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Abstract

In this paper, we consider the case of a robot that

must find ways in an initially unknown and often com-

plex cross-country environment. Our approach relies

on a particular model of the environment, built from

3D data : the environment is represented by a hier-

archical polygonal structure, in which terrain classes

probabilities are updated as the robot moves. We de-

scribe how to define traversability costs within such a

structure, taking into account the label probabilities,

and present how a shortest path search can produce a

sequence of polygonal cells that must be crossed.

1 Introduction

One of the main difficulty of cross-country au-
tonomous robotics comes from the fact that outdoor
environments can hardly be faithfully modeled: such
environments are not intrinsically structured, as com-
pared to indoor environments, where simple geometric
primitives match the reality. As a consequence, any
representation based only on geometric primitives is
difficult to build and to maintain.

We consider in this paper the problem of maintain-
ing a global qualitative model that describes the envi-
ronment as a set of polygonal cells, for which terrain
classes probabilities are estimated, and the way to use
such a model in order to plan minimum cost paths.
Our planner fits in the family of ”weighted regions
planners” ([8, 10]), but we rely on a more complex hi-
erarchical structure instead of a partition of the per-
ceived regions: we will see that this allows to explicitly
represent and exploit all the information gathered by
the robot during the modeling phase.

The paper is organized as follows : the next sec-
tion briefly presents a 3D data clustering procedure
that leads to a description of the terrain in polygonal

∗E-mail: Emmanuel.Piat@hds.utc.fr
†E-mail: Simon.Lacroix@laas.fr

cells, for which a probability to cover a given terrain
class is estimated. Section 3 describes how the cells
probabilities extracted from images acquired at vari-
ous positions are combined to produce a global coher-
ent model. Section 4 is devoted to the path planner :
we define an hierarchical graph representation based
upon the aggregation of polygonal cells, then present
how traversability costs can be estimated on the basis
of the terrain class probabilities, and finally explain
how a minimum path search lead to the definition of
the navigation area.

2 Terrain classification

Our terrain modeling procedure relies on a specific
discretisation of the perceived area, that defines a cell

image. Attributes are computed for each cell, and are
used to label the cells in term of navigation classes,
thanks to a supervised Bayesian classifier. The dis-
cretisation being imposed, this procedure is rather an
identification process, and do not require a segmen-
tation of the 3D data, a quite difficult problem on
complex terrains (more details can be found in [3]).

2.1 Cells definition

The sensors that produce 3D points, be it a laser
range finder or a stereo-vision correlation algorithm,
generally have a constant scanning rate within the sen-

sor frame. But when perceiving a ground plane with
such sensors, the resolution of the perceived points de-
creases dramatically with their distance to the sensor.
This is a fundamental point one can not ignore when
processing such data : it lead us to choose the dis-
cretisation of the perceived zone presented in figure 1,
instead of a Cartesian one such as in [5]. This dis-
cretisation corresponds to the central projection on a
virtual horizontal ground of a regular (Cartesian) and
convex discretisation in the sensor frame. The funda-
mental property of this discretisation is the “conserva-



tion of density” : if a perfect flat ground correspond-
ing to the reference plane is perceived, the number of
points that belong to a cell - i.e. whose vertical pro-
jection coordinates are bounded by the cell’s border -
is equal to a constant nominal density, defined by the
discretisation rates. On the other hand, a cell cover-
ing an obstacle area contains much more points than
the nominal density. The number of points contained
in a cell becomes obviously an important feature to
determine the nature of the perceived zone covered by
this cell. Other features are used to identify a cell :
the elevation standard deviation and the maximum el-
evation difference computed on the cell’s points give
an information on the “flatness” of the cell ; the mean
normal vector and the variances on its coordinate are
useful to determine if the cell covers a regular slope or
has an irregular surface.

