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What is realization theory ?

We observe the input-output behavior (black-box)

y(t)

u(t)

of a physical process

y(t)

u(t)
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What is realization theory ?

We observe the input-output behavior (black-box)

y(t)

u(t)

Which mathematical models (fixed structure)

T ω̇(t) + ω(t) = Ku(t),
y(t) = ω(t)

y(t)

u(t)

can describe the observed behavior of the black-box ?
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Realization theory: what is it good for ?

I Existence of a solution depends only on

input-output behavior

u 7→ y

I Input output behavior is what we really know.

I Input-output behavior is the fundamental object of study.

But, for actually computing a controller, we need a

state-space representation.

This raises several problems.
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Realization theory: what is it good for ?

I State-space models are artifacts.

I All models are wrong, some are useful...

Models are like sausages: best not to see how they are made.

I Bad model =⇒ bad controller (garbage in garbage out)

Good state-space model:

1. approximates sufficiently well the input-output behavior,

2. suitable algebraic structure for computing a controller.
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Realization theory: what is it good for ?
Non-uniqueness of models and computation of a controller:

I Many state-space models for the same input-output behavior

(even if we fix the model structure).

I Choice of the model influences computability of controllers ?

If we fail with one model, do we try another one ? Which ?

I Unique class of good (minimal) models ?

System identification: from experiments to models

I How to find from experiments a good model for control ?

I Design experiments to validate models.

Model reduction: ‘As simple as possible but not simpler ..... ’
How to compute the simplest but still adequate model ?
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Realization theory: what is it good for ?

Systems identification

I realization algorithms yield identification algorithms

I minimality helps to characterize identifiability

Model reduction

I Minimization algorithms yield model reduction algorithms.

I Partial realization = model reduction by moment matching.

I Helps to formulate the notion of distance and error bounds for
model reduction algorithms.
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Realization theory: what is it good for ? cont.

Control design

I Realization theory helps to derive conditions for observability
and controllability. The latter are necessary for existence of
observers and controllers.

I The existence of a solution to many control problems depends
only on the input-output behavior, not on the state-space
representation.

I Observer design, filtering = almost realization theory.
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Example: linear systems

Σ :


{

ẋ(t)
x(t + 1)

}
= Ax(t) + Bu(t), x(0) = 0

y(t) = Cx(t)

A potential input-output map Y maps input u(.) to output y(.).
Since Y is linear in u(.) it is determined by its impulse response

Impulse response G (t) = Y (δ0)(t)

I δ0 is the Dirac-delta for continuous-time

I δ0(0) = 1, δ0(t) = 0, t > 0 for discrete-time

Σ is a realization of Y , iff

G (t) = CeAtB(cont.time)

G (t) = CAtB(disc.-time)
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Example: linear systems

Realization problem
For the specified input-output map Y find a (preferably minimal)
linear system Σ such that Σ realizes Y .

Markov parameters

Mk =


dk

dtk
G (t)|t=0 continuous time, or

G (k + 1) discrete time

Classical step. Σ is a realization of Y ⇐⇒ Mk = CAkB

Hankel matrix of Y HY =

M0 M1 M2 · · ·
M1 M2 M3 · · ·

...
...

...
...


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Example: linear systems

Theorem (Kalman 1964)

1. Y has a linear system realization ⇐⇒ rank HY < +∞.

2. A linear system Σ is a minimal realization of Y ⇐⇒

rank
[
B AB · · · An−1B

]
= n

i.e. Σ is reachable, and

rank
[
CT ATCT · · · (AT )n−1CT

]
= n

i.e. Σ is observable. All minimal realizations are isomorphic.

3. Let HN be the upper pmN × Npm block of HY . If
rank HN = rank HY , then we can compute by a numerical
algorithm a minimal realization of Y from HN .
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Realization theory for hybrid systems

Questions

I What is a ‘good’ notion for dimension and minimality of
hybrid systems ?

I Find necessary and sufficient conditions for an input-output
map to admit a realization by a hybrid system.

I Find a characterization of minimality and its uniqueness.

