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Abstract— Most robots are today controlled as being entirely rigid.
But often, as for HRP-2 robot, there are flexible parts, intended
for example to absorb impacts. The deformation of this flexibility
changes the configuration of the robot, particularly in orientation.
Nevertheless, robots have usually inertial sensors (IMUs) to reconstruct
their orientation based on gravity and inertial effects. Moreover,
humanoids have usually to ensure a firm contact with the ground,
which provides reliable information on the surrounding environment.
We show in this study, how important it is to take into account these
information to improve IMU-based position/orientation reconstruction.
We use an extended Kalman filter to rebuild the deformation, making
the fusion between IMU and contact information, and without making
any assumption on the dynamics of the flexibility. We show how, with
this simple setting, we are able to compensate for perturbations and to
stabilize the end-effector’s position/orientation in the world reference
frame.

I. PROBLEM STATEMENT

Many current humanoid robots are controlled as rigid systems,
even if there are compliant and flexible parts in it. A good example
of such a system is the robot HRP-2. Between the ankle and the sole
of the robot, there lies a flexible bush (see Fig 1), designed to absorb
foot impacts in order to protect force sensors and leg actuators [1].
However, this flexible part acts also as an angular spring and
generates important deviation of the whole body, including the
center of mass (CoM), which is not modeled in the rigid system.

Therefore, this flexibility can threaten the balance of the robot,
for example if the deformation deviates the CoM enough. Moreover,
it also may jeopardize environment-related tasks. For example, in
the case of drilling a wall, a robot has to apply forces on the wall.
These forces will create a deformation of the compliant material
and will deviate the robot’s tool from its reference position and/or
orientation.

Fig. 1. The foot of HRP-2. Between the ankle joint and the sole of the
robot, there is a rubber bush.

The problem of HRP-2 flexibility is currently tackled by a robot
stabilizer. The stabilizer drives the deformation of the flexible
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material to produce the desired forces and moments at feet, using
a model of elasticity of the flexible material [2], [3]. At the
same time, the upper-body orientation is maintained vertical, in
order to minimize unwanted angular momentum and to enable to
respect orientation-related upper-body tasks (manipulation, gaze,
etc.). The orientation of the upper body is obtained using an inertial
measurement unit at the chest of the robot. However, with this
stabilizer, in the case of upper-body tasks, even if the torso is
maintained upright, there is no guarantee that upper-body limbs
are at their reference position, which is usually important when the
robot is interacting with environment.

Moreover, the use of controllers based on force/torque sensors
raises two main issues. First, these solutions are sensitive to sensors’
calibration errors [4], which can even appear during operation of
the robot (e.g. due to impacts, under constraints, etc). Second,
these approaches can obviously not apply to robots which are not
equipped with these expensive force sensors at contact points, such
as the future Aldebaran’s Romeo robot [5].

By contrast, inertial measurement sensors are cheap, relatively
reliable and more robust. In addition, they provide important data
on the real kinematics of the robot in the inertial frame. We show
in this paper that, if we couple these sensors with contact point
positions, we can afford a real-time fine estimation of the flexibility
state, without any model of its compliance dynamics. We show also
that these measurements can enable a stabilization of the robot’s
end-effector in the presence of external perturbations.

This study aims at proving the efficiency of inertial sensors for
whole body pose estimation, and perturbations detection. In the next
section we describe the theoretical guarantees and improvements
provided by contact information to IMU measurements. The section
III presents the demonstrative example of an implementation of
such an observer with minimum prior knowledge. The section IV
presents an experimental setting where we use our method for end-
effector stabilization and compensation of perturbations. Finally the
section V concludes the paper.

II. THEORETICAL GROUNDING

In the case of humanoid locomotion, the contact forces have
usually to respect center of pressure and friction cone constraints
in order to maintain balance [6]. That means that the contacts
are firmly fixed to the environment. However, most methods for
humanoid-robots attitude-estimation using inertial measurements do
not consider contacts information, even for stabilizing the robots on
their feet [7], [8]. Fixed contact positions provide coupling between
the rotations and translations, transforming the inertial measurement
unit (IMU) into a much more efficient sensor for reconstructing
position/orientation. We show next a simple example of what this
coupling provides to a simple pendulum.