Figure 1: The regular Cartesian discretisation in the sensor
frame, and its projection on the ground

2.2 Cell classification

A supervised Bayesian classification procedure is
used to label each cell: during an off-line learning
phase, a human prototyped a set of cell images. On
line, once 3D data are acquired, the cells image is de-
fined by the discretisation, and the value x of the fea-
ture vector xc is computed for each cell C. The Bayes
theorem is then applied to determine the partial prob-
abilities P (wc

i |x
c = x) for a cell to correspond to each

of the M terrain classes {ω1, . . . , ωM} :

P (wc
i |X

c) =
fxc(x|wc

i )P (wc
i )∑M

j=1 fxc(x|wc
j )P (wc

j )
(1)

where Xc stands for “xc = x”, wc
i stands for “ωc =

ωi”, fxc(x|wc
i ) is the value at x of the probability den-

sity function f of the random feature vector xc for all

cells C labeled ωi and P (wc
i ) the a priori probability

that the class of cell C is ωi. The pdf’s f(x|wc
i ) can

hardly be analytically expressed : their value at the
point x is computed using a nearest neighbor tech-
nique within the feature space filled with the proto-
typed cells feature values. Figure 2 presents a classi-
fication result considering three terrain classes {Flat -

with an admissible slope, Uneven, Obstacle}.

Figure 2: Classification of the stereo image of figure 1 : per-
ceived area (left) and reprojection in the sensor frame (right).
From clear to dark: Unknown, Flat, Uneven, Obstacle

3 Global model updating

3.1 The problem

As the robot moves, a new cell image is built each
time 3D data are acquired. Provided a good estima-
tion of the robot position is known, one can build
a global model, aggregating the various cell images.
The fusion problem comes here to estimate the par-
tial probabilities P (wi) of the terrain regions where
cells overlap.

Consider two overlapping cells labeled a and b, de-
fined in two different cell images (figure 5). Let xa

(resp. xb) the value of the feature vector xca (resp.
xcb) extracted from cell Ca (resp. Cb). Let ωca and
ωcb the classes of cells Ca and Cb, and ωca,b the class of
the intersection Ca,b = Ca∩Cb. One could try to label
Ca,b conditionnaly to the knowledge of a feature vec-
tor xca,b extracted from this cell. However, this would
require to memorize all the 3D data points acquired
at different times, and to build a really huge number
of prototypes of intersecting cells, which is impossible
in practice. One could also use Bayesian fusion:

P (w
ca,b

i |XcaXcb)

=
fxca (xa|w

ca,b

i Xcb)P (w
ca,b

i |Xcb)
∑M

j=1 fxca (x1|w
ca,b

j Xcb)P (w
ca,b

j |Xcb)
(2)

But again, the computation of terms P (w
ca,b

i |Xcb) and
fxca (xa|w

ca,b

i Xcb) requires a huge number of proto-
types (for instance, P (w

ca,b

i |Xcb) is the probability
that an overlapping of cell Cb is labeled ωi when the
feature vector extracted from Cb is xcb = xb).

3.2 Our approach

In order to solve the fusion problem, we will first
determine P (w

ca,b

i |Xca) (or P (w
ca,b

i |Xcb)) thanks to a



model, and then use a simplifying hypothesis in order
to easily compute P (w

ca,b

i |XcaXcb).

P (w
ca,b

i |Xca) = P (w
ca,b

i (wca

1 + · · · + wca

M )|Xca) (3)

=
M∑

j=1

P (wca

j |Xca)P (w
ca,b

i |wca

j Xca) (4)

To estimate P (w
ca,b

i |wca

j Xca) in (4), we use a model
based on surfaces sca and sca,b of cells Ca and Ca,b.
Obviously, when labels i and j are equal, it comes:

{
P (w

ca,b

i |wca

i Xca) = 1 if sca,b = sca

P (w
ca,b

i |wca

i Xca) → 1
M

if sca,b → 0
(5)

