Using Planar Facets for Stereovision SLAM

Cyrille Berger and Simon Lacroix

Abstract—In the context of stereovision SLAM, we propose a way to enrich the landmark models. Vision-based SLAM approaches usually rely on interest points associated to a point in the Cartesian space: by adjoining oriented planar patches (if they are present in the environment), we augment the landmark description with an oriented frame. Thanks to this additional information, the robot pose is fully observable with the perception of a single landmark, and the knowledge of the patches orientation helps the matching of landmarks. The paper depicts the chosen landmark model, the way to extract and match them, and presents some SLAM results obtained with such landmarks.

I. INTRODUCTION

A. Motivation

Most of the many existing contributions to the SLAM problem in the literature tackle the estimation process – see [6], [1] for an up to date state of the art. Various formalisms have been successfully introduced, and important contributions propose structures of the landmarks maps in order to both reduce the algorithmic complexity of the estimation process, and the difficulties related to the non-linearity of the problem.

But any solution to the SLAM problem also call for perception processes. This is obvious for the detection of landmarks and the observation of their position, which comes from the processing of acquired data. And if the landmark matching problem can be solved by the mere knowledge of their estimated and observed positions, it is more robustly solved by the landmarks identification and recognition, because it is independent of the current position estimate.

The choice of the landmarks model is naturally a critical point: a good landmark must be salient in the data, and should be easy to detect and match from different viewpoints. The model of a landmark can be split in two parts: one part dedicated to the estimation (geometric variables which defines its position), and one part dedicated to the matching process, which includes the information that identifies it. For instance, most of the solutions to the Vision SLAM problem are based on interest points (Harris points, or “SIFT” points, either in stereovision [9], [15] or monocular vision [5]). Interest points provide these two kinds of information: they correspond to 3D points in the environment, and they carry visual information useful to match them.

The environment model made of such landmarks is poor, and is only useful to solve the SLAM problem. There is a strong interest to rely on richer landmarks models: on the one hand it can help the matching process, and on the other hand it can yield environment models more representative of the environment structure, on the basis of which other functions than localisation can be applied (e.g. computation of free space, computation of visibility...). The recent contributions to vision SLAM which use segments as landmarks are going in this direction [7], [18], [10].

B. Approach and outline

In this paper, we propose a landmark model based on planar facets detected using stereovision. Relying on interest points, this model contains six geometric parameters and texture information: this description gives a better observability of the robot position by the perception of a small number of landmark

1, and makes the matching process easier when perceiving a landmark from different view points. Section II presents this landmark model and the corresponding detection process in a pair of stereoscopic images. Section III describes tracking and matching algorithms, and SLAM results using those landmarks are shown in section IV.

C. Related work

There has been various contributions that represent the environment with small planar patches. For instance, [13] presents a method to extract patchlets from stereo images in order to model the perceived surfaces, but do not register multiple views. The main approaches that consider planar surfaces in a SLAM context are the following:

• In [8], the authors present a monocular SLAM approach in which 3D points are augmented with normal information. When points are found to be on the same plane, their state vector in the EKF filter is “collapsed”, so as to reduce the computational cost.

• In [4], the authors use SLAM with point landmarks, and find the planes among the point cloud using a RANSAC process, thus allowing to derive a map with higher level structural information.

• [3] presents an approach that recognizes known planar objects that have been previously modelled and stored in a data base.

• In [17], the authors present a method to detect and track larger planar patches in the environment using a monocular camera.

It is worth to notice that besides [17], these contributions deal with the problem in small confined environments.

II. PLANAR FACETS

Facets correspond to planar areas detected around interest points, by checking whether an homography between their two stereoscopic views can be fitted or not.

1As opposed to [12], in which facets are only used to ease the matching process.
Fig. 1. Left image of a stereoscopic image pair, and extracted facets.

A. Facet model

A facet is a set of geometric properties that represent its position and orientation, completed by signal information. Figure 1 shows an example of facets extracted from a pair of stereoscopic images.

