
An Architecture for Task Interpretation and 
Execution Control for Intervention Robots: 

Preliminary Experiments 

Raja Chatila Rachid Alami Bernard Degallaix 
Victor P~r~baskine 

Paul Gaborit Philippe Moutarlier 
Laboratoire d'Automatique et d'Analyse des Syst~mes (LAAS-CNRS) 

7, Ave. du Colonel Roche 31077 Toulouse cedex - France 

Abs t rac t  

This paper deals with the software system design of robots that can replace 
or assist humans in intervention tasks in hazardous environments. We consider 
missions that include navigation from a site to another, execution of specific tasks, 
and transmission of data. Communication difficulties with a remote ground station 
(delays and bandwidth), as well as time constraints on the tasks make it necessary to 
endow such robots with a high level of autonomy in the execution of a well specified 
mission. However, it is today unrealistic to build completely autonomous (and 
useful) robots. This paper presents an approach to answer these requirements; it 
describes an on-board robot system architecture that enables the robot to interpret 
its mission according to the context, and to control and adapt in real time the 
execution of its actions. 

1 I n t r o d u c t i o n  

Intervention robots are machines that have to perform tasks in difficult environments 
which are often remote or of difficult or dangerous access. In addition, according to 
the application context, specific constraints, related to the interaction with the human 
operator, to the task itself, and to the environment have to be taken into account: 

• Communication constraints: t ime delays (for example one way light travel t ime 
between Mars and Earth is between 5 and 20 minutes);  impossibility or loss of 
communication (a rover on Mars may communicate with Earth only at certain 
periods of the day because of visibility); low bandwidth. 

• Task constraints: duration (e.g., motion only during daytime in planet exploration); 
non-repetitiveness: a human operator should be able to assign a variety of tasks to 
the robot, and to modify them according to returned information. 
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• Environment constraints: the environment is partially known and with little accu- 
racy before the intervention, and may remain so for the human operator. 

The question addressed in this paper is: "What robot architecture is adapted to cope 
with these requirements and constraints?". 

These constraints forbid, in many applications, the use of classical teleoperation to 
control intervention robots, as well as telerobotics-like [15] approaches, wherein the human 
operator is still tightly in the control loop even if the robot has the capacity to execute 
some tasks automatically [9]. 

On the other hand, research on autonomous mobile robots is not (yet) able to produce 
an intelligent agent capable of accomplishing completely by itself a general objective such 
as "Collect interesting rock samples", non withstanding the fact that the specification of 
this objective itself cannot be really done beforehand (what is an interesting rock?). 

In another stream of thinking, collective intelligence is considered to be more easy to 
accomplish by building small robots which have complete autonomy but limited behavior, 
and wherein "the basic components that make up the system are designed in such a way 
that the desired functionality emerges as a global side-effect of their massively parallel, 
simple behavior" [7]. Of course, the problem is now "how can global functionality emerge 
from local behavior'j5]. The shortcoming of such a system, even if successfull as defined, 
is that it  is not programmable, i.e., it is necessary to fully specify the task at robot design 
stage. 

In the '2ask level" teleprogramming approach presented in this paper, the robot is 
provided with executable missions that will be carried out autonomously. These missions 
(plans) are refined into actions according to specified execution modalities and to the ac- 
tual execution context [13, 2]. The robot control structure includes the systems necessary 
for task interpretation and autonomous execution. The system is aimed to be generic 
and applicable to several domain instances of intervention robots: planetary rovers [6], 
underwater vehicles [11], disaster reaction [13], etc. 

Section 2 presents the functional architecture of the overall system and and section 
3 presents the operation of the on-board supervision and task refinement and execution 
control system. 

In order to illustrate the approach we will consider a Mars Rover as an example of 
intervention robots. This case study is motivated by the french national project VAPI[6]. 

