
An Architecture for
Dependable Autonomous Robots

Félix Ingrand, Raja Chatila, Rachid Alami
LAAS/CNRS

7 Avenue du Colonel Roche
31077 Toulouse Cedex 4, France

{felix,raja,rachid}@laas.fr

Introduction
Autonomous robots are complex machines embedding:

• software modules implementing basic functions such as servo
loops to follow a path, or to compute stereo correlation of a
pair of images.

• software to take into account the interactions between the
robot components.

• programs which deal with the supervision and the planning of
the mission.

These components are integrated within an architecture which
defines an organization and a methodology for robot operation.
This architecture, which determines the robot’s capacities to
achieve tasks and to react to events, should possess the following
properties:

a. Programmability: The robot shouldn’t be designed for a specific
environment or for achieving a single task, and programmed in
detail to do it. It should be able to achieve multiple tasks in different
situations, described at an abstract level. Its functions should be
easily combined according to the task to be executed.

b. Autonomy and adaptability: the robot should be able to carry
out its actions, to refine or modify the task and its own behavior
according to its goals and to the execution context as perceived by
its sensors.

c. Reactivity: the robot has to take into account events with time
bounds compatible with the correct and efficient achievement of its
goals (including its own safety, which is a permanent goal).

d. Consistent behavior: the (re)actions of the robot must be
guided by the objectives of its tasks.

e. Robustness: an individual action has well defined operating
conditions. To deal with contingencies out of the scope of these
conditions, the control architecture should be able to exploit the
redundancy of robot functions.

f. Extensibility: integration of new functions and definition of new
tasks should be easy. Learning capabilities are important to
consider here: the architecture should make learning possible.

Dependability as such is not often explicitly considered in such a
system, except in very critical applications (e.g., assisted surgery).
However, issues (b., c., d., and e.) above deal with several aspects
directly related to dependability and robust behavior. As robots are
to interact more closely with humans (to assist, to communicate
and to program), these issues become more central. We contend
that they cannot be considered independently from the decision-
making processes of the system. Indeed in its nominal operation,
the robot control system should exhibit some robustness, i.e., it
should include within its decision-making processes the capacity to
act in different contexts and to react to unexpected events. These
decision-making processes include those that are classically
considered as related to dependability and safety issues. Therefore
the validation of the architecture itself and of its components
becomes a central issue for dependability. The architecture should
provide tools to help the designer not only to integrate and develop
the global robot system, but also to validate it both in its logical
properties and temporal operations. The architecture we propose
(called LAAS1) and use on our robots addresses some of these
issues.

1 LAAS Architecture for Autonomous Systems.

The LAAS Architecture
The LAAS architecture [Alami et al., 1998] has three hierarchical

levels (Fig. 1), having different temporal constraints and
manipulating different data representations. From bottom up, the
levels are:

• A functional level. It includes all the basic built-in robot action
and perception capacities. These processing functions and
control loops (image processing, motion control, etc.) are
encapsulated into controllable communicating modules with
no fixed hierarchy.

• An execution control level, or Executive. Just above the
functional level, it controls and coordinates dynamically the
execution of the functions, distributed in the modules,
according to the task requirements specified by the next level.

• A decision level. This higher level includes the capacities for
producing the task plan and supervising its execution, while
being at the same time reactive to events from the other
levels. It may embed several layers, which integrate
deliberation and reaction, according to the application.

Approaches and Tools
The software architecture of each of our robots is a specific
instance of the generic architecture presented above. Its integration
is achieved using approaches and tools which we briefly present,
with an emphasis on the dependability aspects.

Automatic Generation of Functional
Modules: GenoM
The Generator of Modules GenoM [Fleury et al., 1994] is a tool to
design and build real-time distributed software systems. It allows to
easily encapsulate operational functions (algorithms broken down
into elementary code chuncks called “codels”) on independent

N

S

EW

perception

mission

Modules

communication

OPERATOR

reports

state

requests reports

control

proprioceptive
 sensors

proximetric
 sensors

effectors
exteroceptive
 sensors

ENVIRONMENT

E
xe

cu
ti

o
n

C
o

n
tr

o
l L

ev
el

L
o

g
ic

al
S

ys
te

m
P

hy
si

ca
l

S
ys

te
m

Executive

servocontrol
control

reflex actions

Plan Supervisor

Task Supervisor Task
Refinment

Mission
Planner

Sensor and Effector Interface

monitoring

modelling

requests

D
ec

is
io

n
L

ev
el

F
u

n
ct

io
n

al
L

ev
el

Figure 1: The LAAS Architecture

communicating modules. The functions can be dynamically started,
interrupted or (re)parameterized upon asynchronous requests sent
to the modules by any other element in the system, including other
modules, the execution controller or the supervisor. A final reply
that qualifies how the request has been executed by the module is
sent back. A module operation can be modeled by a finite state
automaton.

