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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract—The computation of the k-shortest paths, should
they be elementary or not, has been extensively investigated
in the literature, yielding to extremely performant algorithms.
For elementary paths, the best known algorithm to this day
is the algorithm of Yen enhanced by the extension of Lawler,
while for the search of non-elementary paths, the algorithm with
the best complexity is due to Eppstein but is outperformed in
practice by the Recursive Enumeration Algorithm. In the context
of transportation networks, graphs are time dependent, meaning
that the cost of an edge depends on the time at which it is
crossed. If for each edge one cannot arrive later if he departs
earlier, the network is said to respect the FIFO property. Under
this hypothesis, the usual Dijkstra shortest path algorithm is
still polynomial. Additionally, since each edge is associated to
a transportation type, one may want to restrict a path to be in a
regular language. To find a shortest path under this constraint a
polynomial algorithm, called DRegLC, works on the product of
the network and the graph representing an automaton accepting
the regular language.

In this paper, some k-shortest paths algorithms are adapted
to be used on such transportation networks with a regular
language constraint. Also, the computation of the k-shortest
elementary paths is considered using k-shortest non elementary
paths algorithms, deleting loops while searching if possible. To
address this approach, a new algorithm is presented to speed-
up the search of elementary paths while scanning as few paths
containing loops as possible.

I. INTRODUCTION AND PROBLEM STATEMENT

Computing efficiently the shortest path in the context of
transportation networks, including multimodality and time-
dependency, has been the subject of intensive research in the
last ten years. However, users of transportation networks can
be interested not only in the shortest path between the origin
and the destination of their journey but also in a set of viable
paths. Moreover, public transport authorities and city planners
may be interested by information about the number of paths
and associated durations or costs, connecting two points or
areas, in order to improve their transport offer.
This can be done by considering k-shortest paths methods
producing a set of paths ordered by their costs. The k-
shortest paths problem is a well-known problem and it was
studied from two points of view depending on the application:
producing a set of paths without cycles or producing paths
with no restrictions on cycles. The former set is a subset of

the later. In the literature, paths with no restriction on cycles
are simply denoted paths with cycles. The k-shortest paths
algorithms producing paths with cycles have lower worst-case
complexities than algorithms producing only cycle-free paths.
In the multimodal transportation context, the aim is to produce
k-shortest paths from a given origin to a given destination
without any cycle and going through the public transportation
network and the pedestrian network. Obviously, in transporta-
tion applications, users are not interested in paths having cy-
cles. However, due to the difference in algorithms complexity
when considering paths with or without cycles and due to the
specific topology of transportation networks (with bus lines for
instance), both approaches have merits. Of course, as we do
not consider a path with cycles as an admissible solution for
users, those paths have to be removed from the set of paths
generated. Therefore, when considering k-shortest paths with
cycles, one would have to produce a high number of paths to
obtain the expected number of paths without cycles.
Let G(V,A) be a directed graph, where V is a set of n
nodes and A a set of m arcs and let us consider a static
positive cost ci,j on each arc (i, j). A path is defined by
a sequence of consecutive arcs (or by the sequence of their
corresponding nodes). On such graphs, given an origin node
o, and a destination node d, solving the Shortest Path problem
consists in finding the path from o to d having the minimal cost
and solving the k-Shortest Paths problem consists in finding a
set of k paths from o to d having minimal costs if possible: no
path outside of this set has a cost lower than any path of the
set. The k-Shortest Paths problem on static weighted graphs
was already studied in the literature, but the specific case of
transportation graphs was not studied.
A Transportation Network is not modeled using static weighted
graphs, but it is based on labeled directed graphs GL(V,A,Σ)
consisting of a set of n nodes v ∈ V , a set of m labeled arcs
(i, j, l) ∈ A ⊆ V × V × Σ, and a set of p labels l ∈ Σ. Each
triplet (i, j, l) represents an arc from node i to node j having
label l. The labels on arcs represent transportation modes,
such as foot, car, bus, metro, etc. Moreover a positive cost
corresponding to the travel time is associated to each arc. Costs
may be time-dependent (considering for example timetables or
frequency of public transportation lines) and ci,j,l(t) gives the
cost of an arc (i, j, l) when arriving at i at time t.
The integration of multimodality through labels or time-
dependent costs increases the complexity of Shortest Paths