Once safely on Mars, the rover is expected to be operational for about one year and to 
carry out eight hours per day activities (during daylight). Missions will have three main 
aspects: 

• experiments within a worksite, such as sample collection, drilling, or various mea- 
surements, 

• autonomous navigation between two worksites, within time and space (route) con- 
straints given with the mission. Navigation includes natural landmark recognition, 
inertial localization, environment modelling for motion planning and execution on 
rough terrain . . .  

• worksite modelling and data transmission to Earth. 

1VAP: Autonomous Planetary Vehicle, a project of the french national space agency CNES. 
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2 A Funct iona l  Arch i tec tu re  for Task-Level T e l e p r o -  

gramming and Action Execution Control 

The proposed functional architecture (Figure 1) involves two distinct systems: the Oper- 
ator Station and the on-board Robot Control System (RCS). 

I~oced~ ~ 
t~k ~ d p l  

~¢ipt description 

Task Refinement 

Functional Level 

• ]  Planning and plan execution module [ ]  Refmcone~t Module 

Figure 1: Global Functional Architecture 

2.1 T h e  O p e r a t o r  S t a t i o n  

The Operator Station includes the necessary functions to allow a human operator to build 
an executable mission, i.e., a mission that can be interpreted by the RCS, and to supervise 
its execution by the robot. 

Its mMn components are a Mission Planner which determines the tasks to be achieved 
and their ordering and a Task-level Teleprogramming environment which provides infor- 
mation that will allow the Robot Control System to refine and execute the tasks. 
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2.1.1 Mission P lann ing  

The mission planning phase is based on general action planning techniques, including 
temporal reasoning, since it is necessary to take into account time constraints in robots 
that have to act in the real world. 

We have developed a temporal planning system called IzTeT (Indexed Time Table) 
[12] which can reason on symbolic and numeric temporal relations between time instants. 
It produces a set of partially ordered tasks with temporal constraints. This issue will not 
be developed further in this paper. 

The main reason why this phase must be performed at the Operator Station stems 
from the fact that, in the case of an intervention robot, the determination of the goal 
itself is based on interpreting the current work environment. Such an activity is naturally 
performed by a human operator who is best able to decide what the robot should do, 
given the data acquired by the robot. 

2.1.2 Task-level teleprogramming 

The purpose of this phase is to transform a mission planned according to some objectives 
into an executable mission interpretable by the robot. It is also a planning phase. How- 
ever, it relies on specialized planners (e.g. geometric planners, manipulation planners) 
that are able to take into account directly the interactions between the robot and its 
environment. 

An executable mission is composed of a set of partially ordered tasks (the mission 
planq, procedures that need no further refinement, numerical data and task-dependant 
data structures, and execution modalities. These comprise: 

• information produced by the operator station which will guide the refinement of the 
mission by the robot; 

• constraints and validity conditions on task execution; 

One key aspect is that this "programming" phase must be performed using partial and 
inaccurate information about the robot's environment, and about the consequences of the 
robot's actions. It must therefore produce programs which are robust with respect to these 
uncertainties, and which include actions that allow the robot to verify without ambiguity 
that it is indeed executing the required task. Such verification cannot be performed in 
terms of absolute values (which cannot be precisely known at programming time), but in 
terms of relations between the robot and identifiable features in its environment. 

This means that the resulting program must rely on sensor-based actions (e.g. feature 
tracking) to allow the robot to permanently adapt its behavior and take appropriate 
actions when it detects any discrcpancy between the planned state and the actuM state 
of the world. Note that these requirements may drastically influence the way in which a 
goal is refined into tasks. For example, the need for robust execution of a motion between 
two points may entail a choice of trajectory which is not necessarily optimal in length or 
duration, but which allows the robot to track some feature. 

Finally, depending upon the difficulty of the task and the nature of the environment, 
the teleprogramming phase can sometimes rely on the capacity of the RCS to success- 
fully interpret high-level commands. But in some other situations, the task must be 
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deeply detailed by the operator station, which normally requires previous acquisition and 
transmission of large amounts of data. 