I Find minimization algorithms, i.e. algorithms for transforming
a hybrid system to a minimal one

I Find realization algorithms, i.e. algorithms for computing a
hybrid system representation from input-output data.
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Hybrid systems with complete realization theory

I Linear switched systems

I Bilinear switched systems

I Linear hybrid systems without guards (but with state jumps)

I Bilinear hybrid systems without guards (but with state jumps)

I Stochastic Jump-Markov Systems

I Affine LPV systems
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Definition of linear switched systems

Σ


{

ẋ(t)
x(t + 1)

}
= Aq(t)x(t) + Bq(t)u(t), x(0) = 0

y(t) = Cq(t)x(t)

Inputs
q(t) ∈ Q – switching sequence, u(t) – continuous input

Outputs
y(t) – continuous output

Dimension – n, the dimension of the state x(t).

Motivation for linear switched systems

I the simplest type of hybrid systems

I occur in practice: quantized systems, chemical processes,
high-tech machines.
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Impulse response of linear switched systems

I Potential nput-output map Y of a linear switched system

1. Maps switching q(.) and input u(.) to outputs y(.).
2. Linear in continuous input u().

I Y is completely described by its impulse response

Impulse response for switching q(.)

Switching q(): stay in discrete mode q1, . . . , qk for times
t1, . . . , tk .

Gq1...qk (t1, . . . , tk) = Y (q(.), δ0)

I δ0 is the Dirac-delta for continuous-time
I δ0(0) = 1, δ0(t) = 0, t > 0 for discrete-time
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Markov parameters for linear switched systems

Markov parameters, q0, q ∈ Q – discrete modes, j = 1, 2, . . . ,m

Sq,q0(q1q2 · · ·qk) =

 Gq1···qk (1, 1, . . . , 1)
d
dt1
· · · d

dtk
Gq0q1···qkq(0, t1, . . . , tk , 0)|t1=···=tk=0


Markov parameters are indexed by sequences of discrete modes Q∗

Σ is a realization of Y ⇐⇒

Sq,q0(q1q2 · · · qk) = CqAqk · · ·Aq1Bq0
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Hankel matrix for linear switched systems

Q = {1, 2, . . . ,D}

v1 ≺ . . . ≺ vk , . . . lexicographic ordering of all sequences.

M(v) =

S1,1(v) . . . S1,D(v)
... . . .

...
SD,1(v) . . . SD,D(v)


Hankel matrix: HY

HY =


M(v1v1) M(v2v1) · · · M(vkv1) · · ·
M(v1v2) M(v2v2) · · · M(vkv2) · · ·
M(v1v3) M(v2v3) · · · M(vkv3) · · ·

...
... · · ·

... · · ·

 ,
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Realization theorem for linear switched systems

Theorem

I Y has a realization ⇐⇒ rank HY < +∞,

I Σ is a minimal realization of Y ⇐⇒ Σ is reachable, i.e.

n = dim rank [AqkAqk−1
· · ·Aq1Bq0 | q0, q1, . . . , qk ∈ Q, k < n]

and observable

n = dim rank [(CqAqkAqk−1
· · ·Aq1)T | q, q1, . . . , qk ∈ Q, k < n]

Minimal realizations are unique up to isomorphisms.
Any realization can be transformed to a minimal one.

There is a minization algorithm.
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Example

Aq1 =


−3 −1 0 0
0 0 0 0
0 0 −1 0
0 0 0 −3

 ,Bq1 =


0
0
0
1

Cq1 =


1
0
0
0


T

Aq2 =


−4 −1 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −2

Bq2 =


0
1
0
0

Cq1 =


0
0
0
1


T

This system is neither observable nor reachable, hence it is not
minimal.
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Example: cont

After minimization, we obtain

Aq1 =

 −3 0 −0.02
0 −3 0

0.98 0 0.006

 ,Bq1 =

0
1
0

Cq1 =

 0.95
0

−0.31

T

Aq2 =

 −4 0 −0.02
0 −2 0

0.98 0 −0.99

Bq2 =

0.31
0

0.95

Cq2 =

0
1
0

T

The system above is minimal, but none of the subsystems is
minimal
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Example: cont

If we simulate the two systems for white noise input and switching
sequence (q2, 1)(q1, 2)(q1, 3)(q2, 1).
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Realization algorithm

HY ,N+1,N =


M(v1v1) · · · M(vMv1)

... · · ·
...