algorithms because it restricts the application of some efficient
techniques such as bidirectional ones. To the best of our knowl-
edge, there is no dedicated algorithm taking into account both
multimodality and time-dependency, for solving the k-Shortest
Paths Problem in the context of transportation networks.
The rest of the paper is organized as follows. In Section II,
we recall the k-Shortest Paths problems previously studied for
static weighted directed graphs and the associated algorithms.
Then, in Section III, we introduce three algorithms designed
for solving the k-Shortest Paths problem in Transportation
Networks. Last, in Section IV, we evaluate our algorithms on
a real transportation network, before concluding in Section V.

II. RELATED WORK

In a static weighted graph G(V,A), given an origin
node o and a destination node d, the Shortest Path problem
(SP) from o to d is solved in polynomial time with the
well-known DISJKSTRA algorithm. In this algorithm, a label
is associated to each node, each label containing the current
shortest path from the origin to the corresponding node. Two
main speed-up techniques were introduced to improve the
efficiency of this algorithm: A* and bidirectionnal search.
Hart [1] proposed the A∗ algorithm, where a DISJKSTRA

algorithm is guided towards the destination informed by an
estimate cost between the current node and the destination d.
Obtaining the optimal solution at the end of such algorithm
is guaranteed if the estimation is a lower bound of the exact
cost. Its complexity is the same as of DISJKSTRA if the
triangle equality is valid on any node with respect to this
estimate.
A bidirectional algorithm, explained by Nicholson, [2] is
not more informed than DISJKSTRA but two searches are
conducted from origin to destination (forward search) and
conversely on the reverse graph (backward search). When a
connection is found between the forward and the backward
searches, a feasible solution is obtained. Such solution is
optimal if and only if its cost is less or equal to the sum of
the minimum forward and backward costs of the partial paths
that remain unexplored.
Some extensions of the SP problem were proposed to deal
with the time-dependency of travel times. It has been shown
in [3] that the resolution of the SP problem with such a
cost is polynomial iff the arcs in the graph respect the FIFO
property (any path starting with a greater cost from a given
node will have a greater final cost than any other path starting
with a lower cost from the same departure node and arriving
at the same final node). However, many efficient techniques
based on bidirectional search cannot be easily extended in the
time-dependent case as the exact starting time is only given
at the origin.
In Transportation Networks, the sequence of modes
corresponding to a path can be restricted to a language
to take into account user or mode constraints. The regular
language constrained shortest path problem can be solved in
polynomial time [4] using the DRegLC algorithm presented
in [5] that is an extension of the DISJKSTRA algorithm
on the product graph of G (a directed weighted graph)
and the automaton accepting the given regular language
L. Regarding bidirectional search and assuming that the
automaton is deterministic, bidirectional methods despite
correctness, may be exponentially complex if the reverse

automaton is non deterministic since crossing backward an arc
from a given state may result into several non dominated states.

A path in a graph is a sequence of consecutive arcs and
will be denoted π, the associated sequence of nodes will be
denoted by π. A path π is said to be simple iff it contains at
most once any arc. A path π is an elementary path iff it is
simple and has no cycle, i.e., no node occurs more than once.
The ith node (resp. arc) in π (resp. π) is denoted π[i] (resp.
π[i]) and π(i, j) (resp. π(i, j)) denotes the path from node i
to node j.