A. The inverted pendulum

Let’s consider a simple 3D inverted pendulum of 1m length,
connected to the ground with a 3 DoF ball joint, and with an



inertial measurements unit (IMU), rigidly aligned at the top of the
pendulum (see Figure 2). The configuration of the pendulum is the
rotation matrix R. This orientation defines the position p of the
IMU in the global frame:

p = Rez (1)

where ez =
[
0 0 1

]t is the unit vector along vertical z axis.
If we consider that an unknown external source u provides the
control of the pendulum’s acceleration, we can write the following
state dynamics:

ẋ =
[
([ω]×R)t ω̇t 0

]t
+
[
0 0 I

]t
u (2)

where x =
[
Rt ωt ω̇t

]t is the state vector formed by orienta-
tion, the angular velocity vector and the angular acceleration1, and
[·]× is the skew symmetric operator such that[

x
y
z

]
×

=

[
0 −z y
z 0 −x
−y x 0

]

Fig. 2. On the left, 3D inverted pendulum. On the right, 2D inverted
pendulum

The IMU at the top is composed of a gyrometer providing the
angular rate at local reference frame yg and an accelerometer
providing the gravity and the linear acceleration at the local frame
ya. Let y =

[
yt
g yt

a

]t be the whole measurements vector:

y =

[
Rtω

Rt(p̈ + g0ez)

]
(3)

with g0 the standard gravity constant. This measurement provides
partial information on the configuration, but we show next that de-
pending on whether we consider translations-orientations coupling
or not, the observable parts of the vector differ significantly.

B. Without translations-rotations coupling

In the case we do not take into account the coupling, we have
to consider that the linear acceleration p̈ is a free input to the
system for which we do not have any model. So, let’s consider
the case of an input acceleration p̈ = −gez, we have then
yt
a = 0, and the measurements provide only angular velocities,

which are insufficient to reconstruct the orientation. Therefore, the
configuration of the pendulum itself is not observable with these
hypotheses.

Indeed, most today’s approaches to reconstruct orientations with
a gyrometer/accelerometer sensors without contact information,
have to put an erroneous model on the linear acceleration, for
example considered as Gaussian white noise for Kalman Filter-
ing [9] or as high-frequency signal for complementary filtering [10].

1For simplicity, we keep the matrix representation of the orientation
despite the heterogeneous nature of this state vector, in the next section
we use rotation vector representation for the actual implementation.

These method lead to ignore translation accelerations, which may
carry important and redundant information on the dynamics of the
pendulum.

C. With translations/rotations coupling

If we use the rotations/translations coupling provided by Equa-
tion (1), we have then

y =

[
Rtω

[Rtω̇]×ez + [Rtω]2×ez + g0R
tez

]
(4)

and let’s consider the first derivative of the gyrometer measurements

ẏg = Rtω̇ (5)

with these three vectors, yg , ya and ẏg , we can reconstruct Rtez

and then the roll and pitch components of the configuration R. The
yaw is unfortunately not observable with these sensors when there
is only one contact with environment, since the system is invariant
with respect to rotations around the z axis.

D. The case of multiple contacts

If the number of contacts between the sensor and the environment
is 3 or more, the sensor is fully constrained and cannot move.
So let’s consider the 2 contacts situation. There remains only one
degree of freedom, which is the rotation around the axis (c1c2)
passing by the two contact points. The system is equivalent to a 2D
pendulum for which the configuration is defined only by one angle
θ, and the state becomes x =

[
θ θ̇ θ̈

]
(see Figure 2). There are

two possibilities, (i) the axis (c1c2) is vertical, and in that case,
the sensors can observe only angular velocities and accelerations
around the axis, or (ii) the contact points are not vertically aligned
and, without loss of generality, we can consider them at the same
height and that the IMU is at 1 meter from the axis. If it is
not the case, we only need to project the dynamics on the plane
orthogonal to the axis (c1c2) with minor adaptations to find the
same developments.

The measurements vector is three-dimensional: angular velocity
around the axis (c1c2), and bi-dimensional accelerations orthog-
onal to it. All other measurements have constant values, the new
measurement vector becomes:

y =

 θ̇

θ̈ + g0 sin(θ)

θ̇2 + g0 cos(θ)

 (6)

which can straightforwardly reconstruct all the state vector.
We see with the pendulum example that rotations/translation

coupling, deduced from contact points information, can be taken
into account to observe the sensor’s attitude and position, without
resorting to erroneous modeling of the state dynamics. In the next
section, we show how we use this idea to reconstruct the state of
the flexible part of the robot.