Two equivalent geometric models are defined:

- A matrix representation of the position and orientation of the facet (12 parameters: the facet centre, plus the 3 vectors of the associated frame)
- A minimal representation (six Euler parameters)

The matrix representation is used to compute comparisons and transformations during detection and matching, whereas the Euler angles are used for the SLAM estimation.

To simplify the matching process, facets correspond to a constant size of planar patches in the environment (we typically use a size of 10×10 centimetres), and the associated texture is stored in a fixed size image (25×25 pixels in our implementation).

B. Facets extraction

a) Interest point detection: Interest points are image pixels to which are associated numeric properties that are stable with respect to viewpoint changes. A facet can be associated to a Harris point or to scale invariants points – the later offer a better repeatability, at the expense of a much higher computation time.

b) Homography estimation: Dense pixel stereovision could be used to estimate the normal vector of the surface corresponding to an interest point, with a least square plane fitting algorithm applied to the neighbouring 3D points. But fast stereovision algorithms yields noisy coordinates of the 3D points, which make the estimation of the normal very unstable.

An approach based on the homography estimation is more robust and reliable. The two image projections I_1 and I_2 of a plane P corresponding to different viewpoints are linked by a homography $s \ast H$, where H is a 3x3 matrix, and s is an unknown scale factor (often defined so that $(s \ast H)(3,3) = 1.0$). So two image patches I^p_1 and I^p_2 extracted from I_1 and I_2 correspond to a planar patch in the environment if there is a matrix H that satisfies:

$$T(H, I^p_2) = I^p_1$$

Where $T(H, I)$ is the image resulting from the transformation applied to the image I using the homography H.

Alignment algorithms which compute the value of H are optimisation procedures whose goal is to minimise:

$$E = T(H, I^p_2) - I^p_1 - (\mu(T(H, I^p_2))) - \mu(I^p_1))$$

Where $\mu(T(H, I^p_2))$ and $\mu(I^p_1)$ are the mean of the pixels of $T(H, I^p_2)$ and I^p_1, which reduce the influence of lightning change between two images.

For small image areas, both methods are able to estimate an homography which either precisely corresponds to the associated plane or is totally erroneous. Experimental trials show that when an erroneous homography is estimated, the resulting normal is completely unpredictable and not reproducible: those cases can therefore be identified by analysing successive observations (see III-C). Figure 2 shows some evaluations of the two algorithms on synthetic images.

It appears that ICE gives more facets but with a bigger error, while ESM tracks less facets, but is more accurate.

Fig. 2. Comparison of the ICE (dash lines) and ESM (solid lines) algorithms. A plane textured with a real image is rotated in front of the camera: the plot shows the estimated normal error (left y-axis, blue lines) and the number of detected facets (right y-axis, red line), as a function of the plane orientation with respect to the camera. The collapse of the facet numbers around 40° is due to the fact that the interest point matching algorithm can hardly match points under large viewpoint changes.
c) Normal estimation: Once the homography is computed, the normal of the facet is computed using the geometric parameters of the stereovision bench – e.g. by computing the coordinates of three points of the plane using the homography.

d) Completing the facet orientation information: The facet orientation is defined by three vectors: it is only necessary to compute two of them, the third one being the result of their cross product. The first vector is the normal vector, and the second vector is computed on the basis of the texture of the facet, so as to represent its orientation: the gradient is computed on each pixel P of a square window W around the interest point IP, using Sobel masks. The facet orientation is then defined as the following weighted sum:

$$\text{Orientation} = \frac{\sum_{P \in W} w(d(P, IP) \ast \text{atan}(2(Gy(P), Gx(P)))}{\sum_{P \in W} w(d(P, IP))} \quad (3)$$

Where $d(P, IP)$ is the distance between the pixel P and the interest point IP and $w(x)$ is a Gaussian weighting function.

Unfortunately, despite the decrease of sensitivity to noise and to viewpoint changes brought by the weighted sum, the orientation is either very stable (in most cases) or very unpredictable and not reproducible. As for the computation of homography, facets whose orientation is not stable can be eliminated by analysing successive observations (see III-C).

In our convention, this orientation is the third Euler angle of the facet (“roll”, denoted w).

The orientation is a reliable information for the basis, since the physical size (in real world coordinates) of the texture is constant and the perspective of the texture of window W is corrected using the normal.

