizon framework
for decentralized LTL based planning

• Future and current Work

• Further reduction of complexity in distributed task planning

• More general dynamics and combination with dependent tasks

• Online version of abstraction framework

• Quantifying space and time constraints at the task level (MITL
and STL specs)
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