In the case of the planetary rover, the tele-programming of navigation tasks will be 
limited to the determination of itineraries and natural landmarks based on low-resolution 
images obtained from the orbiter. Further task refinement is performed autonomously by 
the RCS. Other tasks, like sample collection, must be programmed at the ground station 
in more details using "in situ" information acquired by the rover. 

2 . 2  T h e  R o b o t  C o n t r o l  S y s t e m  

Once the executable mission is prepared at the Operator Station, it is sent to the on-board 
system called the Robot Control System. 

Because the robot is working in a remote and a priori little known environment, 
significant differences between the planned (expected) state of the world and its true 
state are bound to appear. Therefore the robot is fldIy autonomous at " task  level". It 
receives tasks that it transforms into sequences of actions using its own interpretation 
and planning capacities, and executes these actions while being reactive to asynchronous 
events and environment conditions. However, it may decide (by itself according to the 
context, or because it was programmed explicitly to do so) to contact the Operator Station 
when necessary (and possible) in order to solve some difficulties. Conversely, the Operator 
Station may also supervise the execution if possible, and if necessary interfere with action 
execution. 

Thus, the robot is endowed with the capacities of (i) interpreting the mission according 
to the actual situation, and (ii) autonomous execution of its tasks. The on-board Robo t  
Cont ro l  Sys t em (figure 1) is composed of two levels: a supervision and planning level, 
and a functionM level. 

2 . 2 . 1  T h e  S u p e r v i s o r y  L e v e l  

The supervision level comprises: 

• The R o b o t  Supervisor ,  which manages the overall robot system and interacts 
with the operator station. The supervisor makes use of two resources: 

- the Plan  In t e rp re t e r  and mon i to r  that.is in charge of requesting (to the 
supervisor) the execution of the different tasks in the plan, of verifying that 
their execution satisfies the different constraints included in the plan, and of 
maintaining the necessary world state description. 

- The Task Ref inement  Sys tem which refines tasks into actions, taking into 
account the execution modalities specified with the plan, and the actual situ- 
ation of the robot. 

• The Execut ive,  which is in charge of managing and controlling the robot's fucn- 
tional modules in order to execute actions. 
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2.2.2 The  Funct ional  Level 

In order to control the robot's actions, we think that it is useful to define its basic functions 
in a systematic and formal way so that they can be controlled according to their specific 
features, while being easy to combine, modify or redesign [2]. We therefore defined in [14] 
and extended in [10] robot modules and introduced primitive function types within them 
[1] [8]. 

Essentially, a module embeds primitive robot fnnctions which share common data 
or resources. An internal control task called the "module manager" is responsible for 
receiving requests to perform these functions from the robot controller, and for otherwise 
managing the module. Eac:h function being well defined, its activation or termination 
must respect certain conditions that the module manager verifies. 

A module may read data exported by other modules, and may output its own process- 
ing results to exported data structures (EDS). At a given time, a module can be executing 
several functions. All of the i'unctions of each module are pre-defined at the system design 
stage. 

The robot primitive functions fall into four different types according to their function- 
ing mode. 

Servers.  Functions executed upon request. The processing result is exported in a pre- 
defined data structure to be accessed by the requesting module, or sent directly 
(message). 

Filters.  b-hnctions started upon request (or systematically) and then run continuously at 
a given frequency until stopped. Their results are output in a data structure that 
is updated at the mentioned frequency. 

Servo-proeesses.  These functions implement a closed-loop between a perception func- 
tion (related to processing sensory data) and an "action" function (related to robot 
effectors). 

Moni tors .  These functions are used to detect a given situation or event. They verify, at 
a given frequency or at reception of an asynchronous signal, the occurrence of an 
event and react by generating themselves a signal (sent to the supervisory level or 
another pre-spocified destination). 

Both filters and servo-processes may be stopped, but cannot stop by themsetves~ unless 
they detect an abnormal condition; in this case, an appropriate signal is sent to the 
supervisory level of robot control system. 