C. Texture

The texture of a facet F is interpolated from the image of the camera, using the geometric properties of the facet. Each point p_i of the texture correspond to a 3D point $P \in F$, this point P is then projected on a pixel p_c of the camera.

Let P_{Camera} the projection matrix of a point in the environment on the focal plane of the camera, OF the vector from the origin of the world to the centre of the facet F, and v and w, the orientation vectors parallel to the facet plane. Assuming the texture pixels are indexed from the facet centre by i and j, and given r the resolution of the texture, the following equation gives the value for each pixel of texture as shown figure 3:

$$p_c(i, j) = p_c(P_{\text{Camera}}(OF + i * v + j * w + r)) \quad (4)$$

By applying this interpolation to memorise the facet texture, the texture of the facet is represented the way it would have been perceived with the camera “aligned” to the facet, i.e. with the optical axis parallel to the facet normal, and the horizontal axis aligned to the facet orientation w. Thanks to this representation, during matching, a pixel by pixel comparison of the texture allows to get a similarity score between the observed texture and the memorised texture.

![Fig. 3. Interpolation of the texture of a facet. The blue line shows an association of an image pixel to a pixel of the memorized texture.](image)

Note that to avoid situations of undersampling, facets which are too far from the robots are not used so that a 10x10cm patch correspond to at least 25x25 pixels.

D. Error model

The error model for the minimal geometric representation of facets is composed of covariances of its centre coordinates and of its Euler angles. The centre coordinates and the orientation angles being computed by independent processes, the centre/orientation covariances are equal to 0. Similarly, the facet normal estimate is provided by the homography estimate, and its orientation by an analysis of the texture: these parameters variances are therefore independent. This yield a covariance matrix with the following form:

$$
\begin{bmatrix}
M_{\text{stereo}} ^{[3\times3]} & 0_{[3\times3]} \\
0_{[3\times3]} & \sigma^2_u & \sigma^2_v & \sigma^2_w \\
\sigma^2_u & \sigma^2_v & \sigma^2_w & 0 \\
0 & 0 & 0 & \sigma^2_w
\end{bmatrix}
$$

Where $M_{\text{stereo}}^{[3\times3]}$ is the stereovision usual error model [19]. The variance and covariance values for the angles are empirically set as follows: $\sigma_u = \sigma_v = \sigma_w = 0.01 rad$ and $\sigma^{2}_u/v = 0.01 rad$.

III. FACETS MATCHING

A. General Algorithm

The method used for facets matching is an extension to the third dimension of an interest point matching algorithm described in [9]: the idea is to mix signal information with geometric relations between neighbouring facets to assess robust matches.

Let \mathcal{F}_1 and \mathcal{F}_2 two sets of facets within which we are looking for matches. The algorithm is a hypothesis-and-test procedure: it starts by establishing a first match between a facet from \mathcal{F}_1 and one from \mathcal{F}_2 using only signal information. This first match hypothesis gives a geometric transformation $\mathcal{T}_1 \rightarrow_3 (f)$, which is used to focus the search of additional matches, the establishment of additional matches reinforcing the initial hypothesis.

1) Given $f_1 \in \mathcal{F}_1$, let $f_2 \in \mathcal{F}_2$ the facet whose texture is the closest to the one of f_1 – in other words, the facet $f \in \mathcal{F}_2$ which maximises $\text{CompareTexture}(f_1, f)$ where CompareTexture is a texture comparison function (for instance the ZNCC score)
2) This first match allows to compute the geometric transformation $T_{t-2}(f)$ such that:

$$T_{t-2}(f_1) = f_2 \quad (6)$$

3) \(\forall f'_1 \in \mathcal{F}_t \), if there is \(f'_2 \in \mathcal{F}_2 \) which satisfies the following two conditions:

$$T_{t-2}(f'_1) \approx f'_2 \quad (7)$$
$$\text{CompareTexture}(f'_1, f'_2) > T_{\text{texture}} \quad (8)$$

Then the couple \((f'_1, f'_2)\) is a match.

Figure 4 shows two examples of facet matching results.