M(v1vN) · · · M(vNvN)
M(v1vN+1) · · · M(vNvN+1)


1: Hf ,N+1,N = OR
2: Bq = m(q − 1) + 1, . . . ,mqth columns of R.
3: Cq = p(q − 1) + 1, . . . , pqth rows of O.
4: Aq = Ō+Oq

I Ō – the block rows of O which are indexed by v1, . . . , vN .

I Ō+–pseudo-inverse of Ō.

I Oq – shifted Ō: the row of Oq indexed by sequence v is
the row of O indexed by sequence qv .



Realization theory for linear switched systems Consequences of systems theory for system identification and model reduction

Partial realization theorem for linear switched systems

HY ,N,N =

M(v1v1) · · · M(vNv1)
... · · ·

...
M(v1vN) · · · M(vNvN)


HY ,N,N+1 =

M(v1v1) · · · M(vNv1) M(vN+1v1)
... · · ·

...
...

M(v1vN) · · · M(vNvN) M(vN+1vN)

 ,
Theorem

1. If rank HY ,N,N = rank HY ,N,N+1 = rank HY ,N+1,N then the
result of the algorithm recreates the Markov-parameters
M(v1), . . .M(v2N+1).

2. If N is bigger than the dimension of a realization of Y , then
the algorithm returns a minimal realization of Y .
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Example
Consider the switched system from the previous example and

Y the input-output map of that system.

HY ,2,1 =



0 0 0 −1 0 −1
1 0 −3 0 −2 0
0 −1 0 3 0 4
−3 0 9 0 6 0
0 −1 0 4 0 5
−2 0 6 0 4 0
0 3 0 −9 0 −12
9 0 −27 0 −18 0
0 4 0 −12 0 −16
6 0 −18 0 −12 0
0 4 0 −12 0 −16
6 0 −18 0 −12 0
0 5 0 −16 0 −21
4 0 −12 0 −8 0


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Example: cont.

Applying the realization algorithm to HY ,2,1 yields.

Aq1 =

3 0 0
0 −3.02 0.17
0 −0.32 0.018

 ,Bq1 =

−1.9
0
0

 ,Cq1 =

 0
0.21
0.46

T

Aq2 =

−2 0 0
0 −4.02 0.17
0 −0.32 −0.98

 ,Bq2 =

 0
1.25
−0.57

 ,Cq2 =

−0.53
0
0

T
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Example: cont

If we simulate the two systems for white noise input and switching
sequence (q2, 1)(q1, 2)(q1, 3)(q2, 1).
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Example of minimization
4 discrete modes, total number of continuous states:
3 + 2 + 3 + 3 = 11.

Σ1


ẋ1 = −x1 + u1 + u2

ẋ2 = x1 − 3x2

ẋ3 = 2x1 + 5x2 − 4x2 + 2.6u2

y = x1 + x2 + x3

Σ2

 ẋ1 = −2x1 + u2

ẋ2 = −1x1 + u1 − u2

y = x1 + x2

Σ3


ẋ1 = −5x1 + u1 + 4u2

ẋ2 = −9x1 − 10x2 − 2u1 + 5u2

ẋ3 = −3.14x3

y = 0.01x1 + 1.2x2

Σ4


ẋ1 = −11x1 + 4x2 + 5x3

ẋ2 = −5x2 + 6x3 + u1 + 4u2

ẋ3 = −10x3 − 2u1 + 5u2

y = 0.01x2 + 1.2x3
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Example of minimization:continued

Σ1 Σ2

Σ3 Σ4

a ∧ [x+ = x]

b ∧ [x+ = Mb,1]

a ∧ [x+ = Ma,2]

b ∧ [x+ = x]

d ∧ ∧[x+ = Md,1x] d ∧ [x+ = Md,2x]

[a, d] ∧ [x+ = x]

b ∧ [x+ = Mb,3]

a ∧ [x+ = Ma,4]

b ∧ [x+ = x]

d ∧ ∧[x+ = Md,4x]

Mb,1 =

[
0 1 0
1 0 0

]
,Md,1 =

0 0 0
0 0 1
0 2 −1

Ma,2 =

0 1
1 0
0 0


Md,2 =

0 1
2 3
0 0

Mb,4 =

0 1 0
0 0 1
1 0 0

Md,4 =

0 0 0
0 1 0
0 0 1


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Example of minimization:continued

Result of minimization: 3 discrete states, number of continous
states: 2 + 2 + 3 = 7.

