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Low dimensional system behavior

Consider the following dynamics :{
u̇(t) = a1u(t) + b1v(t)
εv̇(t) = c1u(t) + d1v(t)

t ∈ [t2k , t2k+1), k ∈ N

and {
εu̇(t) = a2u(t) + b2v(t)
v̇(t) = c2u(t) + d2v(t)

t ∈ [t2k+1, t2k+2), k ∈ N

with slow manifolds

c1u(t) + d1v(t) = 0 and a2u(t) + b2v(t) = 0.
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Figure – In blue the slow manifold associated with first mode and in
red the slow manifold associated with the second mode. The dashed lines
represent the asymptotic behavior of the overall system with initial state
(u0, v0) when ε→ 0 and no dwell-time (or O(ε) dwell-time) is imposed.
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Objective

Analyze and better understand the behavior of the general class of
singularly perturbed switched impulsive systems with switch
dependent nature of the state variable.

rewrite the general class under study as a traditional system
with switch independent nature of the state variable

appropriate methodology for stability analysis in this
framework

characterization of the minimal dwell-time between two events
that ensures the stability
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Dynamics under consideration

Dσk Ẋ(t) = Aσk X(t), ∀t ∈ [tk , tk+1), k ∈ N

with impulsive dynamics :

X(tk) = Jνk X(t−k ), ∀k ≥ 1

0 = t0 < t1 < . . . are the times of switches and/or impulses

σk ∈ I and νk ∈ J with I and J finite sets of indices

Di diagonal matrices whose diagonal elements belong {ε, 1}

I.-C. Morărescu et al. Stability analysis of hybrid singularly perturbed systems



Dynamics under consideration

{
u̇(t) = a1u(t) + b1v(t)
εv̇(t) = c1u(t) + d1v(t)

t ∈ [tk , tk+1),

⇔

DẊ(t) = AX(t), ∀t ∈ [tk , tk+1),

D =

(
1 0
0 ε

)
, A =

(
a1 b1

c1 d1

)
, X(t) =

(
u(t)
v(t)

)
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Remarks

{
Dσk Ẋ(t) = Aσk X(t), ∀t ∈ [tk , tk+1), k ∈ N
X(tk) = Jνk X(t−k ), ∀k ≥ 1

includes

singularly perturbed switched impulsive linear systems
(Di = D,∀i ∈ I)

singularly perturbed switched linear systems
(J = {1}, J1 = I)

singularly perturbed impulsive linear systems (I = {1})
singularly perturbed linear systems
(I = {1}, J = {1}, J1 = I)
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Variable reordering - Traditional hybrid framework

Introduce the permutation matrix Si such that

SiD
iS>i =

(
Inx 0nx ,nz

0nz ,nx εInz

)
, ∀i ∈ I

and define the change of variable(
x(t)
z(t)

)
= Sσk X(t), ∀t ∈ [tk , tk+1).

Let also
Aσk , Sσk AσkS>σk , J

νk , Sσk JνkS>σk−1
,

leading to
(

ẋ(t)
εż(t)

)
= Aσk

(
x(t)
z(t)

)
, ∀t ∈ [tk , tk+1), k ∈ N(

x(tk)
z(tk)

)
= Jνk

(
x(t−k )
z(t−k )

)
, k ∈ N
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Classical singular perturbation analysis

Let

(S)

{
ẋ(t) = A11x(t) + A12z(t)

εż(t) = A21x(t) + A22z(t)

with (x(0), z(0)) = (x0, z0) and A22 non-singular.
The associated reduced order & boundary layer systems are{

ẋs(t) = A0xs(t)

zs(t) = A−1
22 A21xs(t)

, & żf (t) = A22zf (t)

with xs(0) = x0 and zf (0) = z0 − A−1
22 A21x0

Then, A0 and A22 Hurwitz guarantee that (S) is stable. Moreover
x − xs = O(ε) and z − zf − zs = O(ε).
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Change of variable

For i ∈ I, j ∈ J , let Ai =

(
Ai

11 Ai
12

Ai
21 Ai

22

)
, J j =

(
J j11 J j12

J j21 J j22

)
,

Assumption

Ai
22 is non-singular for all i ∈ I.