III. FLEXIBILITY DEFORMATION OBSERVATION

A. Modeling the flexibility

HRP-2 is a 30+6 DoF robot controlled as being perfectly rigid.
The configuration q is supposed to define perfectly for each limb i
the position/orientation in the world, represented by a homogeneous
transformation matrix CMi (C superscript is for “control”).

However, there is a flexible part in HRP-2 which is a small
compliant material between the sole and the ankle joint of the
robot. It can be compressed, bent and twisted according to applied
forces/moments. Therefore, when the robot is on its feet, the
compliance modifies the configuration of the robot in rotations and



translations, even when the contacts are balanced and immobile.
We depict the flexibility deformation by a 6 DoF transformation
represented by a homogeneous transformation matrix

WMC =

[WRC WpC
0 0 0 1

]
(7)

with WRC and WpC are the rotation matrix and translation vector
associated to the flexibility deformation.

Any limb i at position/orientation CMi in the “control” reference
lies in fact at position/orientation WMi = WMC

CMi in the world
actual reference frame (see Figure 3). Therefore, WMC is not the
matrix associated to a sole-ankle joint, but as a virtual joint between
the world and the free-flier root joint of the robot. The choice of this
representation enables to remain adapted to any number of supports
and to guarantee continuity regardless of changes in contacts.

Fig. 3. On the left the rigid robot model in the “control” reference
frame and the head position at CM〉. On the right, the flexibility WMC
transforms the configuration of the robot and the real position of the head
WM〉 = WMC

CM〉 (in red) in the world reference frame. We see that
WMC is composed of a rotation and a translation.

To simplify notations, we omit the world frame W up-
per left superscript for next developments. Let’s then de-
fine the 18 dimensional second order state vector x =[
pt
C Ωt

C ṗt
C ωt

C p̈t
C ω̇t

C
]t where ΩC is the rotation vector

representation of RC , such that exp([ΩC ]×) = RC , (i.e. ‖ΩC‖ is
the angle or rotation and ΩC

‖ΩC‖
is the axis) and ωC is the vector of

angular velocity.
Our study aims at showing that the measurements alone are able

to provide accurate estimation of the flexibility state. Hence, we do
not model the response of the flexibility to external forces. Instead
we take the model of constant acceleration M̈C , which is a classical
choice for pose and attitude estimation [11], [12], [13]. The discrete-
time model of the state dynamics is then:

xk+1 = f(xk) + vk (8)

where f is a simple integrator with constant accelerations and vk
is Gaussian white noise which is used to model the differences
between the real dynamics of the state and the constant-acceleration
model.

It is important to note that this dynamical system is chosen
only for demonstration purposes, so it is deliberately erroneous
and unstable. In fact, for a real use of the proposed observer, we
suggest to replace this dynamical model by a model that is closer
to the natural dynamics of the studied system, for example by a
spring/damper or an inverted pendulum dynamical models. This

would increase the precision of the estimation as modeling error is
reduced.

B. The sensors system

This system is not stable and relies entirely on the measurements
to correct it. We use the stock IMU sensor in HRP-2 which
is located at the chest of the robot, and is composed of an
accelerometer and a gyrometer. The measurement vector is then
classically:

y =

[
yg

ya

]
=

[
Rt

sωs

Rt
s(p̈s + g0ez)

]
(9)

where yg and ya are gyrometer and accelerometer measurements,
and Rs, ωs and ps are respectively the rotation matrix, the angular
velocity vector and the position of the IMU in the world reference
frame.

We suppose that we know perfectly the robot’s configuration q
and its derivatives, we know then the position CRs, the angular
velocity Cωs, the position Cps of the IMU, and their derivatives,
in the control reference frame. On the other hand, we have the
relationships due to flexibility: Rs = RC

CRs and ps = RC
Cps +

pC . All that leads to:

yg = CRt
s
Cωs + CRt

sR
t
CωC (10)

ya = CRt
sR

t
C(([ω̇C ]× + [ωC ]

2
×)RC

Cps + 2[ωC ]×RC
Cṗs)

+ CRt
s( Cp̈s +Rt

Cp̈C) + g0
CRt

sR
t
Cez (11)

But because the measurements are noisy and our dynamics is
discretized, we model the sensors dynamics as following

yk = g(xk,qk, q̇k, q̈k) + wsk (12)

Where g is the measurement function summarizing equations (10)
and (11) and wsk is a Gaussian white noise.