The k-shortest paths (k-SP) problem consists in
computing a given number of non decreasing cost paths
between two nodes. Depending on the type of required paths
(elementary or unrestricted), different types of algorithms
exist in the literature.
Yen’s algorithm [6] computes the k elementary shortest
paths. It uses a shortest path algorithm as a subroutine and
successively calls it from different origins after discarding
from the graph previously used edges. The complexity of
the algorithm is O(k.n.SP (n,m)) where SP (n,m) is the
complexity of the shortest path algorithm being used.
Computing k paths without any restriction on cycles, also
known as paths with cycles, is easier than computing
elementary paths since there is no need to track and prevent
the occurrence of loops within the paths. The algorithm
of Eppstein [7] runs with an excellent complexity of
O(m + n.log(n) + k.log(k)). Unfortunately, Eppstein’s
algorithm cannot be extended efficiently to time-dependent
graphs since it uses as a first step the computation of a
backward shortest path tree, which is not possible since the
costs of arcs depend on the starting time, and therefore can
only be known during a forward exploration.
It can be observed that to compute the kth path, only nodes in
the kth − 1 path have to be explored. The REA algorithm [8]
uses this fact to compute paths with cycles with a higher
complexity of O(m + k.n.log(n)), but the running time in
practice is better than that of Eppstein’s. In addition, this
idea can be applied to make a lazy version of the former
algorithm [9] by delaying the construction of some parts of
the intermediary graph. Such adaptation does not change the
worst case complexity.

In the context of multimodal and time-dependent graphs
(i.e. transportation networks), there is no dedicated k-shortest
paths algorithms and there is no comparison of the both types
of algorithms (with and without cycles). Due to the specificities
of such graphs, we propose to evaluate the efficiency of both
approaches (with and without cycles) and to do that we present,
in the next Section, two extensions and one new variant of k-
shortest paths algorithms.

III. PROPOSED ALGORITHMS

In the following, the computation of the k-shortest paths is
always done in the context of a multimodal time-dependent
network. Thus, we consider any regular language and the
automaton that accepts it to represent mode constraints (if the
automaton is non deterministic, we determine it). Our goal is to



determine k-shortest paths without cycles for a given origin o,
a given destination d and a given start time t at the origin. We
consider the two types of k-SP approaches: with or without
cycles. In the case of k-SP with cycles, paths that contain
cycles are disregarded after the search and some cycles may
also be eliminated during the search.

A. Extension for k-shortest paths without cycles

In Yen’s algorithm [6], the shortest path is computed first
(using DIJKSTRA procedure), then each node of this shortest
path is considered to compute another shortest path to the
destination. This principle is successively applied on each
node of previously obtained paths. When computing k-shortest
paths using such method, some nodes and edges need to
be removed from the graph (to find different paths) and are
ignored by the search by tapping directly into DIJKSTRA
internal data structures. The Lawler’s extension [10] prevents
from recomputing previously enumerated paths.
For time-dependent and multimodal graphs, the extension
of Yen’s (or Lawler’s) algorithm is straightforward using
the DRegLC algorithm as the sub-procedure instead of the
DIJKSTRA algorithm and produces a set of paths without
cycle.

B. Extension for k-shortest paths with cycles

Eppstein’s algorithm solves as a first step the shortest path
tree rooted at the destination. It then builds an intermediate
tree structure representing every possible deviation along the
shortest path tree with respect to arcs in the graph. To
allow multiple deviations to happen along a path, leaves are
connected to the root. Then, a k shortest path algorithm can
be applied on the resulting compacted tree yielding to much
better performances in finding the shortest paths since it just
combines deviations in every possible way instead of exploring
them multiple times on the graph. However, when considering
time-dependency, it was already shown that backward search is
based on lower bounds and then re-computation, and therefore
increases computation times. Moreover, taking into account
multimodality may require non-deterministic automaton to
represent mode constraints, leading to an additional increase
of computation time.