The model we choose assumes that as the overlap-
ping surface increases, the probability that both cells
Ca and Ca,b labels are the same is higher. We there-
fore estimate P (w

ca,b

i |wca

i Xca) with a strictly increas-

ing function of s
ca,b

sca
:

P̂ (w
ca,b

i |wca

i Xca) = g
(sca,b

sca

)
(6)

With a linear estimation and with (5) (the simplest
model one can make without any more information)
it comes:

g
(sca,b

sca

)
,

M − 1

M
×

sca,b

sca
+

1

M
(7)

When i 6= j, P̂ (w
ca,b

j |wca

i XcaXcb) is supposed to be

uniformly distributed over 1 − P̂ (w
ca,b

i |wca

i Xca) be-
cause the system has no reason to privilege any other
possible labels:

P̂ (w
ca,b

j |wca

i Xca) =
1

M − 1

[
1 − g

(sca,b

sca

)]

=
1

M

(
1 −

sca,b

sca

)
if i 6= j (8)

and (4) becomes

P (w
ca,b

i |Xca) =
sca,b

sca

(
P (wca

i |Xca) − 1
M

)
+ 1

M
(9)

Symmetrically, the same result is obtained for
P (w

ca,b

i |Xcb). The table array illustrates results (9)
with sca = 10, scb = 5 and sca,b = 4.

flat uneven obstacle
∑

P (wca

i |Xca) 0.700 0.200 0.100 1
P (w

ca,b

i |Xca) 0.480 0.280 0.240 1
P (wcb

i |Xcb) 0.500 0.400 0.100 1
P (w

ca,b

i |Xcb) 0.467 0.387 0.146 1

Now, suppose xca and xcb are independent1 for all
classes of Ca ∩ Cb :

fxca (x|w
ca,b

i Xcb) = fxca (x|w
ca,b

i ) ∀x, i

The conjunctive fusion process of P (w
ca,b

i |Xca) and
P (w

ca,b

i |Xcb) obtained with (9) gives [9]:

P (w
ca,b

i |XcaXcb)

=
P (w

ca,b

i |Xca)P (w
ca,b

i |Xcb)
M∑

j=1

P (w
ca,b

j |Xca)P (w
ca,b

j |Xcb)

(10)

One can see on the following table, that the prob-
ability of the Ca,b flat label is smaller than the Ca

one (0.7) because cell Ca,b is smaller than Ca. But
this probability is also higher than the Cb one (0.5)
because it is reinforced by Ca.

flat uneven obstacle
∑

P (w
ca,b

i |Xca) 0.480 0.280 0.240 1
P (w

ca,b

i |Xcb) 0.467 0.387 0.146 1

P (w
ca,b

i |XcaXcb) 0.609 0.295 0.096 1

4 The planning process

4.1 Problem statement

The planning algorithm has to determine, in some
valued graph G, a path P of connected cells from some
starting cell Cs to some arrival cell Ca such that the
cost summation on the arcs is minimal. Let Cglobal the
whole surface defined by all observed mother cells Ci:

Cglobal = C1 ∪ C2 ∪ · · · ∪ Cn (11)

Two approaches are possible. First, Cglobal can be
partionned with non-overlapping cells. For instance,
with mother cells Ca and Cb on figure 5, the par-
tition will be Cglobal = {Ca − Ca,b ; Ca,b ; Cb −
Ca,b}. Such an approach has been exploited yet in
[6, 2, 4] when cells label are known. If labels are un-
known, the main problem is that the label distribu-
tion {P (w

ca−ca,b

i |Xca)}i defined over Ca−Ca,b thanks
to our model (9) may be much less informative than
the distribution {P (wca

i |Xca)}i defined over the entire
mother cell Ca. The second possible approach we pro-
pose here consists in using an overlapping (and not a
partition) of Cglobal built with mother cells and cells

1This means that an observed value of xcb give no informa-

tion on any feature vector xca extracted from any cell Ca such

that Ca ∩Cb is labeled ωi. Smaller is the overlapping compared

to Ca and better is this hypothesis.