For all i ∈ I we define

Pi =

(
Inx 0nx ,nz

(Ai
22)−1Ai

21 Inz

)
, P−1

i =

(
Inx 0nx ,nz

−(Ai
22)−1Ai

21 Inz

)
.

and perform the following time dependent change of variable :(
x(t)
y(t)

)
= Pσk

(
x(t)
z(t)

)
, ∀t ∈ [tk , tk+1), k ∈ N
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Continuous dynamics in x , y variables

(
ẋ(t)
εẏ(t)

)
=

(
Aσk0 Bσk1

εBσk2 Aσk22 + εBσk3

)(
x(t)
y(t)

)
,

∀t ∈ [tk , tk+1), k ∈ N

where for all i ∈ I one has

Ai
0 = Ai

11 − Ai
12(Ai

22)−1Ai
21,

B i
1 = Ai

12,

B i
2 = (Ai

22)−1Ai
21A

i
0,

B i
3 = (Ai

22)−1Ai
21A

i
12.
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Jump map in x , y variables

(
x(tk)
y(tk)

)
= Rσk−1

νk→σk
(

x(t−k )
y(t−k )

)
, ∀k ≥ 1

where for all i , i ′ ∈ I, j ∈ J ,

R i
j→i ′ = Pi ′J

jP−1
i =

 R i
j→i ′

11 R i
j→i ′

12

R i
j→i ′

21 R i
j→i ′

22


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Main assumptions

For all i ∈ I one defines Ai
0 = Ai

11 − Ai
12(Ai

22)−1Ai
21 and impose

the following :

Assumption

Ai
0 and Ai

22 are Hurwitz for all i ∈ I.

Consequently, ∃Q i
s ≥ Inx , Q i

f ≥ Inz , i ∈ I and λs > 0, λf > 0 such
that :

Ai>
0 Q i

s + Q i
sA

i
0 ≤ −2λsQ

i
s

Ai>
22Q

i
f + Q i

f A
i
22 ≤ −2λfQ

i
f
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Stability parameters

Let γ11, γ12, γ21, γ22 be defined as :

γ11 = max
i ,i ′∈I,j∈J

∥∥(Q i ′
s )

1
2R i

j→i ′
11 (Q i

s)−
1
2

∥∥,
γ12 = max

i ,i ′∈I,j∈J

∥∥(Q i ′
s )

1
2R i

j→i ′
12 (Q i

f )−
1
2

∥∥,
γ21 = max

i ,i ′∈I,j∈J

∥∥(Q i ′
f )

1
2R i

j→i ′
21 (Q i

s)−
1
2

∥∥,
γ22 = max

i ,i ′∈I,j∈J

∥∥(Q i ′
f )

1
2R i

j→i ′
22 (Q i

f )−
1
2

∥∥.
(1)
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Reduced order model

Original system :
(

ẋ(t)
εẏ(t)

)
=

(
Aσk0 Bσk1

εBσk2 Aσk22 + εBσk3

)(
x(t)
y(t)

)
,(

x(tk)
y(tk)

)
= Rσk−1

νk→σk
(

x(t−k )
y(t−k )

)
Corresponding reduced order model : ẋ(t) = Aσk0 x(t), ∀t ∈ [tk , tk+1), k ∈ N

x(tk) = R
σk−1

νk→σk
11 x(t−k ), ∀k ≥ 1.
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Analysis ideas

Consider the slow and fast Lyapunov functions :{
Ws(t) =

√
x(t)>Qσk

s x(t)

Wf (t) =
√
y(t)>Qσk

f y(t)
, ∀t ∈ [tk , tk+1), k ∈ N.