Thus the modules generated using GenoM are “standardized”
servers. A module can integrate several synchronous or
asynchronous functions (related to a same resource or
functionality), and can execute them in parallel. In such a way, one
can build modules specialized in camera control (image production
with different parameters/filters), or actuator control (with several
servo-control algorithms), or trajectory computation, or map making
(with various modalities), etc.

Programming a module does not require knowing about the on-
board operating system, nor communication or other real-time
procedures (synchronization...). Modules are automatically
produced by GenoM using a template. Such systematic
specification guarantees a coherence in module design (usually
different modules are programmed by different persons) and allows
to automate their integration. Moreover, all the modules being
based on a template, only the codels and the particular activity
states automata need to be specified and eventually proven to
improve the robustness and dependability.

The Executive: Kheops
The Executive is certainly one of the most critical components of
the architecture, dependability wise. It is a purely reactive system,
with no deliberation capability, which acts as a time bounded filter
between the decisional level and the functional level. It is thus
responsible for catching poor or inadequate decision which could
come from the decisional level or the user.

It receives a flow of requests to be executed from the decision level.
Based on the request to transmit, on the current state of the set of
modules, and on a finite state automaton, it selects, parameterizes
and synchronizes dynamically the adequate requests which are
passed to the functional level.

The state of the set of modules is maintained by the Executive,
according to the ongoing activities and to the output of previous
processing, i.e. according to requests sent and to replies returned
by modules once an activity is over.

The finite state automata is computed beforehand, off line, from a
set of propositional rules and encodes the desirable or undesirable
interactions between the functional modules. We currently use
Kheops [Alami et al., 1998], a rule based system that meets the
compiling requirement of a finite number of possible rule chaining
and involves basically a monotonic deduction on a propositional
logic. Such an approach allows us to prove a number of properties
thus improving the overall dependability of the system.

Supervision and Plan Execution Control:
Propice
The supervisor and plan executor of the decision level is a reactive
system which controls and refines the execution of the plan
provided by the user or the planner. It monitors the reports, in
response to the requests it sent, and takes corrective actions when
they are specified. Moreover, it recognizes critical situations and
executes predefined operational procedures to take care of them. It
is implemented in Propice [Ingrand et al., 1996] which is composed
of a set of tools and methods to represent and execute plans and
procedures. Propice is composed of:

• A database which contains facts representing the system view
of the world and which is constantly and automatically
updated as new events appear. In our robot architecture, the
database contains symbolic but also numerical information
such as the position of the robot, the status of the various sub-
systems, the currently used resources, etc.

• A library of procedures/plans, each describing a particular
sequence of actions and tests that may be performed to
achieve given goals or to react to certain situations. The

content of this procedure library is application dependent and
it may include predefined plans to perform robot tasks.

In Propice, each plan/procedure is self-contained: it describes in
which conditions it is applicable and the goals it achieves. This is
particularly well adapted to context based task refinement and to
incremental robot tasks.

The supervisor and plan execution control components provides
mechanisms to improve the overall dependability of the system
(monitoring situations, reports analysis and error recovery, etc).
However, if the plans provided by the planner are logically sound,
those provided by the user practically remain unverifiable, hence
the need for the executive which provides safe but conservative
mechanisms.

Planning/Scheduling: IxTeT
Several planners are needed in a robot. Some of these, such as
path and trajectory and manipulation planners, are modules of the
functional level. The task and mission planner belongs to the
decision level. It is a system queried by the supervisor. It has to
deal explicitly with time, not only in task duration, but also in parallel
activities within compound tasks, and in various temporal
constraints between conditions (before or while a task proceeds)
and effects of a task. It should deal, at planning time, with the
predictable part of a dynamic environment, e.g., contingent change
not under the robot control such as day/night cycles, resource
availability profiles, or expected events. It has to manage the
resources of the robot, preferably while planning, not as a
subsequent resource allocation and scheduling step, after the tasks
have been chosen and constrained.