Instead of Eppstein’s algorithm, we consider the adaptation
of the REA algorithm that also computes k shortest paths with
cycles. The REA algorithm, starts with a standard one-to-all
shortest path algorithm. Then, it works in a recursive way and
starts at the destination node to compute the next shortest path.
Each node produces then a set of labels corresponding to paths.
This list of labels is initialized when the second shortest path
is required by extending the computed paths coming from
nodes not in the shortest path to the considered node. It is
then extended by recursive computations of shortest paths from
nodes on the previous shortest path.

The adaptation of this algorithm for taking into account
both multimodality and time-dependency is immediate.

C. New variant of k-shortest paths algorithm with cycles

In addition, we propose another algorithm close to REA
but working in an iterative way to compute k shortest paths
with cycles between an origin o and a destination d. This

algorithm, denoted as Iterative Enumeration Algorithm or IEA,
computes the shortest path from o to all of the other nodes
using a DISJKSTRA-like procedure. The main difference is
that several labels can be stored on each node, even if the
corresponding node was already visited and therefore marked.
Moreover, another mark and an index are directly associated
to each label on each node. A label is marked if it has already
been selected and propagated. Of course, priority is given to
the labels of minimal cost. The index on the label represents
an identifier of the label (to re-compute the produced path);
indexes are produced in increasing order.
For a given node x, one associates a Boolean mark Bx to state
whether this node was already visited or not, and a label lx
defined by lx = (c, p(r′), r, b) where c is the current cost from
the origin to x, p the predecessor node, r′ the index of the label
on node p, r the index of label on node x and b a Boolean
mark to state whether this label was already considered or not.

Initially, all nodes are unmarked (not visited), the cost of
all labels is set to infinity except for the origin that has a label
with cost 0 (and index 1), and all labels are unmarked. The
main steps of the IEA algorithm are the following:

1) select the unmarked node having the unmarked label
with the lowest cost, mark this node and this label as
visited;

2) add new labels for each successor nodes, even if these
nodes are marked, and number the produced labels;

3) when the destination node is selected in step 1 and
marked (a label for this node is also marked), store
the solution and increase the count on the number of
produced paths. Then, unmark all nodes belonging to
the shortest path (note that marks remain on labels).

4) restart at step 1 with the new set of unmarked nodes
and labels. This set is composed only of nodes
belonging to the previously obtained path and of
nodes not visited during the previous search.

The algorithm stops when the required number of paths
is obtained or when there is no remaining unmarked node
or when there is no remaining unmarked labels. Note that in
this algorithm, we can also suppress cycles going through the
origin by do not allow to unmark the origin in step 3 (and do
not produce new labels on the origin in step 2).

Let us consider the example given in figure 1 with 4
nodes. The origin is x1 and the destination x4. In this
small example, there are 4 different paths without cycle:
π1 = {x1, x2, x4} with cost 4, π2 = {x1, x2, x3, x4} with
cost c(π2) = 4, π3 = {x1, x3, x2, x4} with cost c(π3) = 10
and π4 = {x1, x3, x4} with cost c(π4) = 11.

In the proposed algorithm node x1 received a label lx1
=

(0, ∅, 1, false) and it is not visited (vx1
= false). In table I,

we detail the labels produced on each node. At the beginning,
the origin x1 is selected, marked as visited, its label is also
marked as visited and it is propagated through x2 and x3
(line1). In line 2, the unmarked node x2 has the unmarked
label with lowest cost (1), it is marked as visited, its label
is also marked and its successors receive new labels (nodes
x3 and x4). In line 3, node x3 is selected as it is unmarked
and has the lowest cost (3) and produce new labels on node x2
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Fig. 1. Toy example for the computation of k-shortest paths

TABLE I. LABELS PRODUCED DURING THE IEA ALGORITHM

step x2 x3 x4

1 (F; {(1, x1(1), 1, F)}) (F; {(5, x1(1), 1, F)}) -

2 (T; {(1, x1(1), 1, T)}) (F; {(5, x1(1), 1, F), (F, {(4, x2(1), 1, F)})
(3, x2(1), 2, F)})