3 P l a n  I n t e r p r e t a t i o n ,  Task R e f i n e m e n t  a n d  E x e c u -  
t i on  C o n t r o l  

3.1 Introduction 
After the planning and programming phase, an executable mission is produced composed 
of tasks, and possibly for some parts, of more low-level actions produced by the program- 
ming phase. The mission plan has to be tranformed by the robot control system into 
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Figure 2: The Plan Interpreter 

executable primitive actions, selected by taking into account the state of the environment 
and of the robot as the mission is executed. Mission execution will be globally managed 
by the robot supervisor, that makes use of the plan interpreter for scheduling the tasks, 
of the task "refiner" for precising their execution, of the robot executive that manages 
the robot functional modules for actually executing them. 

3 . 2  M i s s i o n  I n t e r p r e t a t i o n  

Plans, as produced by IxTeT, embed a set of partially ordered tasks, together with tem- 
poral constraints such as minimal and maximal expected durations, and synchronisation 
with expected external events or absolute dates. 

The plan interpreter is in charge of monitoring the execution of the tasks involved in 
the plan. It has therefore to verify that the tasks produce indeed the expected effects, and 
must react in case of discrepancy. Some of the tasks need to be further refined according 
to the actual situation. They will be sent by the supervisor to the task refinement system. 

3.2.1 P lan  Execut ion  Moni to r ing  

Instants in the time lattice correspond to different event types: beginning or end of task 
execution, intermediate events produced by tasks during their execution, expected exter- 
nal events (which occur independently from robot actions). Besides, numerical bounds 
for dates and durations may be attached to some time-points or intervals. 

The plan execution control process interacts with a clock by requiring the sending of 
messages at given absolute dates and with the robot supervisor by requiring task execution 
or cancellation (fig 2). 

Messages received from the clock authorize the system to state the occurence of dated 
expected events and to monitor the task minimal and maximal expected durations. 

Messages received from the robot supervisor are 'filtered' by the associated automata 
and transformed into events which correspond either to instants planned in the time lattice 
(in case of nominal execution) or to unexpected instants otherwise. 



214 

~ - , . . ~  

Last processed Instant 

Figure 3: Plan interpretation 

The plan interpreter starts from a given instant in the time lattice and ~executes' the 
time lattice by performing the following actions: 

• At any moment, it considers only the time instants whose predecessors have been 
processed and whose planned occurence date is compatible with the current time. 

• It requires the execution of a new task when it reaches the instant which corresponds 
to its beginning. 

• While processing incoming events, the interpreter verifies that they correspond to 
planned instants and that they satisfy the planned ordering and numerical time 
constraints. If it is the case, the absolute date corresponding to the occurence of 
the events is considered, inducing a progressive 'linearisation' of the time lattice (see 
figure 3). 

• In the current implementation, the only ~standard' reaction performed by the plan 
interpreter in case of non-nominal situations is to stop the current tasks, and update 
the world state according to events incoming from task execution until all tasks 
are stopped. This is performed by inserting new time instants in the time lattice 
corresponding to the transitions as defined by the automata. 

Figure 3 shows the plan produced at two different stages of interpretation. The first 
time lattice represents a situation wherein the rover is navigating from site-2 to site-3 
(indeed, instant 9 is in the past while instant t0 is still in the future). It has previously 
acquired a panoramic view of site-P (between instants 5 and 6), however it has to wait 
for instant 18 (visibility with the orbiter) in order to send the data (between instants 7 
and 8). 

In the second lattice, instant 18 has occured; the rover is performing two tasks in 
parallel (navigating and sending data to the orbiter). 

3.2.2 Using Automata To Monitor Task Execution 

In order to allow the plaaa interpreter to monitor task execution and to act on them while 
they are executed, each task is modelled by a finite state automaton (FSA). 
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Figure 4: A Generic Automaton for task execution. Events are represented by a pair 
internal/external 

The FSA associated to a task not only models the nominal task execution (as de- 
fined in the task description manipulated by the planner) but also non-nominal situations 
(exceptions), as well as the different actions which should be taken then by the plan 
interpreter. 