We developed and use the IxTeT planner, which is based on a
reified logic formalism. In IxTeT, attributes are temporally qualified
by the predicate hold, which asserts the persistence of an attribute
value over an interval; and the predicate event, which states an
instantaneous change of values. Resources are expressed by the
predicates use, which represents a borrowing of a quantity of a
resource over an interval, consume and produce which state the
consumption or production of a quantity of a resource.

IxTeT time-map manager relies on time-points as the elementary
primitives. Time-points are seen as symbolic variables on which
temporal constraints can be posted. A time-map manager
propagates numeric and symbolic constraints (precedence,
simultaneity) to ensure the global consistency of the network. It
answers queries about the relative position of time-points.
Management of atemporal variables is achieved through a variable
constraint manager. We consider variables ranging over finite sets
and propagate domain restriction, equality and inequality
constraints. Constraint propagation on atemporal variables is
achieved through classical CSP techniques.

The initial plan is a particular task that describes a problem
scenario, that is: (i) the initial values for the set of instantiated
attributes (as a set of explained events); (ii) the expected changes
on some contingent attributes that are not controlled by the planner
(as a set of explained events); (iii) the expected availability profile of
the resources ; (iv) the goals that must be achieved (usually, as a
set of assertions); and (v) a set of temporal constraints between
these elements.

The use of a logically based planner dramatically improves the
overall dependability of the system.

Indeed, such planner relies on logical and formal foundations and,
providing the actions and the states representation is correct and
sound, the plans produced are also correct and sound.

Robust Robot Operation
Rationale
In order to achieve dependable behavior, robot modules are
designed so that they can cope with some contingencies and
variations in their operating context, but within well defined limits.
Out of these limits, It is at the architectural level, i.e., in the
organization of the system, that dependability is achieved, through
the decision-making processes that analyze the situation and select
the most adequate actions. We illustrate this by the following

example of an indoor navigation task implemented on the mobile
robot Diligent (Figure 2). We use a classical plan-and-execute
paradigm based on a previously learned map. However, this
paradigm is enhanced by several features to achieve dependable
behavior. A geometric path planner provide the trajectory to reach a
specified goal. Trajectory execution, based on the control of an
elastic band, allows an effective robustness to contingencies, from
local obstacle avoidance, to adaptation to moving and transient
obstacles as well as adaptation to significant re-localization
updates. Second, if the band is completely blocked for a period of
time, a new path is searched, taking into account an update of the
learned map. The loop is repeated iteratively until the robot reaches
its goal or the planner finds no path, or an external event entails the
postponement or the cancellation of the navigation mission.

Figure 2: Diligent is based on XR4000 mobile platform

A localization module using the known map enables to cope with
odometry errors, providing the robot with a accurate positioning.

Hence each module has its own capacity to cope with errors
(localization uses odometry or model-based localization, trajectory
execution includes obstacle avoidance), but a the supervisory level,
decision to replan when the individual modules are unable to
complete the task, enables to achieve a more global dependable
behavior.

Robot Modules and Architecture
Diligent’s current architecture consists of a supervisor and six
modules: we briefly summarize their main functions.

The XR4000 module implements the interface with the basic robot
primitives provided by the robot manufacturer.

The LRF module controls a laser range finder.

The Segment-based Localization (SEGLOC) module is in charge of
maintaining an accurate position of the robot. Map building and
localization procedures use an Extended Kalman Filter to match the
local perception with the previously built model. Fig. 4 shows a
localization experiment in a map of about 400 segments previously
built by the robot. The trajectory is a large loop.

The main purpose of the Motion Planner (MP) module is to plan
feasible paths for the robot. Depending on the current task needs,
the supervisor adapts the motion planning activities: it selects the
level of discretization, the type and the source of obstacles to be
taken account by the planner, the shape and the kinematics
constraints of the robot..

The E-BAND module uses an elastic band method to dynamically
modify a trajectory in order to take into account variations in the
obstacle layout between the model used during path planning and

the actual sensor data acquired during path execution. The
principle is to build a flexible path between the current robot position
and the goal, described by a sequence of configurations in free
space. Connectivity between these configurations is maintained by
a set of internal forces that also optimize the global shape of the
path. External forces are associated with obstacles and are applied
to all configurations in order to maintain the path away from
obstacles. The MP module is invoked again if the elastic has been
broken. MP then tries to produce a path with a different homotopy
class.

Figure 3: Diligent's Software Architecture: The Robot Supervisor
controls 6 modules (rectangles).

Figure 4: Comparison of position estimation obtained from
XR4000 odometry alone (dark circles) and from the SEGLOC

module (gray circles).