3 (T; {(1, x1(1), 1, T), (T; {(5, x1(1), 1, F), (F, {(4, x2(1), 1, F),
(5, x3(2), 2, F)}) (3, x2(1), 2, T)}) (9, x3(2), 2, F)})

4 (T; {(1, x1(1), 1, T), (T; {(5, x1(1), 1, F), (T, {(4, x2(1), 1, T),
(5, x3(2), 2, F)}) (3, x2(1), 2, T)}) (9, x3(2), 2, F)})

5
(T; {(1, x1(1), 1, T), (T; {(5, x1(1), 1, F), (F, {(4, x2(1), 1, T),

(5, x3(2), 2, T) }) (3, x2(1), 2, T), (9, x3(2), 2, F),
(7, x2(2), 3, F) }) (8, x2(2), 3, F) })

6
(T; {(1, x1(1), 1, T), (T; {(5, x1(1), 1, F), (T, {(4, x2(1), 1, T),

(5, x3(2), 2, T) }) (3, x2(1), 2, T), (9, x3(2), 2, F),
(7, x2(2), 3, F) }) (8, x2(2), 3, T) })

8

(F; {(1, x1(1), 1, T), (T; {(5, x1(1), 1, T), (F, {(4, x2(1), 1, T),
(5, x3(2), 2, T), (3, x2(1), 2, T), (9, x3(2), 2, F),

(7, x3(1), 3, F) }) (7, x2(2), 3, F) }) (8, x2(2), 3, T),
(11, x3(1), 4, F) })

9

(T; {(1, x1(1), 1, T), (T; {(5, x1(1), 1, T), (F, {(4, x2(1), 1, T),
(5, x3(2), 2, T), (3, x2(1), 2, T), (9, x3(2), 2, F),

(7, x3(1), 3, T) }) (7, x2(2), 3, F), (8, x2(2), 3, T),
(9, x2(3), 4, F) }) (11, x3(1), 4, F),

(10, x2(3), 5, F) })

10

(T; {(1, x1(1), 1, T), (T; {(5, x1(1), 1, T), (T, {(4, x2(1), 1, T),
(5, x3(2), 2, T), (3, x2(1), 2, T), (9, x3(2), 2, T),

(7, x3(1), 3, T) }) (7, x2(2), 3, F), (8, x2(2), 3, T),
(9, x2(3), 4, F) }) (11, x3(1), 4, F),

(10, x2(3), 5, F) })

and x4. Then, in line 4, the only unmarked node is x4, and the
algorithm obtains the first path with cost 4, this label is marked
on x4. Nodes belonging to this path (π1 = {x1, x2, x4}) are
unmarked, except the origin.
The algorithm re-starts with two unmarked nodes x2 and
x4. The node having the unmarked label with the lowest
cost is x2 (cost 5). In line 5, this node and its label are
marked and produce new labels on nodes x3 and x4. Node
x3 is marked and cannot be selected. The only unmarked
node is x4 with cost 8 (line 6) producing the second path:
π2 = {x1, x2, x3, x2, x4} (path with a cycle).
Then all nodes except the origin are unmarked and the algo-
rithm re-starts. The node having the lowest cost is x3 that is
marked and new labels are produced on x2 and x4 (line 8). In
line 9, node x2 is selected (cost 7) and produces new labels on
x3 and x4. Then, in line 9, node x4 has the lowest cost (9) and
a new path is obtained: π3 = {x1, x2, x3, x4}. The algorithm
re-starts again with all nodes set as not-visited.

In Algorithm 1, we detail the proposed Iterative Enu-
meration Algorithm integrating cut-cycles with the following
variables :

• L: the set of labels for each node and each index,

• B: the set of marks for each node,

• H: the heap of candidate labels,

• K: the counter of found solutions for each node,

• lc: the length of cut-cycle,

• S: the solution set.