In the finite state automata we use, state transitions can be caused by ~internM events' 
(i.e. events generated by the task execution process and transmitted to the plan inter- 
preter) or by 'external events' (i.e. events due to an action of the plan interpreter on the 
task while it is executed). 

Figure 4 shows a generic automaton for action execution. 

Typical internal events are: RUN (beginning of execution), RETURN (nominal end 
of execution), STOP_ON_FAILURE (end due to a failure), STOPPED (end of execution 
caused by an external STOP request). 

A Typical external event is STOP (corresponding to a stop request issued by the plan 
interpreter). Other external events are related to the task and force a state transition in 
the execution. 

For each task, an automaton class is provided. An example is given in figure 5. 
Note that each automaton state change produces transitions in the world state as it is 
maintained by IxTeT. The example in figure 5 shows a decription of automaton associated 
to the task TASK-NAVIGATE. 

Whenever a task execution is requested by the plan interpreter, an automaton of the 
associated class is instanciated and initialized. It will then represent the execution of the 
task as it is viewed by the plan interpreter. 
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(Ixte~ :Task TASK-NAVIGATE 
: a z q a  (gsit~l ?slte2) 
teff~e~s {(:is-m~ VAP-Site ?si~1) 

(:mee~s VAP-SIte ?sit~2) 
( : equal MD~ing ) ) 

:du~a~ion-min (mln-len~h ?si~,l ?siee2) 
;durat£on-~x (~x-l.n~h ?sitel ?slte2)} 

DEFINE-AUTOMATE~CLASS TASK-NAViGATE (?sltel ?site2] 
( : STAT~ 5~gln 
: INTERNAL-EVENTS ((:r~ 

: ~EXT-ETATE : exe~utlng 
:TRANSITIONE ((:ON MOVING) 

(:O~F VAP-SITE ?mi=el)))} 
: EXTERNAL-E%~NTS ( ( :s~op 

:NEXT-STATE : st~pplng 
:TRANSITIONS ()])] 

(:STATE ex~out ±rig 
:/NTEENAh-EVENTS { ( :re~urn 

:NEXT-STATE ~etid 
:TRANSITIONS ( (~OFF MOVING) 

I :ON VAP-SITE ?slUe2) ) ) 
( : exeoutlon_fail~ ~e 
:NEXT-STATE : failure 
:TRANSITIONS ( ( :ON NAVIGATION-FAILURe) ) ) ) 

: EXTERNAL-EVENTS ( (:st~p 
:NEXT STATE :stopping 
:TRANSITIONS 4)))) 

(:STATE failure 
:INTERNAL-EVENTS ( { :stop_on_failur~ 

:NEXT-STATE tend 
:TRANSITIONS ( ( :O~ MOVING) 

{~ON VAP-SITE CURRENT) 
(xON VALID-PATH CURRENT ?Si~el) 
( ~OFF VALID-PATH ?sitel ?site2) ) ) ) 

:EXTERNAL-EVENTS ((:stop 
: NEXT-STATE ~ stoppin~ 
: TRANSITIONS ( } ) ) ) 

Figure 5: Automaton description 

3 . 3  T a s k  R e f i n e m e n t  

Task Refinement transforms a task into specific actions that are adapted to the actual 
context. As an example, a motion task may be executed in different ways: 

t a displacement using only dead-reckoning systems to guide the movement. 

• a closed-loop motion using a perceptual feature of the environment (landmark track- 
ing, edge following of a large object, rim following, etc.). 

These two modes correspond to the execution of different scripts, associated with the 
task "move". Script selection is based on testing conditions using the acquired data. 
Scripts have variables as arguments~ that are instanciated at execution time. The execu- 
tion of a script is similar to the execution of a program. 