C. The contact points

We have seen that the flexibility provides six supplementary
degrees of freedom to the robot. However, the size of the flexible
bush and the magnitude of the linear forces exerted on it make
linear translations of the compliance almost negligible. In other
words, we can consider that globally the contact point positions in
the world and in the control reference frame are almost identical:
MC

Cpci ' Cpci , where Cpci is the position of the i-th contact in
the control reference frame, which is considered as perfectly known
for all the contacts. We put then an approximation instead of an
equality constraint. This enables to leave some freedom to violate
the constraint and to detect for example sideways perturbations
during double support. Thus, instead of constraining the contact
points to be fixed to environment, we add fake measurements to
our dynamical system. These measurement claim that the contacts
are fixed in environment MC Cpcik −

Cpcik = 0, but we model
these measurements as being noisy to allow some freedom. So for
each contact ci, the sensors model is:

rik = MCk
Cpcik −

Cpcik + wik (13)

where wik is a Gaussian white noise.
We can gather then the measurements of a n contacts confi-

guration in a 6 + (3× n) dimensional vector:

zk = h(xk,qk, q̇k, q̈k,
Cpc1k, ...,

Cpcnk) + wk (14)

where h stacks all the measurements described earlier (IMU + fake
measurements) and wk stacks all the measurement noises.

It is worth mentioning that, for the continuous-time system,
the measurements described here provide the same observability



properties as the inverted pendulum example of the previous section.
In the case of one contact, the orientation is observable except
in yaw, which leads to a partial observability of the position
pC (constrained to a circle around the vertical line passing by
the contact point). In the case of multiple contacts, everything is
observable.

D. Extended Kalman Filtering

We use for the estimation of the state vector a classical Extended
Kalman Filter (EKF). This observer works in two steps for each
time sample: the prediction and the update.

1) Prediction: Let’s suppose that at instant k + 1, we have
already an estimation of xk which we denote x̂k. We model the
error ek = xk − x̂k as a random variable following a centered
Gaussian distribution for which we suppose that we know the
covariance matrix Pk. The prediction consists in simulating the
modeled dynamics of the system if it were neither noisy nor
perturbed. We define:

x̄k+1 =f(x̂k) (15)

where x̄k+1 is the predicted state. This prediction commits also an
error ēk+1 = xk+1 − x̄k+1 which is due to the transport of ek

by f in addition to the process noise vk+1. We model also the
error ēk+1 as a Gaussian random variable and we linearize f to
approximate its covariance matrix:

P̄k+1 = Fk+1PkF
t
k+1 +Qk+1 (16)

where Qk+1 is the covariance matrix of vk+1, and

Fk+1 =
∂f

∂x

∣∣∣∣
x=x̂k

(17)

This prediction enables to estimate the measurements obtained if
the state was equal to the prediction:

z̄k+1 = h(x̄k+1,qk+1, q̇k+1, q̈k+1,
Cpc1k+1, . . . ,

Cpcnk+1)
(18)

where z̄k+1 is the predicted measurement vector.
2) Update: The update consists in using the actual measurements

to correct, to some extent, the prediction of the previous step.
The actual measurements are in our case the vector zk+1 =[
yt
gk+1

yt
ak+1 01×3n

]t
. We define the measurements innova-

tion:
ezk+1 = zk+1 − z̄k+1 (19)

Again, this error is modeled as a Gaussian random variable, and
the covariance matrix is approximated as follows:

Pzk+1 = Hk+1P̄k+1H
t
k+1 +Rk+1 (20)

where Rk+1 is the covariance matrix of wk+1, and

Hk+1 =
∂h

∂x

∣∣∣∣ x = x̄k+1, q = qk+1, q̇ = q̇k+1, q̈ = q̈k+1,
Cpc1

= Cpc1k+1
, . . . , Cpcn = Cpcnk+1

(21)

This enables to compute the near-optimal gain Kk+1 minimizing
the quadratic error expectation for the estimation error ek+1 =
xk+1 − x̂k+1, where

x̂k+1 = x̄k+1 +Kk+1ezk+1 (22)

The near-optimal gain Kk+1 is obtained as follows:

Kk+1 = P̄k+1H
t
k+1Pz

−1
k+1 (23)

And the corresponding covariance matrix of ek+1 is then

Pk+1 = (I −Kk+1Hk+1)P̄k+1 (24)

The size of the measurements vector zk may change if a contact
on environment is removed or added, but this does not change the
state value nor the extended Kalman filter developments.