At the beginning, the heap is initialized with the label of the
origin o having a given cost c0. Then, while the number of
solutions k′ has not been found, the algorithm selects the best
available label in H and as it gets extended iff it does not
introduce any cycle of length lc. When a path is found, i.e.
the node solution is unstacked but with a value of k′ lower
than the given argument, every node in the associated path is
made available for the next step.
The complexity of this algorithm is the same as of REA, i.e.
O(m+k.n.log(n)). The IEA algorithm can be directly adapted
for time-dependent and multimodal graphs.

Algorithm 1 Iterative Enumeration Algorithm
Require: G = (V,E), o, d, k′, f : E × E → R+, lc, c0
Ensure: S = {(k∗, c∗)}

1: . Initialize
2: Lx,0 ← (∞, ∅, 0, false), ∀x ∈ V
3: Lo,0 ← (c0, ∅, 0, false)
4: Bx ← lc, ∀x ∈ V
5: H ← Lo,0

6: Kx ← 0, ∀x ∈ V
7: S ← ∅
8: . Select the unmarked label with minimal cost, mark the node

and the label
9: while H 6= ∅ ∧Kd 6= k′ do

10: lx = (c, p(r′), r, b)← minBx�0(H)
11: H ← H \ {lx}
12: Bx ← Bx − 1
13: b← true
14: Kx ← Kx + 1
15: if x 6= d then
16: . Produce sucessor labels ly
17: for y ∈ {z ∈ V \ {o} | (y, z) ∈ E} do
18: . check cycles
19: (cycle, count)← (false, lc)
20: lz = (−, qz(r′z),−,−)← lx
21: while count 6= 0 do
22: if z = x then
23: (cycle, count)← (true, 0)
24: end if
25: (count, lz)← (count− 1, Lqz ,r′z )
26: end while
27: if ¬cycle then
28: ly ← (c+ f(x, y), x(r), |Lx|+ 1, false)
29: H ← H ∪ {ly}
30: end if
31: end for
32: else
33: . unmark the obtained path
34: S ← S ∪ (Kx, c)
35: ly = (−, qy(r′y), ry,−)← lx
36: while y 6= o ∧ ry 6= 1 do
37: By ← By + 1
38: ly ← Lqy,r′y
39: end while
40: end if
41: end while
42: return S



D. Cutting cycles during the search

When using REA or IEA algorithms, one produces (with a
low worst-case complexity) k shortest paths with cycles, then
due to the application, paths with cycles are disregarded. We
consider here, how to adapt these two algorithms to suppress
some cycles during the search.

1) Embedding cut cycles in REA algorithm: The REA
algorithm produces paths with cycles via the origin and the
destination nodes. Considering our application, we propose to
modify REA algorithm to forbid cycles going through the
origin by not allowing recursive calls on the origin node.
However, concerning cycles at the destination, only part of
them could be removed by preventing every other node to pull
path stubs from the destination when k equals to 2, i.e. at the
initialization of paths on a node. Also, for every other path,
even if cycles can be detected using local storage, removing a
cycle within a recursive call would cause the evaluation to stall
on the computation of another path with a different k value,
yielding to an impractical approach.

2) Embedding cut cycles in IEA algorithm: In the IEA
algorithm, we propose to suppress some cycles during the
search by checking whether a successor node is or not in the
predecessor list of the node having the label with the minimal
cost. The size of the predecessor list directly impacts the size
of removed cycles. However, when introducing this cycles
removal, the shortest paths may appear in a non-increasing
order. For instance, let us consider the example given in
figure 2 in which we only consider the direct predecessors
of each node when extending a label. The origin is x1 and
the destination x2. In this example, there are 5 different paths
without cycle: π1 = {x1, x2} with cost 3, π2 = {x1, x3, x2}
with cost c(π2) = 7, π3 = {x1, x4, x5, x3, x2} with cost
c(π3) = 13, π4 = {x1, x3, x5, x2} with cost c(π4) = 14 and
π5 = {x1, x4, x5, x2} with cost c(π5) = 16.