3 . 4  T a s k  E x e c u t i o n  

Action execution are represented by activities. The execution of a script corresponds to 
a global activity. An activity is thus equivalent to the execution of a program, and is 
analogous to the notion of process in an computer operating system. A simple activity is 
the execution of a function by a module. An activity may cause the emission of requests 
to other modules, starting children activities. The module in the parent activity is then a 
client of the module in the child activity. An activity may be the parent of many children, 
but may be the child of only one other activity. A set of rules and mechanisms were 



217 

developed to create and manage activities. Two basic mechanisms are activity creation 
and message transmission between two activities. 

At a given moment, the set of activities represent the functions being executed in the 
robot system. The activity structure is a tree with a parent-child relationship. The tree 
evolves while the robot is executing. An activity communicates with its (single) parent 
activity via "up-signals" and with its (eventual) child activities via "down-signals'. The 
activity hierarchy is not predefined and depends on the current task. 

Regardless of the specific processing it performs, an activity must be able to react 
to signals sent by its parent or its children. In particular, it must be able to react to 
asynchronous signals within a pre-defined bounded time delay. 

An activity is also represented by a finite automaton. Its state changes are dependent 
on external or internal signals. Control flow between a mother and child activities is 
implemented as typed messages that cause a state change. Specifc mechanisms permit 
the propagation of a state change along the activity tree. 

Important features of the notion of activity are: 

• Activities provide for the management of a hierarchy of actions without imposing a 
fixed number of layers. 

• All activities, regardless of level, may be treated in the same way. 

• No assumptions are made about the nature of the inter-connections between activi- 
ties: the activity hierarchy is not pre-defined. We might require that a "high level" 
activity starts and manages a "low level" activity at any level. This knowledge must 
however exist in the modules. 

• All mechanisms for managing activities (starting, terminating, etc.) and the commu- 
nication between them do not depend upon any programming language constructs; 
in this sense, they resemble part of an operating system. 

• The concept of activity permits reactivity at all levels: at any moment, each activity 
in the tree structure is able to respond to asynchronous events. 

Figure 6 represents an example of activity tree at one stage of the execution of a 
go-to(location) task. The "root" box represent the mother activity of this task, within 
the executive. The "monitor-l l"  box is the mother activity of a main child-activity 
(monitor-12) and of an associated monitoring activity (timer-200: a time-out for this 
task). When the corresponding event occurs, the main activity is stopped. "Monitor-12" 
is a monitoring activity also: the traveled distance should not exceed a given maximum 
(here 60 meters). Sequence in the "sequence-6" box means that the following children 
are to be executed in sequence (this defines a sub-activity block). "go-to-xy" and "exec- 
traj" are the two sequential activities. The first is the "go to" coordinate location, and 
the second is the trajectory execution phase within it. Other possible phases are "build- 
model" (environment modelling) and "build-traj" (trajectory planning). The last box 
"move-5" is the primitive action move being executed. 

Figure 7 shows the currently configuration of the implemented modules. 
Figure 8 shows the execution of the go-to(location) task in a laboratory experiment, 

where the robot discovers its environment and builds a model of it while it navigates to 
reach the assigned location. 
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Figure 6: Activity tree during execukion of a GOTO task 

4 C o n c l u s i o n  

We presented in this paper a global approach to task planning and execution for inter- 
vention robots. Such robots are characterized by the fact that they have to be able to 
autonomously execute their actions in a partially and poorly known environment in order 
to accomplish missions and tasks specified and programmed by a human user. The robot 
have to interpret the tasks according to the context and its evolution, and to achieve 
autonomous execution. 

The main interest of the plan interpretation as it is proposed in this paper is to 
maintain and update a complete history of the plan execution not only in nominal cases 
but also when a failure occurs. This is performed using automata which model tasks 
execution and their interaction with the plan interpreter. However other representations 
may be used. Indeed~ we are working on an extension using on a rule-based system 
which should allow not only to model task execution but also combined effects due to the 
simultaneous execution of several tasks as well as domain dependent knowledge allowing 
to infer new transitions from starting from a set of observed events. 