included in them : Cglobal = {Ca ; Ca,b ; Cb}. With
such an approach, it is possible to build a hierarchical

path planning description [7, 1, 11].
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Figure 3: Three perceived zones divided in 12 cells

4.2 Definition of the states graph

Our path planning method is based on an explo-
ration of a states graph G in which nodes are the cells
previously defined and arcs represent the topological
relations “is included in” and “is adjacent to”. This
states graph can be represented with a layered struc-
ture : the top layer consists of mother cells, the second
layer consists of cells obtained by intersection of two
mother cells, the third layer consists of cells obtained
by intersection of three mother cells, and so on. Con-
nected cells in a same layer are adjacent cells. Figure
4 shows the states graph corresponding to the three
perceived areas of figure 3.

4.3 Cost of traversability

The cost of traversability to move from a cell Ca

towards a cell Cb when Ca and Cb are connected in
G depends on the physical nature of these both cells.
For instance, moving from a flat cell towards another
flat one is less expansive than moving from a flat cell
towards a uneven one. So this cost is (knowing cells Ca

and Cb labels) C(Ca → Cb|w
ca

i wcb

j ) and, as real cells
labels are unknown, this cost is associated to the join
probability P (wca

i wcb

j |XcaXcb). Thus, the average of
the cost of traversability which depends on random
variables ωca and ωcb is:

C(Ca → Cb) = E
[
C(Ca → Cb|ω

caωcb)
]

(12)

=

M∑

i=1

M∑

j=1

C(Ca → Cb|w
ca

i wcb

j )P (wca

i wcb

j |XcaXcb)

The computation of P (wca

i wcb

j |XcaXcb) is developed
in the two following sections for adjacent and overlap-
ping cells.
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L a y e r  3
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Figure 4: States graph of perceived zones defined in figure 3

4.3.1 Adjacent cells

When cells Ca and Cb are adjacent, their labels are in-
dependent because features are extracted on different
areas. Thus:

P (wca

i wcb

j |XcaXcb)

= P (wca

i |wcb

j XcaXcb)P (wcb

j |XcaXcb)

= P (wca

i |XcaXcb)P (wcb

j |XcaXcb)

= P (wca

i |Xca)P (wcb

j |Xcb) (13)

where P (wca

i |Xca) and P (wcb

j |Xcb) are known.

4.3.2 Overlapping cells

When Ca and Cb overlaps, the system necessarily

crosses area Ca,b = Ca ∩ Cb when moving from Ca to
Cb (figure 5). So there is no arc directly connected
between (a) and (b) in the states graph. Arcs
are between nodes (a) and (a, b) and between nodes
(b) and (a, b). Therefore, studied cost is C(Ca → Ca,b).

Fusion process on the top layer : When Ca and Cb

are mother cells, one only knows the feature vectors
Xca and Xcb , and not Xca,b . So following (12), studied
costs C(Ca → Ca,b) or C(Ca,b → Ca) depends on:

P (wca

i w
ca,b

j |XcaXcb)

= P (w
ca,b

j |wca

i XcaXcb)P (wca

i |XcaXcb)

= P (w
ca,b

j |wca

i XcaXcb)P (wca

i |Xca)

and like for (10) independent conjunctive fusion pro-
cess of P (w

ca,b

j |wca

i Xca) and P (w
ca,b

j |Xcb) (obtained
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Figure 5: Overlapping cells and avoided areas

with (6) and (9)) gives [9]:

P (w
ca,b

j |wca

i XcaXcb)

=
P (w

ca,b

j |wca

i Xca)P (w
ca,b

j |Xcb)

M∑

k=1

P (w
ca,b

k |wca

i Xca)P (w
ca,b

k |Xcb)

(14)

Fusion process on lower layers : The Lower is
the layer and more complicated is the fusion pro-
cess. Nevertheless, it is always possible to com-
pute the probabilities obtained thanks to relations
(6) (9) (10). For instance, on the third layer, a
generic cost C(Ca,b → Ca,b,c) depends on the prob-
ability P (w

ca,b

i w
ca,b,c

j |XcaXcbXcc) which can be de-
veloped in terms obtained thanks to a conjunctive
fusion process of P (w

c3,11,22

i |Xc22) given by (9) and
P (w

c3,11,22

i |w
c3,11

j Xc3Xc11) given by (6).