x1

x3

x5

x2

x4

3

6

7

1

2

3

6

Fig. 2. Heuristic cycles cut

When computing the first path, the IEA algorithm produces
the following labels: {(3, x1(1), 1)} on x2, {(6, x1(1), 1)} on
x3, and {(7, x1(1), 1)} on x4. Then the path having cost equals
to 3 is obtained on the destination x2. At the next iteration
for the computation of the second path, labels {(6, x1(1), 1)}
on x3, and {(7, x1(1), 1)} on x4 are marked and new labels
are produced: {(8, x3(1), 1)} on x5, {(7, x3(1), 2)} on x2
and {(10, x3(1), 1)} on x5. The path having cost equals to
7 is then obtained on the destination. During the following
iteration, the label {(8, x3(1), 1)} on x5 cannot be extended
on x3 as x3 is the predecessor of this label but it is extended
on node x2 with label {(14, x5(1), 3)} and on node x4 with
label {(11, x5(1), 2)}. In this iteration the path with cost 14
is obtained (and not the path having cost 13). During the next

TABLE II. RESULTS FOR YEN’ EXTENSION

k time cost dev c hops dev h max time
10 23 849 81.403 0.015 90.65 4.16 50 712
20 49 276 81.404 0.093 91.17 4.44 102 012
30 76 052 81.406 0.155 91.63 4.51 153 787
40 100 371 81.407 0.171 91.84 4.36 205 532
50 125 666 81.408 0.199 91.93 4.47 257 166
100 248 875 81.412 0.301 92.88 4.53 519 595

iteration, the label {(10, x3(1), 1)} on x5 is extended to x3 to
obtain the label {(12, x5(2), 2)} and the label {(16, x5(2), 4)}
on x2, but there is no new label on x4 as it is a predecessor of
the considered label. Then, the path having cost 13 is obtained.
At the last iteration, the path with cost 16 is produced.

With this example, one can see that the paths are not
produced in an increasing order of their cost. Then, using
cut-cycles in the IEA algorithm leads to a heuristic approach
to obtain the k-shortest paths when limiting the number of
produced paths.

IV. EXPERIMENTAL RESULTS

The tests were carried out on an Intel(R) Core(TM) i5-
3337U CPU @ 1.7GHz with 6144 KB cache and 3GB main
memory, running Linux 3.2.0.4-amd64. All algorithms were
implemented in C++ and compiled with GCC.

Regarding the instances, we used as transportation network
a multimodal graph modeling the city of Toulouse (France).
All transportation data used are freely available data: the
road network corresponds to the OpenStreetMap data sets
and was provided by GeoFabrik and our public transportation
network is based on The General Transit Feed Specification
format. Once converted into an edge-labeled multimodal graph,
it contains 75 837 nodes, 484 426 road edges and 43 318
public transport edges. All combinations of public transporta-
tion modes are authorized, including pedestrian. A generic
automaton that allows walk, bus and subway is used and the
departure time is set to 9 AM.

We first evaluate the extension of Yen algorithms by
computing k-shortest paths without cycles for 40 instances
randomly chosen in the network, i.e. different origins and
destinations. For each pair origin-destination, we test different
values of k. For each value of k, we give in table II, the CPU
time in milliseconds (time) in average over the 40 instances,
the average cost (cost) defined as the travel time in minutes
from the origin to the destination, the number of hops of paths
as well as their respective standard deviations (dev c and dev
h).

For Yen’s algorithm, the average cost of the paths increases
slightly with the number of paths generated. The computation
time evolution bears out the linear complexity in k since the
solving time is almost 24 seconds when k equals 10 versus 248
when k equals 100. In addition, because Yen’s algorithm calls
the subroutine exactly the number of hops contained in the
previous path, the computation time is limited by the average
number of hops times the value of k times the time required
by DRegLC to solve the shortest path (56 ms in average over
all considered instances).