Dimensions: 40x60m2.

The robot is intended to navigate in human environments, and
safety issues are therefore of concern. The USIT module embeds
the basic functions that are controlled by the supervisor for a safe
sensory human/robot interaction. For instance, it implements a
compliant motion mode in which the robot moves as if it was
pushed by a human; the direction of motion is detected using the

ring of infra-red sensors while the ultra-sonic sensor are used to
create repulsive forces in order to avoid contact with obstacles.

Robot Supervisor
The robot supervisor is programmed in Propice. All supervisor
activities (task refinement, control, display, dialog...) are
programmed using goal directed and/or situation driven
procedures.

The main activities, performed by the Robot Supervisor, are:
Mission Management, Robot Localization Control, Robot
Navigation Control, Human/Robot Interaction Control. These
different activities interact depending on the current context.

Fig 5. shows a path produced by the planner as well as the elastic
band that drives the robot avoiding obstacles not present in the
map.

Figure 5: A navigation task : the planned path and its execution.

Figure 6: A navigation task: re-planning in case of failure.

Fig.6 shows a situation where the robot has been blocked at the
door. The supervisor decided to re-plan its path, to pass trough
another door.

The robot demonstrated effective autonomy in planning and
executing its navigation tasks, end re-planning in case of
permanent obstacle, thus achieving a dependable behavior.

Conclusion and Future Dependability
Issues
We believe the presented architecture provides already a number
of features and characteristics that implement an effective overall
robustness and some ingredients of dependability for robots.
Issues of dependability and trustworthiness of robots will become
more and more important and will deserve more efforts. Indeed,

applications such as robots for surgery and robots in direct
interaction with the public impose very severe dependability
constraints.

The presented architecture and associated tools can serve as a
basis for future work in this domain. Indeed, a number of issues
remain to be addressed:

to provide mechanisms similar to those based on synchronous
languages (e.g., those present in Orccad [Orccad, 1998] to define
the activity states automata in the GenoM modules.

• to provide mechanisms (e.g., timed automata and such [S.
Bornot and J. Sifakis, 1998]) to prove temporal properties of
the functional modules.

• to provide an action representation which remains consistent
over the various components of the architecture.

• better integration and a tighter loop between the
planning/scheduling system and the execution, including
anticipation mechanisms.

• specific procedures to deal with error analysis and recovery
(e.g., error trees) for non-nominal situations.

• specific robot state evaluation procedures to improve
redundancy in action selection and in dealing with physical
failures in sensors and effectors.

We are also convinced that architectural design is only a partial
answer to the question. The overall robot design should of course
take benefit of the most recent generic advances in dependability
for computer systems. And last, but not least, the robot functional
and algorithmic components should also be designed with
improved robustness, enlarging their capabilities in various
operational contexts by embedding a learning component.

Concerning personal robots in direct interaction with humans, one
has also to address all topics related to user-acceptability issues as
well as human objective and subjective confidence on the robot
capabilities.

References
[Alami et al., 1998] R. Alami, R. Chatila, S. Fleury, M. Ghallab, F.

Ingrand, “An Architecture for Autonomy”, International Journal of
Robotics Research, Special Issue on Integrated Architectures for
Robot Control and Programming, Vol. 17, No. 4, pp. 315-337,
April 1998.

[Bornot and Sifakis, 1998] S. Bornot and J. Sifakis. “An Algebraic
Framework for Urgency”. In Calculational System Design, NATO
Science Series, Computer and Systems Science 173,
Marktoberdorf, July 1998. Long version to appear in Information
and Computation, 2000.

 [Fleury et al., 1994] S. Fleury, M. Herrb, and R. Chatila. “Design of
a modular architecture for autonomous robot”. In IEEE
International Conference on Robotics and Automation, San
Diego California, (USA), 1994.

[Ghallab et al., 1994] M. Ghallab and H. Laruelle. “Representation
and Control in Ixtet, a Temporal Planner”. In Proceedings AIPS-
94, pages 61-67, 1994.

[Ingrand et al., 1996] F. F. Ingrand, R. Chatila, R. Alami, and F.
Robert. “Prs: A high level supervision and control language for
autonomous mobile robots”, In IEEE ICRA'96, St Paul, (USA),
1996.

[Orccad, 1998] The Orccad Team. “The Orccad Architecture”,
International Journal of Robotics Research, Special issues on
Integrated Architectures for Robot Control and Programming, vol
17, No 4, pp 338-359, April 1998.