Σ1


ẋ =

−5.46 3.58 2.6
−0.78 −2.01 1.23
−0.4 −0.19 −0.53

 x +

 0.03 −2.43
0.29 −0.47
−0.95 −1.28

[u1

u2

]

y =
[
−0.59 −0.91 −1.35

]
x

Σ2


ẋ =

[
−2 0
0 −1

]
x +

[
0 −1
1 −2

] [
u1

u2

]
y =

[
−1 1

]
x

Σ3


ẋ =

[
−12.23 −8.6

1.87 −2.77

]
x +

[
1.72 −5.71
−1.33 −2.07

] [
u1

u2

]
y =

[
−1.16 0.29

]
x
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Example of minimization:continued

Σ1 Σ2

Σ3

a ∧ [x+ = x]

b ∧ [x+ = Mb,1]

a ∧ [x+ = Ma,2]

b ∧ [x+ = x]

d ∧ ∧[x+ = Md,1x]

d ∧ [x+ = Md,2x]

[a, d, b] ∧ [x+ = x]

Mb,1 =

[
−0.32 0.91 0.27
0.03 0.29 −0.95

]
,Md,1 =

[
0.92 0.29 0.12
−0.24 −0.07 −0.03

]

Md,2 =

[
1.94 −3.12
−0.5 −0.08

]
,Mb,2 =

−0.32 0.03
0.91 0.29
0.27 −0.95


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Consequence of realization theory: counter-examples

I If all the continuous subsystems are minimal, then the
switched system is minimal.

I A switched system can be minimal (resp. observable,
reachable), without any of the subsystems being minimal
(resp. observable, reachable).

I Certain linear switched systems can never be brought to a
form where all the continuous subsystems are minimal.

I A minimal switched system can be computed from finite
input-output data (finitely many impulse responses).
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Application of realization theory

I Identifiability [with Laurent Bako, Jan van Schuppen]

I Persistence of excitation [with Laurent Bako]

I Identification algorithms [with Laurent Bako, Roland Toth,
Pepijn Cox]

I Manifold structure of systems, distances, canonical forms
[with René Vidal and Ralf Peeters]

I Model reduction [with Mert Bastug, Rafael Wisniewski, John
Leth]
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Identifiability of hybrid systems

Identifiability
A parameterization of hybrid systems is identifiable, if no two
distinct parameter values yield the same input-output behavior.

Example:
The parameterization below is not identifiable

ẋ = (a + b)x + u,

y = x

a, b ∈ R are parameters.

Motivation:
it is impossible to identify non-identifiable parameterizations.
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Identifiability of hybrid systems: continued

Uniqueness of minimal realization =⇒
A parameterization is identifiable ⇐⇒ for every parameter the
corresponding system is minimal and no two parameter values lead
to isomorphic systems.

Identifiability can be checked numerically.

Counter-example A liner switched system can be identifiable,
without the linear subsystems being identifiable.

Naive approach: identify the linear subsystems separately
will not work in general.
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Identifiability of hybrid systems: continued

Specific counter-example

x(t + 1) = Aqt (θ)x(t) + Bqt (θ)ut

y(t) = Cqt (θ)x(t), qt ∈ {1, 2}

θ = (a1,11, a1,21, a1,33) ∈ R3 – parameter

A1(θ) =

a1,11 1 0
a1,21 0 0

0 0 a1,33

 , B1(θ) =

0
0
0

 , C1(θ) =

1
0
0

T

A2(θ) =

a2,11 0 0
0 0 1
0 a2,21 a2,22

 , B2(θ) =

0
0
1

 ,

C2(θ) =
[
0 0 0

]
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Persistence of excitation for hybrid systems

Definition
An input signal is persistently exciting, if the system parameters
can be reconstructed from the response to this input signal.