Concerning algorithms computing shortest paths with cy-
cles, we consider another type of experiments. We use the



TABLE III. RESULTS FOR ALGORITHM WITH CYCLES

Nb REA-0/REA-1 IEA-0 IEA-1

k′ k time cost dev k time cost dev k time cost dev
100 1.18 205.8 81.40 0.0 1.13 589 81.40 0.0 69.78 511 81.41 0.33
200 1.18 260.5 81.40 0.0 1.15 815.5 81.40 0.0 124.13 667.8 81.42 0.52
300 1.18 251.5 81.40 0.0 1.15 1174.3 81.40 0.0 172.45 854 81.42 0.56
400 1.18 256.8 81.40 0.0 1.15 1818.5 81.40 0.0 222.48 998 81.42 1.38

same set of 40 instances but we fix the number of paths with
cycles (denoted by k′) and extract paths without cycles from
the set of computed paths. We then consider the following
algorithms; the extension of the initial version of REA (named
REA-0), the proposed adaptation to cut cycles going through
the origin, named REA-1, the exact variant of the proposed
IEA algorithm, named IEA-0 and the heuristic variant where
short cycles are cut (cycles of length 2), named IEA-1.

In table III, we give the results of these algorithms in
average on the considered instances and for different values
of k′. For each algorithm, in the first column, we note k the
number of obtained paths without cycles. For the considered
values of k′, and the transportation network used, algorithms
REA-0 and REA-1 obtain the same results. One can note that
algorithms REA-0, REA-1 and IEA-0 were not able to produce
many paths without cycles and that algorithms IEA are slower
than algorithms REA. However, algorithm IEA-1 successfully
produced multiple paths without cycles, but with similar costs.
The CPU time used by all of these algorithms is far below the
time used by the Yen algorithm.

We tried to increase the number of paths with cycles
allowed in each algorithms up to k′ = 10000. For REA-0 or
REA-1, the number of paths without cycles is still equal to
1.18 (with 673.8 ms for CPU time). Regarding, IEA-0 and
IEA-1, they are limited by the number of labels allowed at
each node (the number is bounded by k′) and the memory
size needed is too high for the values of k′ on the machine
used.

In Table IV, we show the impact of the cut cycles procedure
in IEA algorithms. In IEA-c, cycles having length c + 1 are
not allowed. The table shows that the number of paths without
cycle grows with the length of forbidden cycles and that CPU
time remains reasonable (less than 2 seconds for k′ = 600).
Also, it can be observed that the computation time increases
slowly with the value of k′. Notwithstanding being a heuristic,
IEA produces paths which costs are in average not far at all
from those returned by Yen’s algorithm. Even if the values of
k are not similar, since IEA finds not all k values when k′ is
provided, the values obtained for k = 100 in Yen (81.412) is
really close to the one obtained by IEA-{1, 2, 3} for k′ = 100.
To sum up, it is possible to produce, in a short computing
time, a large number of paths without cycles for transportation
networks using REA-c.

V. CONCLUSION

Beside the implementation of usual k shortest paths algo-
rithms and their adaptation to time-dependent transportation
networks, an iterative version of the recursive enumeration
algorithm allowing to cut cycles of a given size is proposed.
This heuristic adaptation is relatively fast and supports the
scheme of filtering paths with cycles to obtain elementary

paths, while deteriorating as less as possible the cost of the
solutions.
However, this algorithm is limited in terms of memory and
is not suited for a large number of paths since the number
of labels per node increases proportionally. Also, if IEA is
interesting for the considered graph, there is still interrogations
about its behavior on other topologies as well as its concur-
rency with a more refined version of Yen’s algorithm.
Finally, the goal of generating that many number of elementary
paths is to skim them to select viable alternatives to the shortest
path.
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