B. Facets tracking

One of the advantages of using planar facets is the possibility to re-project them and to predict how a camera will observe them from a different viewpoint. Especially, if the transformation is precisely known, it is very easy to compare the observation with the texture in memory. This is of a limited interest for SLAM when the change of viewpoint compare the observation with the texture in memory. This is especially, the possibility to re-project them and to predict how a camera will observe them from a different viewpoint.

B. Facets tracking

Let $\mathcal{I}_p(I_{t+1})$ and $\mathcal{I}_p(I'_{t+1})$ the list of interest points detected at time $t+1$ in the left and right images I_{t+1} and I'_{t+1}, and $\mathcal{F}(t)$ the set of facets detected at time t.

1) \(\forall f \in \mathcal{F}(t) \), the projection P_f^l of f on the image I_{t+1}^l is computed

2) Let \mathcal{C} the list of interest points located close to the predicted position of the facet on the image:

$$\mathcal{C} = \mathcal{I}_p(I_{t+1}^l), |IP - P_f^l| < \epsilon \quad (9)$$

Using the motion estimate $T_{t-1(t+1)}(\text{base})$, it is possible to predict the facet parameters, and especially to use its predicted normal to compute the texture for each points of \mathcal{C} as in section II-C. Let $I_{t+1}^r(\mathcal{C}) \in \mathcal{C}$ the interest point whose texture is the closet to the one of the facet.

3) The same method is used to find $I_{t+1}^r(\mathcal{C})$ in the right image, with the added constraint that the two interest points must satisfy the epipolar constraint

4) using the couple (I_{t+1}^l, I_{t+1}^r), the parameters of the facet f_{track} are computed as in section II, this allow to check that $f_{\text{track}} = T_{t-1(t+1)}(f)$

With respect to other tracking methods (such as [16] or [11]), this approach offers the interest to get a direct control on the facets parameters, the possibility to update their models and to filter out the ones for which an erroneous homography has been estimated, as shown in the following sections.

For 200 facets, a tracking step takes 300 ms (including all processing: image rectification, interest point detection and facets tracking), whereas an initial facet detection requires 500ms, and the matching without any prior motion estimate requires a second \(^2\).

C. Unreliable facets elimination

After the application of the matching or tracking algorithms, some facets remain unmatched, or their observation is not consistent with the matched facets observation. Such facets correspond either to an interest point with a too small repeatability, or to an erroneous normal or rotation estimate (see section II-B). This can be due to various causes: for instance, if the neighbourhood of an interest point has a weak texture, this can lead to a wrong homography (a black point on a white wall is a strong interest point, but the resulting homography is very likely to be erroneous).

Unmatchable, untrackable and inconsistent facets are considered to be weak facets, and are simply discarded.

IV. APPLICATION TO SLAM

Landmarks are defined as a group of facets: the interest of grouping facets for the SLAM estimation process is to reduce the size of the filter state, while keeping as much as possible information on the environment. Groups are usually composed of twenty to fifty facets, which increases the chance of detecting and matching a landmark when the

\(^2\)Time measured on a Intel core Duo @ 2GHz using only one thread, on 512×392 images.
robot closes a loop. Indeed, using facet clusters as landmarks, landmarks can be associated by a single facet match.

As a consequence, every matched facet provides an observation of the landmark. To update the filter state, a weighted sums of these observations is used, which means that the state of facets is updated independently (a better solution would be to associate an EKF filter to each group of facet, so as to refine the inner geometric description of the landmark).

\[\begin{align*}
\text{A. Facets grouping} \\
\text{Facets are grouped by geometric proximity, and so that the density of the group is higher close to the centre of the landmark. The reason is that facets closer to the centre of the landmark gives a better estimation of its position. Indeed, an error on the observation of the facet angles basis yields an higher error on the position of the landmark the farther away the facet is (the error is } \delta \text{position} = \delta \text{angle} \cdot \text{distance}, \text{assuming } \delta \text{angle} \text{ is small so that } \delta \text{angle} \approx \tan(\delta \text{angle}). \end{align*} \]

After the detection step, we have a set \(F \) of facets.