4.3.3 Graph valuation

The last term to specify in (12) is the cost C(Ca →
Cb|w

ca

i wcb

j ) defined when cells labels are known. This
cost depends on the nature of area included in cell Ca

that the robot has to cross in order to reach Cb and
the interest of reached cell Cb. These both points may
be explained with the following formula:

C(Ca → Cb|w
ca

i wcb

j ) =

δ1 N(Ca, Cb|w
ca

i )︸ ︷︷ ︸
1st point

+δ2 D(Cb|w
ca

i wcb

j )
︸ ︷︷ ︸

2nd point

(15)

For instance D(Cb|w
ca

i wcb

j ) can penalizes displacement
towards undulating areas and prevent move towards
obstacle areas. It can also enable the system to define
a path crossing some specific areas. An example of
possible cost N is detailed in section 4.6.
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Figure 6: Basic cells configuration and graph G associated

4.4 Planning algorithm

The algorithm we used to explore G is A∗ which
requires the estimation of an heuristic function
h(Cu, Ca), that minimizes the cost h∗(Cu, Ca) of all
paths in G between Cu and the goal cell Ca. Gener-
ally, heuristic functions used are based on distances
in Cglobal. As we work on an overlapping of Cglobal in-
stead of a partition, the distance used must be defined
for any king of cells and not only for adjacent ones like
in [2]. The distance we used is the Hausdorff distance
h∞. If A and B are two subsets of IRn

h∞(A, B) , max{h0
∞(A, B), h0

∞(B, A)} (16)

where h0
∞(A, B) , inf{r ∈ IR+|A ⊂ B + rU} and U is

the unit sphere of IRn with L∞ distance

L∞(x, y) , max
i∈{1,...,n}

|yi − xi|

4.5 Navigation areas specification

Finally, translation of some path in the hierarchical
graph G into some crossing areas obey these two rules:

Rule 1 When moving from cell j to cell i, the robot

must avoid all connected cells to j in lower layers.

Rule 2 When moving from cell j to cell i, the robot

must leave cell j if Cj ⊂ Ci.

For instance, if the planning process gives the path P :
(2)− (4)− (3)− (3, 22)− (22)− (11, 22)− . . . shown on
figure 4, the subpath (4) − (3) means that the robot
has to go directly from cell 4 to cell 3 without crossing

the zone (4, 20) (cf. figure 5) because the subpath will
be is this last case: (2) − (4) − (4, 20) − . . . and not
(2) − (4) − (3) − . . . (cf. figure 4). Therefore, the
choice (4)− (3) means implicitly that the robot avoids
other choices represented by smaller cells included in 4
and thus situated in lower layers. The univoque path
corresponding to these rules is represented in dashed
line on figure 3.



4.6 Example

Figure 6 shows a basic example of cells configura-
tion to which are attached the following distributions:

flat uneven obstacle area
P (wc1

i |Xc1) 0.7 0.2 0.1 6
P (wc2

i |Xc2) 0.2 0.8 0 8
P (wc3

i |Xc3) 0.8 0.1 0.1 10
P (wc4

i |Xc4) 0.2 0.7 0.1 8

One has sc1,3 = 4, sc2,3 = 2, sc3,4 = 2. We choose
δ1 = 1 and δ2 = 0 in (15). Thus the interest of reached
cells is not taken into account for the mission. Here,
the cost function N only depends on the time required
to define and execute a trajectory in Cglobal. This time
is theoretically the sum of terrain modeling time (from
perception to model production) and trajectory plan-
ning time. If the robot has to cross Ca in order to
reach Cb, we suppose that this time is proportional to
the area surface the robot has to model in order to
compute an executable trajectory.