We have now an estimator of the flexibility deformation in its
6DoF and its derivatives. This estimation can be directly used for
example in order to correct the position of the end effector as we
show in the next section.

IV. HAND POSITION COMPENSATION

A. The hand position in the world frame

When a humanoid robot interacts with the environment, the end-
effector has usually to follow trajectories in the control reference
frame. We have seen that because of flexible parts of the robot, these
trajectories may differ in the world reference frame. Moreover, if
the robot has to exert forces on the environment in some tasks, such
as drilling a wall, the reaction force will create a deformation of
the flexible parts and will move the end effector from its reference
position.

We propose here to show a direct use of the flexibility observer.
We put HRP-2 on its feet, we ask the robot to keep the right
hand at a given reference position/orientation, summarized in a
homogeneous matrix Mr , and we push the robot to excite flexibility.
However, the hand controller takes only references expressed in
C. So, the classical solutions consists in working in the control
reference frame C, giving a reference CMr = Mr . Obviously
the hand will swing with all the robot, and will not keep its
reference position, when the flexibility is deformed. Instead, we
propose to ask for another reference of hand position and orientation
CMr = M−1

C Mr , with the flexibility deformation MC estimated
using the extended Kalman filter described in the prevous section.
If the flexibility is efficiently reconstructed, the hand will stay at
the same position in the world reference frame (see Figure 4).

Fig. 4. On the left, the hand compensation in the world reference frame.
On the right what happens at the same time in the control reference frame.

B. Experimental setting

To achieve this setting, we use the Stack of Tasks framework [14],
which is a task-based hierarchical inverse kinematics solver. The
tasks were set, in a decreasing priority order, to (i) keep both feet
on the ground and the center of mass above the middle of them,
in the control reference frame (ii), keep the height Cpt and the
orientation CRt of the trunk (waist, chest and head), (iii) keep the
right hand at CMr = WM−1

C Mr and (iv) reproduce with the left
hand the motion of the right hand. The last task is just to play the
role of counterweight and avoid unstable dynamical effects of hand
compensation.



The stack of tasks (SoT) enables also to introduce a feed-forward
term which is the desired velocity of the task in the control reference
frame. We introduce then also the following desired hand linear and
angular velocities

Cṗr =[Rt
CωC ]×R

t
C(pC − pr)−Rt

C ṗC (25)
Cωr =−Rt

CωC (26)

where pr is the reference position of the hand in the world reference
frame.

To show the performances of the observer, three experiments
were conducted:

1) the reference orientation of the trunk CRt is constant at
upright position, and the robot is pushed to excite flexibility.
The expected result is that the hand stays at the reference
position while the whole robot is displaced.

2) the reference orientation of the trunk CRt oscillates in time.
The IMU is then excited and provides oscillating measure-
ments. The flexibility is excited as well, due to torques that
move the upper-body, but the excitation is of much smaller
magnitude than when the robot is pushed.

3) the oscillation of the trunk and the external perturbations
are combined. The estimator has to distinguish between the
signals due to the oscillation and those due to flexibility
deformation.

C. Results

During the first experiment, the external perturbations made the
robot oscillate of up to 0.175 rad (about 10◦). The hand position, be-
ing at 1.1 m distance to the contact point, if it was not compensated,
would move by about 20 cm. Instead, the hand moves by less than
2.0 cm. During the second experiment, the flexibility was slightly
excited and observed by the Kalman filter. However the oscillation
of the upper-body created vibration, detected particularly by the
gyrometer. which lead to small estimation error, the hand moved
by about 1.5 cm. During the third experiment, the combination of
oscillation and the perturbation did not degrade the performances
and the hand moved still by less than 2.0 cm.