While it is still necessary to further deepen some aspects, the experimental results 
show that this task-level teleprogramming approach is sound and applicable. 

R e f e r e n c e s  

[1] R. Alami, R. Chatila, M. Devy, and M. Valsset, System architecture and processes 
for robot control. Technical report, Laboratoire d 'Automatique et d'Analyse des 
Syst~mes (C.N.R.S.), Toulouse (France), June 1990. 



219 

[ ~--~PLAN SUPERVISOR ] 

Figure 7: Implemented architecture 

[2] R. Alami, R. Chatila, and P. Freedman. Task level programming for intervention 
robots. In IARP 1st Workshop on Mobile Robots for Subsea Environments, Monterey, 
California (USA), pages 119-136, October 1990. 

[3] Amine Mounir Alaoui. Raisonnement temporel pour la planification et la recon- 
naissance de situations. Th~se de l'Universit~ Paul Sabatier, Toulouse (France), 
Laboratoire d'Automatique et d'Analyse des Syst~mes (C.N.R.S.), October 1990. 

[4] J. F. Allen. Towards a general theory of action and time. Artificial Intelligence, 
23:123-154, 1984. 

[5] C. M. Angle and R. A. Brooks. Small planetary rovers. In IEEE International 
Workshop on Intelligent Robots and Systems (IROS '90), Tsuchiura (Japan), pages 
383-388, July 1990. 

[6] L. Boissier and G. Giralt. Autonomous planetary rover (v.a.p.). In IARP Workshop 
on Robotics in Space, Pisa, Italy, June 1991. 

[7] R. A. Brooks, P. Maes, and G. Moore. Lunar base construction robots. In IEEE 
International Workshop on Intelligent Robots and Systems (1ROS '90), Tsuchiura 
(Japan), pages 389-392, Juty 1990. 

[8] R. Ferraz De Camargo, R. Chatila, and R. Alami. A distributed evolvable control 
architecture for mobile robots. In '91 International Conference on Advanced Robotics 
(ICAn),Pisa (Italy), pages 1646-1649, 1991. 



220 

MI l l  

Robot and goal Build ing the environment model 

Building the free space 

Trajectory execution 

Planning a trajectory 

[iiml 

Goal reached after three steps of 
perception/localization/planning/execulion 

Figure 8: Experimental Execution of a goto(location) task. 



221 

[9] R. Chatila, R. Alami, and G. Giralt. Task-level programmable intervention au- 
tonomous robots. In Mechatronics and Robotics I, P. A. MacConaill, P. Drews and 
K.-H. Robrock Eds, IOS Press, pages 77 - 87, 1991. 

[10] R. Chatila and R. Ferraz De Camargo. Open architecture design and inter- 
task/intermodule communication for an autonomous mobile robot. In IEEE In- 
ternational Workshop On Intelligent Robots and Systems, Tsuchiura, Japan~ July 
1990. 

[11] L. Floury and R. Gable. The wireline reentry in deep ocean dsdp/odp holes. Technical 
Report DITI/ICA-91/172-LF/DB, IFREMER - Centre de Brest, July 1991. 

[12] M. Ghallab, R. Alami, and R. Chatila. DeaJing with Time in Planning and Execu- 
tion Monitoring. In R. Bolles, editor, Robotics Research: The Fourth International 
Symposium. MIT Press, Mass., 1988. 

[13] R. Lanrette, A. de Saint Vincent, R. Alami, R. Chatila, and V. P~r~baskine. Super- 
vision and control of the amr intervention robot. In '91 International Conference on 
Advanced Robotics (ICAR),Pisa (Italy), pages 1057-1062, June 1991. 

[14] F. R. Noreils, A. Khoumsi, G. Bauzil, and R. Chatila. Reactive processes for mobile 
robot control. In International Conference on Advanced Robotics (ICAR), 1989. 

[15] T. Sheridan. Telerobotics. In IEEE Int. Conf. on Robotics and Automation (Work- 
shop on Integration of AI  and Robotic Systems, 1989. 