N(Ca, Cb|w
ca

i ) = α(ωi)s
ca−(cb∪c∗) (17)

where α(ωi) is the cost of the modeling-planning pro-
cess for unitary cell surface with label ωi and:

α(flat) < α(uneven) < α(obstacle)

and c∗ are the avoided areas then moving from Ca

to Cb (cf. rule 1 in section 4.5). With α(flat) = 1,
α(uneven) = 10, α(obstacle) = 40 the planner gives
the following path if the robot has to move from C1

to C4 : (1) − (1, 3) − (3) − (3, 4) − 4. So the robot
chooses to avoid the large and uneven area C2 − C2,3

and prefers to cross area C3−(C1,3∪C2,3∪C3,4) where
it has a more accurate label knowledge.

5 Conclusion

The hierarchical path planner described in this pa-
per has two main advantages: on one hand, the cost
function used does not require the application of any
decision function after the cell partial probabilities es-
timation : all the information gathered by the robot
remains fully explicited. On the other hand, the hier-
archical structure of the global model we consider en-
ables to control the planning complexity. This struc-
ture is also compatible with a multi-resolution discreti-
sation of the environment Cglobal. For instance cells
used by the robot may be provided by satellite obser-
vations (large Cartesian discretisation of the ground)
in order to have a rough idea of the terrain nature and

by the robot itself to improve its knowledge on some
specific areas. Thus, systems maintaining a global en-
vironment model and in which different sensors pro-
vide different cells discretisation are concerned by this
work.

References

[1] R. A. Brooks. Solving the find-path problem by good
representation of free space. IEEE Transactions on
Systems, Man, and Cybernetics, 13(3):190–197, 1983.

[2] R. Chatila. Mobile robot navigation : Space modeling
and decisional processes. ISRR, 3, 1985.

[3] R. Chatila, M. Devy, S. Lacroix, and M. Herrb. Per-
ception system and functions for autonomous navi-
gation in a natural environment. In Proceedings of
the AIAA/NASA Conference on Intelligent Robots for
Field, Factory, Service and Space, Houston, Texas
(USA), March 1994.

[4] R. Chatila and S. Lacroix. Adaptive navigation for au-
tonomous mobile robot. In International Symposium
on Robotics Research, Munich (Germany), October
1995.

[5] M. Hebert. Pixel-based range processing for au-
tonomous driving. In IEEE International Conference
on Robotics and Automation, San Diego, California,
1994.

[6] K. Kant and S.W. Zucker. Toward efficient trajectory
planning: Path velocity decomposition. International
Journal of Robotics Research, 5:72 – 89, 1986.

[7] T. Lozano-Perez. Spatial planning : A configura-
tion space approach. IEEE Transactions on Systems,
Man, and Cybernetics, 11(10):681–698, 1983.

[8] J.S.B. Mitchell and C.H. Papadimitriou. The
weighted region problem : Finding shortest paths
through a weighted planar subdivision. Journal of the
Association for Computing Machinery, 38(1), 1991.

[9] E. Piat and D. Meizel. Proposal of a probabilistic
believes fusion framework – application to range data
fusion. In Proc. of the IROS ’97 International Con-
ference on Intelligent Robots and Systems, pages 1415
– 1422, Grenoble, France, Sept. 1997.

[10] R.F. Richbourg. Solving a two dimensional path plan-
ning problem using topographical knowledge of the
environment and capability constraints. In IEEE In-
ternational Conference on Robotics and Automation,
San Francisco (USA), 1986.

[11] D. Zhu and J. C. Latombe. New heuristic algorithms
for efficient hierarchical path planning. Technical
report, Robotics Laboratory, Computer Science De-
partement, Stanford University USA, 1989. Research
Report STAN-CS-89-1279.