Realization algorithm =⇒
finitely many Markov-parameters {M(vi )}2n−1

i=1 are sufficient to
compute a linear switched system realization.

The {u(t), q(t)}∞t=0 is persistently exciting,
if {M(vi )}2n−1

i=1 can be computed from {u(t), q(t), y(t)}∞t=0.

Persistence of excitation is a property of the inputs, not of the
outputs.
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Persistence of excitation for hybrid systems

Conditions for persistence of excitation

1. The switched system is stable.

2. u(.) and q(.) are independent processes and

2.1 u(.) and q(.) are ergodic.
2.2 u(.) is a coloured noise.
2.3 q(.) contains any sequence of length 2n − 1 with non-zero

probability

u(.) white noise, q(.) binary noise =⇒ persistence of excitation.
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Identification algorithm

Realization algorithm + persistently exciting input = identification
algorithm

Suppose {u(t), q(t)}∞t=0 are persistently exciting.

1. Compute the Markov parameters {M(vi )}2n−1
i=1 from the

input/output time series {u(t), q(t), y(t)}∞t=0

2. Apply the realization algorithm {M(vi )}2n−1
i=1 .

The above procedure is a black-box subspace-like method.

Improved version for LPV [LPVS’15 with P. Cox, R.Toth]
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Model reduction
Model reduction by moment matching [Mert Bastug, John Leth,
Rafael Wisniewski:] Consider the Markov parameters

M(q1 · · · qk) =

C1
...

CD

Aqk · · ·Aq1

[
B1 · · · BD

]

Compute a smaller system Σ̂ = {Âq, B̂q, Ĉq}Dq=1 s.t.

M(q1 · · · qk) =

 Ĉ1
...

ĈD

 Âqk · · · Âq1

[
B̂1 · · · B̂D

]
for all sequences q1, . . . , qk from some set L .

∀ set S of switching signals, ∃, L s.t. Σ and Σ̂ have the same
input-output behavior along any q(.) ∈ S .
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Model reduction: continued
Balanced truncation: with J. Leth, R. Wisniewski]

1. Find grammians Q,P > 0 s.t.

∀q ∈ Q : AT
q Q+QAq + CT

q Cq ≤ 0

∀q ∈ Q : AqP + PAT
q + BqB

T
q ≤ 0

2. Apply a linear basis transformation S s.t. in the new basis

P = Q = Λ = diag(σ1, . . . , σn)

σ1, . . . , σn singular values of the grammians.

3. Choose r < n an let Âq ∈ Rr×r , B̂q ∈ Rr×· and Ĉq ∈ R·×r

Aq =

[
Âq ?
? ?

]
, Bq =

[
B̂q

?

]
, CT

q =

[
ĈT
q

?

]
4. Σ̂ = {Âq, B̂q, Ĉq)}q∈Q .
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Model reduction: continued

I ||Σ− Σ̂||2 ≤ 2(σr+1 + · · ·+ σn)

I Grammians P,Q and hence σ1, . . . , σn are not unique. From
realization theory:

1. Minimization preserves the existence of grammians and does
not increase their singular values.

2. All minimal and i/o equivalent systems yield the same
collection of singular values.
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Realization theory: some consequences for control

I Quadratic stability is the property of input-output behavior:
minimization preserves quadratic stability, and if one minimal
system is quadratically stable, then so are all the other
minimal systems with the same i/o behavior.

Is this true for non-quadratic Lyapunov functions ?

I Quadratic L2 gain is a propert of i/o behavior: if a L2 gain
can be achieved by quadratic storage function (LMI) for some
switched system representing a i/o behavior, then the same
gain can be achieved by a qudaratic storage function for any
minimal switched system representation of the i/o behavior.

I (TAC’17, Chitour & Mason & Sigalotti): the same is true for
general L2 gain (non-quadratic storage function), minimality is
used
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