Introduce

Γ =

(
γ11 γ12

γ21 γ22

)
, Mτ =

(
e−λsτ + εβ3 ε(β2 + β3)

εβ1 e−
λf
ε
τ + εβ1

)
.

Let τk = tk+1 − tk . We show that :(
Ws(t−k+1)

Wf (t−k+1)

)
≤ Mτk

(
Ws(tk)
Wf (tk)

)
, for ε small

(
Ws(tk)
Wf (tk)

)
≤ Γ

(
Ws(t−k )
Wf (t−k )

)
.
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Analysis ideas

Choose τ∗ ≥ 0 such that the positive matrix ΓMτ∗ is Schur.
For ε sufficiently small and (tk)k≥0 sequence of event times
satisfying the dwell-time property τk ≥ τ∗, for all k ∈ N one has(

Ws(tk)
Wf (tk)

)
≤ ΓMτk−1

. . . ΓMτ0

(
Ws(t0)
Wf (t0)

)
leading to (

Ws(tk)
Wf (tk)

)
≤
(
ΓMτ∗

)k ( Ws(t0)
Wf (t0)

)
.

Therefore we have to characterize τ∗ that renders ΓMτ∗ is Schur.
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Stability analysis results

Table – Summary of the main results establishing dwell-time conditions
for the stability of the original system.

γ11 γ12, γ21, γ22 dwell-time condition

γ11 > 1 – τ∗ > ln(γ11)
λs

+O(ε)

γ11 = 1
– τ∗ > − ε

λf
ln(ε) +O(ε)

γ12 = 0
τ∗ > O(ε)

γ11 < 1
–

γ22 < 1, γ12γ21

(1−γ11)(1−γ22) < 1 τ∗ ≥ 0
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Stability analysis results

Table – Summary of the main results establishing dwell-time conditions
for the reduced order system .

γ11 dwell-time condition

γ11 > 1 τ∗ > ln(γ11)
λs

γ11 ≤ 1 τ∗ ≥ 0
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Illustration on scalar fast and slow dynamics

Consider again the system with the following two modes{
u̇(t) = a1u(t) + b1v(t)
εv̇(t) = c1u(t) + d1v(t)

t ∈ [t2k , t2k+1), k ∈ N

and {
εu̇(t) = a2u(t) + b2v(t)
v̇(t) = c2u(t) + d2v(t)

t ∈ [t2k+1, t2k+2), k ∈ N

Notice that

R1→2
11 = − c1

d1
, R2→1

11 = −b2

a2
.

and γ11 < 1 if and only if∣∣∣∣b2

a2

∣∣∣∣ < q <

∣∣∣∣d1

c1

∣∣∣∣ ,
where q =

√
Q2

s

Q1
s

.
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Illustration on scalar fast and slow dynamics
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Figure – In blue the slow manifold associated with first mode and in
red the slow manifold associated with the second mode.
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Numerical examples

Consider :(
a1 b1

c1 d1

)
=

(
−1 0.5
−3 −2

)
,

(
a2 b2

c2 d2

)
=

(
−2.5 −4

1 0.5

)
.

The two slow manifolds are :{
− 3u(t)− 2v(t) = 0

− 2.5u(t)− 4v(t) = 0.

and
R1→2

11 = −1.5, R2→1
11 = −1.6⇒ γ11 = 1.6 > 1.

We also consider X0 = (2, 1)>, ε = 10−3.
The required dwell-time equals 0.57 sec .
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Numerical examples

τ = 0.2 sec
-1 0 1 2 3 4 5 6 7 8 9 10
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I.-C. Morărescu et al. Stability analysis of hybrid singularly perturbed systems



Conclusions and perspectives

Conclusions :

Stability analysis for hybrid singularly perturbed systems with
switch-dependent nature of the variable

A characterization of the dwell-time ensuring stability is
presented.

Time-varying dimension of the state can be considered
provided that we add some artificial state-variables with stable
dynamics.

Perspectives :

Apply the results to Arcelor-Mital problem.

Design automatons ensuring stability under pre-defined
dwell-time constraints.
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