1) Given \(f^i \in F \), given \(G^i \) the set of facets close of \(f^i \) :

\[G^i = f \in F, d(f, f^i) < r \]

where \(d(f_1, f_2) \) is the distance between two facets \(f_1 \) and \(f_2 \) and \(r \) is the radius of a landmark

2) Using this first group of facets, the centre \(C \) of the landmark is computed as the barycentre:

\[OC = \frac{\sum_{f \in G^i} w_f \cdot f}{\sum_{f \in G^i} w_f} \]

The weighting \(w_f \) is used to favour facets which are considered to be better observed, i.e. whose normal is parallel to the camera. Thus, the weighting function is:

\[w_i = \angle \text{camera} | n_f > \]

3) The group of facets that define the landmark is the set:

\[f \in F, d(f, OC) < r \]

Steps 2 and 3 could be repeated in a loop until the group of facets remain stable. But experiments show that the group of facets does not change much during the following iterations. Figure 6 shows the result of grouping facets.

\[\begin{align*}
\text{B. Integration in SLAM} \\
\text{Let } A \text{ the set of landmarks in the environment, } F_{tr} \text{ the set of facets tracked at a given time } t \text{ (that is to say the set of facets which have been tracked and the facets which couldn’t be tracked but were possibly in the field of view of the camera), and } M_{robot} \text{ the prediction of the robot displacement (provided by e.g. odometry).} \\
1) \text{The set of tracked facets } F_{tr} \text{ is determined using the algorithm described in section III-B, the motion estimation } M_{robot}, \text{ and } F_{t-1}, \text{ which allows to deduce a set of landmark observations } O \\
2) \text{if the ratio of tracked facets is below a given threshold:} \\
\frac{|F_{tr}|}{|F_{t-1}|} < \text{th}_{\text{TrackedFacets}} \\
\text{it is necessary to start a new detection step:} \\
- \text{the facet detection process described section II-B returns the set } F_{detect} \text{ of detected facets} \\
- \text{the matching algorithm of section III-A is used to compute whether one of the landmark of } A \text{ has reappeared in the field of view. Considering a landmark } A \in A \text{ and if the set } F_{matched} \text{ of matched facets between the facets of } A \text{ and } F_{detect} \text{ is not empty, } F_{matched} \neq \emptyset. \text{ Then the set of observations } O \text{ is completed with a new observation of the landmark, and the facets which are part of this landmark are removed from } F_{detect} \\
- \text{the grouping algorithm of the facets in section IV-A allows to create a new landmark } newlandmarks \\
3) \text{the sets } O \text{ and } newlandmarks \text{ are used to update the Kalman filter and its state vector} \\
4) \text{the set } F_t \text{ is computed by removing facets that can not be tracked anymore (because they left the field of view), and by adding the newly detected facets:} \\
F_t = (F_t \cup F_{detect}) \setminus F_{untrackable} \tag{15} \\
\text{where } F_{untrackable} \text{ is the subset of facets of } F_{t-1} \text{ which are not in the field of view of the camera.} \\
\text{This process is summarised by figure 7, and figure 8 shows two trajectories, one with the loop detection and one where the matching algorithm has been disabled. Naturally, applying the loop detection algorithm yields a final position estimate that is closer to the ground truth.} \]
V. Future work

This work has shown the interest of modeling the environment using facets for the SLAM. There are however some limitations that should be overcome:

- while facets are observable from different view points, as they are centred on interest points, their detection is still very sensible to changes of viewing angle.
- without an heuristic to reduce the space of research, the facets matching process is a costly one. The heuristic we used in this paper is based on the estimation of the robot position: it is be necessary to develop other methods, especially when this position has become too imprecise.

Furthermore, this representation of the environment, while richer than models using until now in vision SLAM is far to use all the available information that can be extracted from a stereovision bench. To limit this loss of information, we have decided to suppose that the transformation between two facets observed at a given time was certain (see section IV-B), and that the two facets could be inserted in a single landmark without any problems. But it would be also interesting to re-estimate the relative positions of the facets that are grouped with respect to the local frame associated to the group landmark. This could be achieved by associating a Kalman filter to each group landmark, using a “Divide and Conquer” method as in [14].

REFERENCES