The results are summarized in Fig. 5, and the relevant signals
and observations in Fig. 6. The video attachment presents also the
performances under several angles, including the ankle of the robot,
and shows responses to lateral perturbations. We remind that only
the right hand is stabilized and the left hand is just a counterweight.

V. DISCUSSION AND CONCLUSION

We have seen through this paper that the contact with envi-
ronment enables to take profit from the position-orientation cou-
pling, in order to better distinguish between body accelerations
and gravitational component in accelerometer measurements. The
separation of these two signals have two benefits: it increases
the precision in verticality estimation (pitch and roll), but also it
provides information on the acceleration of the attitude and position.

The combination of the inertial measurements and legs kinemat-
ics is already a subject or active research, but almost exclusively
on multi-legged robots for odometry and localization purposes [15],
[16], [17], [18], [19], [20]. These methods provide reliable infor-
mation on the position in the world. However, none of them took
profit of the accelerations-gravity decoupling, even when attitude
reconstruction was an important component of the reconstructed
state vector [19], [20].

To our best knowledge, only one method takes this advantage,
which is presented by Bloesch et al. [21] for a multi-legged

18 mm

2
 m

m

14 mm

1
 m

m

19 mm

4
 m

m

Fig. 5. In the top left, a screen capture of the robot’s hand during the
compensation experiment. In the top right a superimposition of the two
pictures of the extreme points of hand stabilization during the excitation
of the flexibility. In the bottom left, a superimposition of extreme positions
during oscillation. And in the bottom right, a superimposition of extreme
positions during combined oscillation and excitation of the flexibility. For
each superimposition, the position displacement for the hand is shown.

robot. They used the contact information provided by proprioceptive
sensors and kinematics model and merged them with IMU signals in
an multiplicative/additive extended Kalman filter. They could then
constrain the dynamics of their state to respect contact kinematics,
and use translations-rotation coupling to improve their estimation.
However, their model considers the IMU signals as inputs to the
system and not measurements. So their model of the dynamics is
an integration of the measurements. This prevents having another
model of the state dynamics (e.g. inverted pendulum, spring damper,
etc) because this would remove IMU information from models.
They also consider slipping contacts as measurements, which may
be adapted to walking on uncertain environments, but which leads to
the non-observability of the position as aknowledged by the authors.
That means that the position may drift for long observation periods.
This would lead for example the hand compensation experiment to
deviate eventually from the reference positions. This issue could
possibly be partially solved by reducing the covariance of the noise
model of the measurements, but Kalman filtering is likely to have
numerical issues with too certain or perfect measurements [22]. In
fact, for humanoid robots in known environments, we can consider
the contacts as firmly linked to the ground and this should be
exploited to constrain the dynamics of the reconstructed attitude,
as presented in our study. Finally, Bloesch et al. model a rigid
contact with the ground while our model enables small deviation
in translation from the contact point. This deviation may happen
in the case of a flexibility in translation, but this is different from
slipping contact because in average the contact position is assumed
constant, as it is guaranteed by our observer.

Some issues may raise and be considered as limitations of our
approach. First, if there is more than one flexible part in the
robot, one single IMU does not guarantee the observability of the
flexibility. In that case, a solution may be to use several IMUs [23].
Second, in the case the joint positions are not perfectly known,
the estimations error would be proportional to errors in contact
positions and to errors in the position/orientation of the IMU and
their derivatives in the control frame.
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Fig. 6. Signals of accelerometer along x, the gyrometer around y, and
flexibility orientation ΩC around y, in the case of the three experiments. In
top, the first experiment (the external perturbations on the upright robot).
In middle, the second experiment (the robot’s trunk is oscillating without
external perturbations). In bottom, the third experiment (trunk oscillation
and external perturbations are combined).

Finally, the main purpose of a flexibility-deformation state-
observer should go beyond simply stabilizing end-effectors. Indeed,
estimating efficiently the flexibility deformation means that (i) we
know the actual kinematics of the center of mass in the world
reference frame and (ii) we have an estimation of the ground
reaction forces if we have a model of the force-response to
deformations of the flexible part of the robot. Both estimations
are precious information on the dynamic balance of the humanoid
robot. Therefore, the main objective of this study is to open the
way to balancing and stabilizing techniques that would not only run
on robots that are not equipped by force sensors, but also provide
redundant sensing to stabilization methods relying on force/torque
sensors.
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